Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3654-3670.doi: 10.3864/j.issn.0578-1752.2024.18.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Optimization of Integrated Water and Nitrogen Regulation System in Apple Based on Multi-Objective Comprehensive Evaluation

ZHOU HanMi1(), MA LinShuang1, SUN QiLi1, CHEN JiaGeng1, LI JiChen1, SU YuMin1, CHEN Cheng1, WU Qi2()   

  1. 1 College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, Henan
    2 College of Water Resource, Shenyang Agricultural University, Shenyang 110866
  • Received:2023-11-08 Accepted:2023-12-26 Online:2024-09-16 Published:2024-09-29
  • Contact: WU Qi

Abstract:

【Objective】 The aim of this study was to explore the comprehensive impact of integrated drip irrigation and nitrogen regulation on the growth, physiology, water-nitrogen utilization efficiency, yield, and fruit quality of apple trees in northern semi-arid regions, and to determine the optimal water-nitrogen regulatory system. 【Method】 The experimental design involved two regulatory factors: irrigation and fertilizer application. Three irrigation levels were set up, representing 75%-90% (W1), 60%-75% (W2), and 45%-60% (W3) of field water capacity, respectively. Four fertilizer application levels were set, with N-P2O5-K2O of 18-12-6 g/plant (F1), 15-12-6 g/plant (F2), 12-12-6 g/plant (F3), and 9-12-6 g/plant (F4). The study analyzed the effects of different water-nitrogen treatments on the growth and physiological indicators, water-fertilizer utilization efficiency, dry matter, yield, and fruit quality of apple trees. With the objectives of water and fertilizer saving, as well as high yield and high quality, a comprehensive evaluation model was established by combining the AHP-CRITIC combination weight method and the TOPSIS model. 【Result】 Water-fertilizer coupling produced highly significant effects on plant growth, chlorophyll content (SPAD), irrigation water use efficiency (IWUE), fertilizer partial productivity (PFP), fruit weight and yield of apple trees, and significant effects on basal stem growth. Under different water-fertilizer coupling treatments, the moderate deficit of irrigation and nitrogen application treatments were more favorable to increase plant growth, basal stem growth, leaf area, dry matter, yield, water use efficiency (WUE), water productivity (WP), IWUE, FPP, and fruit weight of apple trees, and their maximums occurred in the F2W2 treatment. The SPAD, photosynthesis rate, and transpiration rate of apple trees increased with increasing amounts of irrigation and nitrogen, but the moderate deficit of irrigation and nitrogen application treatments had no significant effect on physiological indices, with the F1W2 and F2W1 treatments decreasing by only 3.5%, 3.1%, 7.7%, and 3.5%, 3.1%, and 3.8%, respectively, compared with F1W1. The AHP-CRITIC combination was used to determine the combination weights of the indicators, in which the weight of yield was the largest, amounting to 0.406, followed by vitamin C. The TOPSIS algorithm was used to construct a comprehensive multi-objective evaluation system for apples, and the result was that the comprehensive score under the F2W2 treatment was the highest, amounting to 0.8974, with the F1W2 and F2W1 treatments coming next, and the F4W3 treatment had the lowest score of 0.0177. The established interaction response model of coupled water and fertilizer in apples shows that the effects of both irrigation and fertilizer application on the composite score of apple growth were parabolic lines with downward opening. The apple growth composite scores showed a trend of increasing and then decreasing with increasing irrigation or fertilizer application, which was consistent with the diminishing reward effect, i.e., irrigation and nitrogen application exceeding a certain range and then continuing to increase would lead to a decrease in composite scores, which was not obvious for the improvement of apple growth. When the fertilizer application coded value X1 was 0.681 and the irrigation coded value X2 was 0.488, the highest apple composite score was 0.923, i.e., the fertilizer application rate was 34.56 g·plant-1 (N-P2O5-K2O: 16.56-12-6 g/plant), and the irrigation rate was controlled at 82.3% of field water capacity, so this irrigation and fertilizer application treatment was the most desirable for the growth of apples. 【Conclusion】 The comprehensive evaluation system constructed using the AHP-CRITIC-TOPSIS method could effectively determine the optimal water and nitrogen regulation system for apples, which provided a theoretical and practical basis for the actual production of apple orchards in northern semi-arid regions.

Key words: apple, growth physiology, drip irrigation, water and fertilizer utilization, integrated evaluation model, water and nitrogen regulation

Fig. 1

Test site meteorological conditions"

Table 1

Experimental treatments"

施肥处理
Fertilizer treatment (N-P2O5-K2O g/plant)
灌水处理Irrigation treatment
W1 W2 W3
F1 18-12-6 75%-90%θf 60%-75%θf 45%-60%θf
F2 15-12-6
F3 12-12-6
F4 9-12-6

Fig. 2

Hierarchical analysis structure model"

Table 2

Effects of water and fertilizer treatment on growth physiological indexes of apple trees"

