Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1102-1112.doi: 10.3864/j.issn.0578-1752.2023.06.007

• PLANT PROTECTION • Previous Articles     Next Articles

Application Evaluation of the Whole-Process Biological Management Scheme for Apple Pests in the Weibei Dry Highland

SUN Zheng1(), LAI ZhongXiao1, ZHAO XiaoMin1, JIANG ZhiLi1,2, CHEN GuangYou1,2, MA ZhiQing1,2()   

  1. 1 College of Plant Protection, Northwest A&F University; Yangling 712100, Shaanxi
    2 Shaanxi Engineering Research Center of Biopesticide, Yangling 712100, Shaanxi
  • Received:2022-11-08 Accepted:2022-12-05 Online:2023-03-23 Published:2023-03-23

Abstract:

【Objective】 One of the key problems restricting the green development of apple industry in China lies in the lack of green prevention and control technology of pests. In this paper, the application effect of the whole-process biological management technology for apple pests (WBTAP) in Weibei Dry Highland was comprehensively evaluated, hoping to provide a basis for the extension of the technology system. 【Method】 In the apple orchards of Ecological Agriculture Science and Technology Experiment and Demonstration Station in the highland of Northwest A&F University (Chengcheng County, Weinan City), the biological management area and the conventional management area were set up. The biological management area adopted WBTAP (from March to the end of November, all biopesticides were applied according to the occurrence of pests), while the conventional management area adopted the current local control technology which mainly based on chemical pesticides. The yield and quality of apple and the dynamics of natural enemy insects in orchard were determined by publicly reported methods, and pesticide residues in apple leaf, fruit and orchard soil were detected by third-party organizations. The experiment has been carried out for two consecutive years in 2019 and 2020. 【Result】 The apple yields of orchards with WBTAP in 2019 and 2020 were 51 585 and 53 639 kg·hm-2, respectively, which were not significantly different from those of conventional chemical management technology of apple pests (CCTAP). There was no significant difference in the general physical properties of apples, such as fruit shape, firmness and edible rate between the two management technologies, but the single fruit weight of WBTAP orchard was better than that of CCTAP orchard, reaching 342.89 and 377.89 g in two years, respectively. In 2019, the soluble solid, pH, Vc content and soluble sugar content of apples in the WBTAP orchard were significantly higher than those in the CCTAP orchard, while the titratable acid content was significantly lower than that in the CCTAP orchard, and the indexes were 17.06%, 4.69, 9.23 mg/100 g, 16.60% and 0.26%, respectively. The results of two years showed similarity and consistency. No pesticide residue was found in apple fruits, leaves and soil in the WBTAP orchard during the two years, while many chemical pesticide residues such as tebuconazole, lambda-cyhalothrin and chlorpyrifos were detected in the CCTAP orchard. In addition, the number of natural enemy insects in the WBTAP orchard was significantly higher than that in the CCTAP orchard. Taking Coccinella septempunctata as an example, on May 24th, 2019, there were 1.5 ladybirds per shoot in the WBTAP orchard, while there was only 0.5 ladybird in the CCTAP orchard. The natural enemy insects in the WBTAP orchard also existed longer than in the CCTAP orchard. From May 3rd to July 12th, 2019, C. septempunctata appeared for 71 days in the WBTAP orchard, but only for 50 days in the CCTAP orchard. 【Conclusion】 There was no significant difference in apple yield between the WBTAP orchard and CCTAP orchard, but the apple quality of WBTAP orchard was better. No pesticide residues were found in apple fruits, leaves and soil in the WBTAP orchard, and the number of natural enemy insects (C. septempunctata, Harmonia axyridis and Chrysopa) in the WBTAP orchard was significantly higher than that in the CCTAP orchard. The technology system shows excellent economic, environmental and ecological benefits, and the fruit quality reaches the requirements of food safety. It can provide technical reference for organic apple production, and has the value of further popularization and application.

Key words: organic apple, biological management, food safety, biopesticide

Table 1

The apple yield in orchard treated by two pest management technologies"

处理
Treatment
产量Yield (kg·hm-2)
2019 2020
生防果园WBTAP orchard 51585±173a 53639±161a
常规果园CCTAP orchard 52160±225a 54595±304a

Table 2

The difference of apple physical properties in orchard treated by two pest management technologies"

年份
Year
处理
Treatment
果型
Fruit shape
果型指数
Fruit shape index
果实硬度
Fruit firmness (kg·cm-2)
单果质量
Single fruit weight (g)
可食率
Edible rate (%)
2019 常规果园CCTAP orchard 椭圆形 Oval 0.86±0.22 10.28±0.18 277.73±9.21 82.64±1.23
生防果园 WBTAP orchard 椭圆形 Oval 0.85±0.13 11.76±0.42 342.89±16.88* 85.07±0.91
2020 常规果园CCTAP orchard 椭圆形 Oval 0.82±0.11 11.75±0.38 286.66±14.38 82.20±1.08
生防果园WBTAP orchard 椭圆形 Oval 0.84±0.26 13.12±0.31 377.89±18.65* 84.48±1.57