施肥处理 Fertilizer treatment 灌水处理
Irrigation treatment
植株生长量
Plant growth
(cm)
基茎生长量
Basal stem growth (mm)
叶面积
Leaf area
(m2/plant)
叶绿素含量
Chlorophyll content (SPAD)
净光合速率
Photosynthetic rate (μmol·m-2·s-1)
蒸腾速率
Transpiration rate (mmol·m-2·s-1)
F1 W1 76.35±12.66ab 5.53±1.27ab 0.534±0.115abcd 62.59±0.30a 39.26±1.24a 8.60±0.17a
W2 79.80±11.6ab 5.72±1.16ab 0.576±0.119abc 60.43±0.34b 38.06±0.87ab 7.94±0.13abc
W3 48.75±7.85cd 3.06±0.40cde 0.362±0.053cde 55.50±0.25ef 33.99±1.05cde 7.35±0.10cde
F2 W1 79.10±12.45ab 6.36±1.39a 0.600±0.159ab 60.37±0.30b 38.05±1.18ab 8.27±0.30ab
W2 87.15±10.54a 6.75±1.41a 0.624±0.146a 57.08±0.37d 36.56±1.59abc 7.61±0.36bcd
W3 46.20±8.34cd 3.16±0.32cde 0.363±0.081cde 54.77±0.63fg 33.15±0.69cde 7.13±0.16def
F3 W1 63.15±8.84bc 5.12±1.05abc 0.418±0.03abcde 60.23±0.17b 36.04±0.63abc 8.07±0.25abc
W2 65.80±13.58abc 4.94±0.95abc 0.462±0.033abcd 56.78±0.56d 34.67±1.28bcd 7.42±0.32cde
W3 39.75±6.29d 2.43±0.29de 0.310±0.089de 54.12±0.29g 30.35±2.48ef 6.79±0.51ef
F4 W1 53.65±5.02cd 4.09±0.30bcd 0.388±0.054bcde 58.23±0.13c 33.41±1.09cde 7.87±0.25bc
W2 48.50±3.82cd 3.15±0.51cde 0.318±0.042de 56.25±0.61de 31.20±2.93def 6.98±0.29def
W3 34.30±4.95d 1.75±0.21e 0.223±0.105e 52.95±0.37h 28.78±2.69f 6.56±0.46f
显著性检验(F) Test of significance (F value)
施肥 Fertilizer 33.427** 22.050* 16.607* 1431.822** 48.317** 24.115*
灌水 Irrigation 167.102** 27.914* 1476.879** 1204.190** 92.922* 770.439**
施肥×灌水
Fertilizer×Irrigation
14.340** 8.294* 2.058 37.038** 0.736 0.741

Table 3

Effects of water and fertilizer treatment on water and fertilizer utilization of apple"

施肥处理
Fertilizer treatment
灌水处理
Irrigation treatment
水分利用效率
Water use efficiency (μmol·mmol-1)
水分生产率
Water productivity
(kg·m-3)
灌溉水利用效率
Irrigation water use efficiency (kg·m-3)
肥料偏生产力
Fertilizer partial productivity (kg·kg-1)
F1 W1 4.57±0.05cde 2.06±0.05def 2.03±0.25abc 6.45±0.8ab
W2 4.80±0.04ab 2.38±0.13bc 2.37±0.16ab 6.54±0.47ab
W3 4.63±0.08abcd 2.40±0.06ab 1.01±0.34d 2.24±0.76c
F2 W1 4.60±0.03bcd 2.12±0.06de 2.02±0.16abc 7.02±0.54ab
W2 4.81±0.02a 2.59±0.06a 2.51±0.18a 7.57±0.52a
W3 4.66±0.01abcd 2.40±0.14ab 1.04±0.27d 2.51±0.64c
F3 W1 4.47±0.06de 1.89±0.04fg 1.91±0.08bc 7.31±0.32a
W2 4.68±0.03abc 2.19±0.09cd 2.27±0.25ab 7.51±0.82a
W3 4.47±0.03de 2.20±0.06cd 0.93±0.26d 2.47±0.70c
F4 W1 4.25±0.01f 1.80±0.03g 1.76±0.07c 7.47±0.30a
W2 4.47±0.23de 1.94±0.13efg 1.59±0.16c 5.84±0.58b
W3 4.39±0.11ef 1.89±0.06fg 0.78±0.16d 2.29±0.49c
显著性检验(F) Test of significance (F value)
施肥 Fertilizer 10.067* 35.840** 39.757** 29.319*
灌水 Irrigation 19.489* 61.777* 243.075** 2180.847**
施肥×灌水
Fertilizer×Irrigation
0.590 4.063 17.687** 16.382**

Table 4

Effects of water and fertilizer treatment on dry matter and yield of apple"

施肥处理 Fertilizer treatment 灌水处理 Irrigation treatment 干物质量 Dry matter (g/plant) 产量 Yield (g/plant)
F1 W1 235.30±5.90b 232.09±28.67ab
W2 236.72±12.88b 235.53±16.72ab
W3 191.06±4.94de 80.30±27.27d
F2 W1 242.83±6.35ab 231.70±17.76ab
W2 257.81±6.45a 249.61±17.20a
W3 191.32±11.41de 82.88±20.97d
F3 W1 216.75±4.07c 219.20±9.65ab
W2 217.51±8.96c 225.34±24.66ab
W3 174.98±5.32e 74.07±20.99d
F4 W1 206.55±3.15cd 201.52±8.27b
W2 193.02±13.27de 157.68±15.80c
W3 150.22±5.42f 61.83±13.34d
显著性检验(F) Test of significance (F value)
施肥 Fertilizer 32.684** 39.664**
灌水 Irrigation 374.321** 2672.690**
施肥×灌水 Fertilizer×Irrigation 3.439 17.358**

Table 5

Effect of water and fertilizer treatment on fruit quality of apple"

施肥处理
Fertilizer
treatment
灌水处理
Irrigation treatment
单果重
Fruit weight
(g)
着色指数
Color index
果形指数
Fruit shape index
维生素C
Vitamin C (mg·100g-1)
可溶性糖
Soluble sugar
(%)
糖酸比
Sugar-acid ratio
F1 W1 76.47±6.93ab 2.63±0.106a 0.86±0.04a 3.13±0.16abcd 7.05±0.02a 20.66±0.81a
W2 81.24±7.36a 2.69±0.16a 0.84±0.04ab 3.28±0.12abc 7.05±0.05a 20.99±0.11a
W3 65.09±7bcd 2.04±0.11b 0.82±0.03ab 3.16±0.11abcd 6.64±0.37ab 18.86±0.95bcd
F2 W1 77.39±7.45ab 2.58±0.06a 0.84±0.04ab 3.34±0.15ab 6.56±0.2bc 20.74±0.75a
W2 83.65±6.72a 2.60±0.19a 0.84±0.02ab 3.45±0.16a 6.52±0.28bc 20.72±0.86a
W3 63.64±6.24bcd 2.11±0.11b 0.81±0.02ab 3.35±0.13a 6.41±0.26bc 18.29±0.52cde
F3 W1 72.84±6.8ab 2.50±0.13a 0.83±0.03ab 3.02±0.12bcd 6.36±0.23bc 20.11±1.01ab
W2 73.97±6.72ab 2.56±0.11a 0.82±0.02ab 3.13±0.12abcd 6.28±0.03bc 20.26±0.44ab
W3 57.06±3.08cd 1.97±0.08b 0.80±0.01ab 3.00±0.15cd 6.15±0.18bc 18.03±0.37de
F4 W1 69.48±2.93abc 2.52±0.2a 0.82±0.02ab 2.97±0.15cd 6.34±0.14bc 19.74±0.78abc
W2 63.25±3.15bcd 2.44±0.12a 0.81±0.03ab 3.03±0.08bcd 6.28±0.21bc 19.02±0.23bcd
W3 53.80±1.99d 1.94±0.28b 0.78±0.01b 2.91±0.11d 6.14±0.07c 17.33±0.02e
显著性检验(F) Test of significance (F value)
施肥 Fertilizer 17.677* 6.402 9.327* 320.509** 56.243** 33.773**
灌水 Irrigation 218.780** 1351.803** 10.790 42.431* 12.447 56.632*
施肥×灌水Fertilizer×Irrigation 21.229** 1.352 2.804 1.740 0.653 1.358

Table 6

AHP hierarchical analysis method to calculate the results of the weights and its consistency examine"

局部权重值 Local weight 最终权重值 Ultimate weight 一致性检验参数 Consistency test parameter
目标层C
Target layer C
0.1221 0.1221 CR=0.0284<0.1
λmax =4.0758
0.0526 0.0526
0.4297 0.4297
0.3956 0.3956
准则层C1
Criteria layers C1
0.0429 0.0052 CR=0.0172<0.1
λmax =6.1085
0.053 0.0065
0.1619 0.0198
0.3372 0.0412
0.3194 0.0390
0.0855 0.0104
准则层C2
Criteria layers C2
0.0837 0.0044 CR=0.0077<0.1
λmax =4.0206
0.2279 0.0120
0.5021 0.0264
0.1863 0.0098
准则层C3
Criteria layers C3
0.2000 0.0859 CR=0<0.1
λmax =2
0.8000 0.3438
准则层C4
Criteria layers C4
0.2779 0.1099 CR=0.0094<0.1
λmax =6.0595
0.0637 0.0252
0.0737 0.0292
0.3030 0.1199
0.1398 0.0553
0.1420 0.0562

Table 7

Weight calculation result"

准则层
Criteria layer
指标层
Index layer
主观权重值
Subjective weighting values(AHP)
客观权重值
Objective weight values (CRITIC)
组合权重值
Combined weight values
准则层C1
Criteria layers C1
植株生长量 Plant growth (C11) 0.0052 0.0590 0.0052
基茎生长量 Basal stem growth (C12) 0.0065 0.0529 0.0058
叶面积 Leaf area (C13) 0.0198 0.0489 0.0163
叶绿素 Chlorophyll content (C14) 0.0412 0.0537 0.0373
光合速率 Photosynthetic rate (C15) 0.0390 0.0458 0.0301
蒸腾速率 Transpiration rate (C16) 0.0104 0.0517 0.0091
准则层C2
Criteria layers C2
水分利用效率 Water use efficiency (C21) 0.0044 0.0364 0.0027
水分生产率 Water productivity (C22) 0.0120 0.0628 0.0127
灌溉水利用效率 Irrigation water use efficiency (C23) 0.0264 0.0633 0.0282
肥料偏生产力 Fertilizer partial productivity (C24) 0.0098 0.0845 0.0140
准则层C3
Criteria layers C3
干物质量 Dry matter (C31) 0.0859 0.0386 0.0559
产量 Yield (C32) 0.3438 0.0701 0.4063
准则层C4
Criteria layers C4
单果重 Fruit weight (C41) 0.1099 0.0478 0.0885
着色指数 Color index (C42) 0.0252 0.0611 0.0260
果形指数 Fruit shape index (C43) 0.0292 0.0337 0.0166
维生素C Vitamin C (C44) 0.1199 0.0625 0.1262
可溶性糖 Soluble sugar (C45) 0.0553 0.0850 0.0792
糖酸比 Sugar-acid ratio (C46) 0.0562 0.0425 0.0402

Table 8

Apple composite indexes calculated based on TOPSIS method and their ranking"

处理
Treatment
C11 C12 C13 C14 C15 C16 C21 C22 C23 C24 C31
F1W1 0.1057 0.1062 0.1031 0.0908 0.0949 0.0949 0.0834 0.0797 0.1004 0.0989 0.0936
F1W2 0.1104 0.1099 0.1112 0.0877 0.0920 0.0876 0.0876 0.0920 0.1172 0.1003 0.0942
F1W3 0.0675 0.0588 0.0699 0.0805 0.0822 0.0811 0.0845 0.0928 0.0500 0.0343 0.0760
F2W1 0.1095 0.1222 0.1159 0.0876 0.0920 0.0913 0.0839 0.0820 0.0999 0.1076 0.0966
F2W2 0.1206 0.1297 0.1205 0.0828 0.0884 0.0840 0.0878 0.1002 0.1241 0.1161 0.1025
F2W3 0.0639 0.0607 0.0701 0.0795 0.0802 0.0787 0.0850 0.0928 0.0514 0.0385 0.0761
F3W1 0.0874 0.0983 0.0807 0.0874 0.0872 0.0891 0.0816 0.0731 0.0945 0.1121 0.0862
F3W2 0.0911 0.0949 0.0892 0.0824 0.0838 0.0819 0.0854 0.0847 0.1123 0.1151 0.0865
F3W3 0.0550 0.0467 0.0599 0.0785 0.0734 0.0750 0.0816 0.0851 0.0460 0.0379 0.0696
F4W1 0.0743 0.0786 0.0749 0.0845 0.0808 0.0869 0.0776 0.0696 0.0870 0.1145 0.0822
F4W2 0.0671 0.0605 0.0614 0.0816 0.0754 0.0771 0.0816 0.0750 0.0786 0.0895 0.0768
F4W3 0.0475 0.0336 0.0431 0.0768 0.0696 0.0724 0.0801 0.0731 0.0386 0.0351 0.0598
处理 Treatment C32 C41 C42 C43 C44 C45 C46 D+ D- 贴近度 Closest degree 排序 Rankings
F1W1 0.1131 0.0913 0.0922 0.0871 0.0829 0.0906 0.0880 0.2075 0.8567 0.8050 4
F1W2 0.1148 0.0970 0.0941 0.0851 0.0868 0.0906 0.0894 0.1241 0.8967 0.8784 2
F1W3 0.0391 0.0777 0.0714 0.0831 0.0837 0.0854 0.0803 0.8298 0.2408 0.2249 10
F2W1 0.1129 0.0924 0.0903 0.0851 0.0884 0.0843 0.0883 0.1674 0.8662 0.8380 3
F2W2 0.1217 0.0998 0.0910 0.0851 0.0913 0.0838 0.0883 0.1115 0.9758 0.8974 1
F2W3 0.0404 0.0760 0.0738 0.0821 0.0887 0.0824 0.0779 0.8167 0.2753 0.2521 9
F3W1 0.1068 0.0869 0.0875 0.0841 0.0800 0.0818 0.0857 0.3218 0.7638 0.7036 6
F3W2 0.1098 0.0883 0.0896 0.0831 0.0829 0.0807 0.0863 0.2705 0.8023 0.7478 5
F3W3 0.0361 0.0681 0.0689 0.0811 0.0794 0.0791 0.0768 0.9053 0.1197 0.1168 11
F4W1 0.0982 0.0829 0.0882 0.0831 0.0786 0.0815 0.0841 0.4034 0.6760 0.6263 7
F4W2 0.0769 0.0755 0.0854 0.0821 0.0802 0.0807 0.0810 0.5523 0.4703 0.4599 8
F4W3 0.0301 0.0642 0.0679 0.0790 0.0770 0.0789 0.0738 0.9935 0.0180 0.0177 12

Fig. 3

Effect curve of single factor on apple comprehensive score"

Fig. 4

Effect of coupling of water and fertilizer on integrated growth of apple"

[1]
金莹, 牛荣. 中国苹果七大主产区产业竞争力发展研究. 生产力研究, 2021(9): 36-41.
JIN Y, NIU R. Study on the development of industrial competitiveness of seven major apple producing areas in China. Productivity Research, 2021(9): 36-41. (in Chinese)
[2]
中国苹果产业协会, 国家苹果产业技术体系. 2022年苹果产业发展概况(一). 中国果菜, 2024, 44(3): 1-9.
China Apple Industry Association, National Apple Industry Technology System. Overview of apple industry development in 2022 (Ⅰ). China Fruit & Vegetable, 2024, 44(3): 1-9. (in Chinese)
[3]
汪景彦, 李壮, 李敏, 赵德英, 厉恩茂, 程存刚, 李燕青. 密切结合国情, 建设中国特色苹果生产强国. 中国果树, 2019(5): 1-6.
WANG J Y, LI Z, LI M, ZHAO D Y, LI E M, CHENG C G, LI Y Q. Based on Chinese situation, built a powerful country with Chinese characteristics in apple production. China Fruits, 2019(5): 1-6. (in Chinese)
[4]
刘占军, 祝慧, 张振兴, 赵家锐, 侯立耀, 翟丙年, 徐新朋, 雷秋良, 朱元骏. 我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术. 植物营养与肥料学报, 2021, 27(7):1294-1304.
LIU Z J, ZHU H, ZHANG Z X, ZHAO J R, HOU L Y, ZHAI B N, XU X P, LEI Q L, ZHU Y J. Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1294-1304. (in Chinese)
[5]
刘星, 曹红霞, 廖阳, 周宸光, 李黄涛. 滴灌模式对苹果光合特性、产量及灌溉水利用的影响. 中国农业科学, 2021, 54(15): 3264-3278. doi: 10.3864/j.issn.0578-1752.2021.15.011.
LIU X, CAO H X, LIAO Y, ZHOU C G, LI H T. Effects of drip irrigation methods on photosynthetic characteristics, yield and irrigation water use of apple. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278. doi: 10.3864/j.issn.0578-1752.2021.15.011. (in Chinese)
[6]
崔佳伟, 任佳伟, 李著帅, 冯晓琳, 张欣然, 闫雨阳, 耿增超. 水肥耦合效应对苹果幼树生长、果实产量品质及土壤养分特征的影响. 果树学报, 2023, 40(10): 2098-2111.
CUI J W, REN J W, LI Z S, FENG X L, ZHANG X R, YAN Y Y, GENG Z C. Effects of water and fertilizer coupling on growth, fruit yield and quality and soil nutrient characteristics of apple saplings. Journal of Fruit Science, 2023, 40(10): 2098-2111. (in Chinese)
[7]
李兴强, 孙兆军, 焦炳忠, 韩磊, 何俊, 王蓉, 强晓玲. 水氮配置对地下渗灌枣树光合特性及产量的影响. 中国土壤与肥料, 2022(1): 25-32.
LI X Q, SUN Z J, JIAO B Z, HAN L, HE J, WANG R, QIANG X L. Effects of water and nitrogen allocation on photosynthetic characteristics and yield of jujube trees with filtration irrigation. Soil and Fertilizer Sciences in China, 2022(1): 25-32. (in Chinese)
[8]
张建锴, 曹红霞, 潘小燕, 南学平. 基于产量和品质的陕北苹果滴灌水量和追施氮量优化研究. 干旱地区农业研究, 2020, 38(5): 143-152.
ZHANG J K, CAO H X, PAN X Y, NAN X P. Optimization of drip irrigation and topdressing nitrogen based on apple yield and quality in Northern Shaanxi. Agricultural Research in the Arid Areas, 2020, 38(5): 143-152. (in Chinese)
[9]
刘亚南, 白美健, 张宝忠, 吴现兵, 史源. 黄金梨产量及水肥生产率对水氮耦合的响应. 灌溉排水学报, 2020, 39(11): 68-75.
LIU Y N, BAI M J, ZHANG B Z, WU X B, SHI Y. Impact of different water-nitrogen couplings on yield and water-nitrogen productivity of golden pear. Journal of Irrigation and Drainage, 2020, 39(11): 68-75. (in Chinese)
[10]
ROLBIECKI R, ROLBIECKI S, FIGAS A, JAGOSZ B, WICHROWSKA D, PTACH W, PRUS P, SADAN H A, FERENC P F, STACHOWSKI P, LIBERACKI D. Effect of drip fertigation with nitrogen on yield and nutritive value of melon cultivated on a very light soil. Agronomy, 2021, 11(5): 934.
[11]
张智, 李曼宁, 杨志, 蔡泽林, 洪婷婷, 丁明. 基于多指标协同的草莓水肥耦合综合调控. 农业机械学报, 2020, 51(2): 267-276.
ZHANG Z, LI M N, YANG Z, CAI Z L, HONG T T, DING M. Comprehensive regulation of water and fertilizer coupling based on multi-index collaboration of strawberry. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 267-276. (in Chinese)
[12]
牛佳佳, 张四普, 张柯, 徐振玉, 鲁云风, 唐存多, 苗建银. 9个梨品种综合品质评价分析. 食品研究与开发, 2021, 42(17): 149-156.
NIU J J, ZHANG S P, ZHANG K, XU Z Y, LU Y F, TANG C D, MIAO J Y. Comprehensive quality evaluation and analysis of nine pear varieties. Food Research and Development, 2021, 42(17): 149-156. (in Chinese)
[13]
MIR J I, AHMED N, SINGH D B, PADDER B A, SHAFI W, ZAFFER S, HAMID A, BHAT H A. Diversity evaluation of fruit quality of apple (Malus × domestica Borkh.) germplasm through cluster and principal component analysis. Indian Journal of Plant Physiology, 2017, 22(2): 221-226.
[14]
MIHAYLOVA D, POPOVA A, DESSEVA I, MANOLOV I, PETKOVA N, VRANCHEVA R, PELTEKOV A, SLAVOV A, ZHIVONDOV A. Comprehensive evaluation of late season peach varieties (Prunus persica L.): fruit nutritional quality and phytochemicals. Molecules, 2021, 26(9): 2818.
[15]
胡晓辉, 朱轲林, 张琪, 赵玉红, 马永博. 基于模糊Borda法的番茄营养液滴灌频率研究. 农业机械学报, 2022, 53(8): 407-415.
HU X H, ZHU K L, ZHANG Q, ZHAO Y H, MA Y B. Determining optimal drip irrigation frequency for substrate-bag cultured tomato based on fuzzy Borda method. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 407-415. (in Chinese)
[16]
李文玲, 孙西欢, 郭向红, 马娟娟, 石小虎. 膜下滴灌条件下不同水氮供应对大棚番茄品质的影响. 节水灌溉, 2020(1): 34-38.
LI W L, SUN X H, GUO X H, MA J J, SHI X H. Effects of different water and nitrogen supply on quality of tomato in greenhouse under drip irrigation under film. Water Saving Irrigation, 2020(1): 34-38. (in Chinese)
[17]
张帆, 陈梦茹, 邢英英, 党菲菲, 李源, 王秀康. 基于熵权法和TOPSIS对马铃薯施肥和滴灌量组合的优化. 植物营养与肥料学报, 2023, 29(4): 732-744.
ZHANG F, CHEN M R, XING Y Y, DANG F F, LI Y, WANG X K. Optimization of fertilizer and drip irrigation levels for efficient potato production based on entropy weight method and TOPSIS. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 732-744. (in Chinese)
[18]
张泽宇, 曹红霞, 何子建, 裴书瑶, 李曼宁. 基于AHP-EWM-TOPSIS的温室辣椒最佳调亏灌溉方案优化研究. 干旱地区农业研究, 2023, 41(1): 111-120.
ZHANG Z Y, CAO H X, HE Z J, PEI S Y, LI M N. Study on greenhouse pepper optimal regulated deficit irrigation scheme based on AHP-EWM-TOPSIS. Agricultural Research in the Arid Areas, 2023, 41(1): 111-120. (in Chinese)
[19]
ALBAYRAK E, ERENSAL Y C. Using analytic hierarchy process (AHP) to improve human performance: an application of multiple criteria decision making problem. Journal of Intelligent Manufacturing, 2004, 15(4): 491-503.
[20]
DU Y B, ZHENG Y S, WU G A, TANG Y. Decision-making method of heavy-duty machine tool remanufacturing based on AHP-entropy weight and extension theory. Journal of Cleaner Production, 2020, 252: 119607.
[21]
杨振中, 吴佳凯, 徐建伦, 卜子东, 张保良, 王铭浩. 基于层次分析-熵值法的氢内燃机异常燃烧风险评估. 浙江大学学报(工学版), 2022, 56(11): 2187-2193.
YANG Z Z, WU J K, XU J L, BU Z D, ZHANG B L, WANG M H. Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method. Journal of Zhejiang University (Engineering Science), 2022, 56(11): 2187-2193. (in Chinese)
[22]
DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 1995, 22(7): 763-770.
[23]
赵洪山, 李静璇, 米增强, 蒲靓, 崔阳阳. 基于CRITIC和改进Grey-TOPSIS的电能质量分级评估方法. 电力系统保护与控制, 2022, 50(3): 1-8.
ZHAO H S, LI J X, MI Z Q, PU L, CUI Y Y. Grading evaluation of power quality based on CRITIC and improved Grey-TOPSIS. Power System Protection and Control, 2022, 50(3): 1-8. (in Chinese)
[24]
SHIH H S, SHYUR H J, An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 2007, 45(7/8): 801-813.
[25]
姜芸, 王军, 滕浩, 李浩林. 基于TOPSIS模型的典型黑土区耕地质量评价及土壤侵蚀耦合协调分析. 农业工程学报, 2023, 39(12): 82-94.
JIANG Y, WANG J, TENG H, LI H L. Coupling coordination analysis of the quality evaluation of cultivated land and soil erosion in typical black soil areas using TOPSIS method. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(12): 82-94. (in Chinese)
[26]
赵佐平, 同延安. 不同施肥处理对富士苹果产量、品质及耐贮性的影响. 中国农业大学学报, 2016, 21(4): 26-34.
ZHAO Z P, TONG Y A. Effect of different fertilization on apple yield, fruit quality and storage duration of Fuji apple. Journal of China Agricultural University, 2016, 21(4): 26-34. (in Chinese)
[27]
郑小春, 卢海蛟, 车金鑫, 翟丙年, 赵政阳, 王亚莉. 白水县苹果产量及施肥现状调查. 西北农林科技大学学报(自然科学版), 2011, 39(9): 145-151, 158.
ZHENG X C, LU H J, CHE J X, ZHAI B N, ZHAO Z Y, WANG Y L. Investigation of present yield and fertilization on Fuji apple in Baishui County. Journal of Northwest A & F University (Natural Science Edition), 2011, 39(9): 145-151, 158. (in Chinese)
[28]
周罕觅, 牛晓丽, 燕辉, 赵龙, 赵娜, 向友珍. 水肥耦合对苹果幼树生长及光合特性的影响. 河南农业科学, 2019, 48(10): 112-119.
ZHOU H M, NIU X L, YAN H, ZHAO L, ZHAO N, XIANG Y Z. Effects of water and fertilizer coupling on growth and photosynthetic characteristics of young apple tree. Journal of Henan Agricultural Sciences, 2019, 48(10): 112-119. (in Chinese)
[29]
LI Y B, SONG H, ZHOU L, XU Z Z, ZHOU G S. Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field. Agricultural and Forest Meteorology, 2019, 272/273: 40-54.
[30]
郭华, 秦聪, 石美娟, 窦彦鑫, 杨凯, 续海红. 苹果幼树生理指标对土壤水分调控的响应研究. 节水灌溉, 2021(6): 43-47.
GUO H, QIN C, SHI M J, DOU Y X, YANG K, XU H H. Response of physiological indexes of young apple trees to soil moisture regulation. Water Saving Irrigation, 2021(6): 43-47. (in Chinese)
[31]
石美娟, 续海红, 郭华, 杨凯, 窦彦鑫. 水分胁迫下水肥耦合对矮砧富士幼树生长及保护酶活性的影响. 干旱地区农业研究, 2022, 40(1): 146-154, 162.
SHI M J, XU H H, GUO H, YANG K, DOU Y X. Effects of water and fertilizer coupling on growth and protective enzyme activities of dwarf rootstock Fuji sapling under water stress. Agricultural Research in the Arid Areas, 2022, 40(1): 146-154, 162. (in Chinese)
[32]
QUAGGIO J A, SOUZA T R, ZAMBROSI F C B, MATTOS D Jr, BOARETTO R M, SILVA G. Citrus fruit yield response to nitrogen and potassium fertilization depends on nutrient-water management system. Scientia Horticulturae, 2019, 249: 329-333.
[33]
梁博惠, 唐瑞, 张上宁, 何宝银. 宁夏中部干旱带水肥一体化苹果滴灌灌溉制度及生长影响研究. 中国农村水利水电, 2020(6): 105-110, 115.
LIANG B H, TANG R, ZHANG S N, HE B Y. Research on the apple drip irrigation system of integrative water and fertilizer in arid areas of central Ningxia. China Rural Water and Hydropower, 2020(6): 105-110, 115. (in Chinese)
[34]
LI Y L, LIU X G, FANG H D, SHI L T, YUE X W, YANG Q L. Exploring the coupling mode of irrigation method and fertilization rate for improving growth and water-fertilizer use efficiency of young mango tree. Scientia Horticulturae, 2021, 286: 110211.
[35]
PANIGRAHI P. Scheduling irrigation for improving water productivity and fruit quality in citrus (cv. Nagpur mandarin) under a dry tropical climate. Irrigation Science, 2023, 41(4): 511-520.
[36]
路永莉, 高义民, 同延安, 杨宪龙, 林文. 滴灌施肥对渭北旱塬红富士苹果产量与品质的影响. 中国土壤与肥料, 2013(1): 48-52.
LU Y L, GAO Y M, TONG Y A, YANG X L, LIN W. Effects of fertigation on yield and quality of Fuji apple in Weibei dry-land region. Soil and Fertilizer Sciences in China, 2013(1): 48-52. (in Chinese)
[37]
荣传胜, 刘秀春, 周朝辉, 朱红, 张成, 陈丽楠. 滴灌减量施肥对果树产量、品质的影响. 北方果树, 2019(2): 5-7, 10.
RONG C S, LIU X C, ZHOU Z H, ZHU H, ZHANG C, CHEN L N. Effects of drip fertigation on yield and quality of different fruit orchards. Northern Fruits, 2019(2): 5-7, 10. (in Chinese)
[38]
LADHA J K, JAT M L, STIRLING C M, CHAKRABORTY D, PRADHAN P, KRUPNIK T J, SAPKOTA T B, PATHAK H, RANA D S, TESFAYE K, GERARD B. Achieving the sustainable development goals in agriculture:the crucial role of nitrogen in cereal-based systems. Advances in Agronomy. Amsterdam: Elsevier, 2020: 39-116.
[39]
ZOU H Y, FAN J L, ZHANG F C, XIANG Y Z, WU L F, YAN S C. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agricultural Water Management, 2020, 230: 105986.
[40]
李莉婕, 赵泽英, 黎瑞君, 冯恩英, 王小红, 岳延滨, 聂克艳, 袁玲. 水氮钾耦合对火龙果产量和品质的调控效应. 南方农业学报, 2022, 53(3): 859-868.
LI L J, ZHAO Z Y, LI R J, FENG E Y, WANG X H, YUE Y B, NIE K Y, YUAN L. Effects of irrigation and nitrogen, potassium fertilizer coupling on yield and quality of pitaya. Journal of Southern Agriculture, 2022, 53(3): 859-868. (in Chinese)
[41]
ZHANG B B, YAN S H, LI B, WU S F, FENG H, GAO X D, SONG X L, SIDDIQUE K H M. Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards. Agricultural Water Management, 2023, 288: 108482.
[42]
杨震, 费良军, 李哲, 彭有亮, 郝琨, 刘腾. 不同灌水技术下水氮耦合对山地苹果产量和品质及水氮利用的影响. 水土保持学报, 2023, 37(3): 267-272.
YANG Z, FEI L J, LI Z, PENG Y L, HAO K, LIU T. Effects of water-nitrogen coupling under different irrigation techniques on yield and quality of mountain apples and water and fertilizer utilization. Journal of Soil and Water Conservation, 2023, 37(3): 267-272. (in Chinese)
[43]
张鹏, 范家慧, 程宁宁, 林电. 水肥一体化减量施肥对芒果产量、品质及肥耗的影响. 中国土壤与肥料, 2019(2): 114-118.
ZHANG P, FAN J H, CHENG N N, LIN D. Effect of water and fertilizer integration with reduction of fertilizer on yield and quality of mango. Soil and Fertilizer Sciences in China, 2019(2): 114-118. (in Chinese)
[44]
钟韵, 费良军, 曾健, 傅渝亮, 代智光. 根域水分亏缺对涌泉灌苹果幼树产量品质和节水的影响. 农业工程学报, 2019, 35(21): 78-87.
ZHONG Y, FEI L J, ZENG J, FU Y L, DAI Z G. Effects of root-zone water deficit on yield, quality and water use efficiency of young apple trees under surge-root irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 78-87. (in Chinese)
[45]
赵玉红, 康珍, 孙涛, 朱轲钰, 张琪, 胡晓辉. 不同营养液供应频率对日光温室袋培辣椒产量、品质及水分利用效率的影响. 中国蔬菜, 2021(10): 79-84.
ZHAO Y H, KANG Z, SUN T, ZHU K Y, ZHANG Q, HU X H. Effects of different nutrient solution supply frequency on yield, quality and water use efficiency of bag cultured pepper in solar greenhouse. China Vegetables, 2021(10): 79-84. (in Chinese)
[46]
张腊腊, 韩明虎, 胡浩斌, 武芸, 王丽朋. 基于主成分分析的苹果品质综合评价. 江苏农业科学, 2020, 48(3): 209-213.
ZHANG L L, HAN M H, HU H B, WU Y, WANG L P. Comprehensive evaluation of apple quality based on principal component analysis. Jiangsu Agricultural Sciences, 2020, 48(3): 209-213. (in Chinese)
[47]
WANG Z, ZHANG H, WANG Y, ZHOU C. Integrated evaluation of the water deficit irrigation scheme of indigowoad root under mulched drip irrigation in arid regions of Northwest China based on the improved TOPSIS method. Water, 2021, 13(11): 1532.
[48]
LIANG C, YU S C, ZHANG H J, WANG Z Y, LI F Q. Economic evaluation of drought resistance measures for maize seed production based on TOPSIS model and combination weighting optimization. Water, 2022, 14(20): 3262.
[49]
李建明, 于雪梅, 王雪威, 张俊威, 焦晓聪, 黄茜. 基于产量品质和水肥利用效率西瓜滴灌水肥制度优化. 农业工程学报, 2020, 36(9): 75-83.
LI J M, YU X M, WANG X W, ZHANG J W, JIAO X C, HUANG Q. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 75-83. (in Chinese)
[50]
张智, 杨志, 黎景来, 张梦池, 李瑞, 贺代伟. 基于灰色关联与TOPSIS耦合模型的甜瓜水肥灌溉决策. 农业机械学报, 2021, 52(9): 302-311, 330.
ZHANG Z, YANG Z, LI J L, ZHANG M C, LI R, HE D W. Water and fertilizer irrigation decision of melon based on grey relation analysis and TOPSIS coupling model. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 302-311, 330. (in Chinese)
[1] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[2] HE Jing, WANG ZhenHua, LIU Jian, MA ZhanLi, WEN Yue. Effects of Irrigation Water Temperature and Nitrogen Application Rate on Soil Hydrothermal Environment and Cotton Growth and Yield Under Mulched Drip Irrigation [J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.
[3] ZENG YanXin, GONG HaoNan, YOU ChunXiang, LU JingSheng, GAO WenSheng, WANG XiaoFei. Effects of Different Rootstocks on Growth and Fruit Quality of Young Ruixianghong Apple Trees with Multi-Stem Shape [J]. Scientia Agricultura Sinica, 2024, 57(14): 2847-2861.
[4] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] SUN Zheng, LAI ZhongXiao, ZHAO XiaoMin, JIANG ZhiLi, CHEN GuangYou, MA ZhiQing. Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland [J]. Scientia Agricultura Sinica, 2023, 56(6): 1102-1112.
[7] ZHENG WenYan, CHANG YuanSheng, HE Ping, HE XiaoWen, WANG Sen, GAO WenSheng, LI LinGuang, WANG HaiBo. Development and Validation of KASP Markers Based on a Whole- Genome Resequencing Approach in a Hybrid Population of Luli × Red No. 1 [J]. Scientia Agricultura Sinica, 2023, 56(5): 935-950.
[8] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[9] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[10] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[11] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[12] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[13] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[14] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[15] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!