Table 3

The difference of apple quality indicators in orchard treated by two pest management technologies"

年份
Year
处理
Treatment
可溶性固形物含量
Soluble solid content (%)
可滴定酸含量
Titratable total acid content (%)
pH Vc含量
Vc content
(mg/100 g)
可溶性糖含量
Soluble sugar content (%)
2019 常规果园CCTAP orchard 14.78±0.16 0.35±0.27* 3.77±0.91 6.71±0.13 12.61±0.26
生防果园WBTAP orchard 17.06±0.25* 0.26±0.44 4.69±0.68* 9.23±0.14* 16.60±0.41*
2020 常规果园CCTAP orchard 15.07±0.16 0.33±0.38* 3.98±0.56 6.97±0.21 13.80±0.14
生防果园WBTAP orchard 18.50±0.18* 0.21±0.67 5.24±0.44* 9.72±0.15* 18.23±0.58*

Table 4

Pesticide residue detection in whole-process biological management orchard"

年份Year 检测项目Test item 检测结果Test result
2019
果肉Pulp 未检出Not detected
叶片Leaf 未检出Not detected
土壤Soil 未检出Not detected
2020
果肉Pulp 未检出Not detected
叶片Leaf 未检出Not detected
土壤Soil 未检出Not detected

Table 5

Pesticide residue detection in conventional chemical management orchard"

年份
Year
检测项目
Test item
检测结果
Test result
残留量
Residue (mg·kg-1)
最大残留限量
Maximum residue limit (MRL) (mg·kg-1)
2019 果肉Pulp 未检出Not detected / /
叶片Leaf 苯醚甲环唑Difenoconazole 0.10 0.5
戊唑醇Tebuconazole 0.84 2
高效氯氟氰菊酯Lambda-cyhalothrin 0.28 0.2
氰戊菊酯和S-氰戊菊酯Fenvalerate and esfenvalerate 0.119 1
多效唑Paclobutrazol 0.049 0.5
毒死蜱Chlorpyrifos 0.028 1
土壤Soil 戊唑醇Tebuconazole 0.039 /
2020 果肉Pulp 多菌灵和苯菌灵Carbendazim and benomyl 0.004 5
叶片Leaf 苯醚甲环唑Difenoconazole 0.113 0.5
戊唑醇Tebuconazole 0.65 2
氰戊菊酯Fenvalerate 0.084 1
多效唑Paclobutrazol 0.077 0.5
高效氯氟氰菊酯Lambda-cyhalothrin 0.106 0.2
啶虫脒Acetamiprid 0.058 0.8
多菌灵Carbendazim 0.044 5
毒死蜱Chlorpyrifos 0.127 1
土壤Soil 苯醚甲环唑Difenoconazole 0.076 /
戊唑醇Tebuconazole 0.104 /
氰戊菊酯Fenvalerate 0.04 /
多效唑Paclobutrazol 0.089 /
高效氯氟氰菊酯Lambda-cyhalothrin 0.055 /
啶虫脒Acetamiprid 0.108 /
多菌灵和苯菌灵Carbendazim and benomyl 0.036 /
毒死蜱Chlorpyrifos 0.082 /

Fig. 1

Population dynamics of natural enemy insects in orchard treated by two pest management technologies in 2019 A:Coccinella septempunctata;B:Harmonia axyridis;C:Chrysopa。The same as Fig. 2"

Fig. 2

Population dynamics of natural enemy insects in orchard treated by two pest management technologies in 2020"

[1]
FAOSTAT. http://www.fao.org/faostat/en/#data.
[2]
谭明天, 查茜, 黄思瑜, 许晶冰, 黄先亮, 杨小珊. 2019年重庆市水果类监督抽检情况分析. 食品安全质量检测学报, 2021, 12(9): 3849-3853.
TAN M T, ZHA X, HUANG S Y, XU J B, HUANG X L, YANG X S. Analysis for fruits supervision and sampling of Chongqing in 2019. Journal of Food Safety and Quality, 2021, 12(9): 3849-3853. (in Chinese)
[3]
段夏菲, 曾雅, 李映霞, 李沙沙, 凌东辉. 2016年-2018年广州市海珠区果品中41种有机磷类农药残留监测与分析. 中国卫生检验杂志, 2018, 28(17): 2152-2155, 2159.
DUAN X F, ZENG Y, LI Y X, LI S S, LING D H. Monitoring and analysis of 41 organophosphorus pesticide residues in fruits in Haizhu District of Guangzhou, 2016-2018. Chinese Journal of Health Laboratory Technology, 2018, 28(17): 2152-2155, 2159. (in Chinese)
[4]
兰丰, 刘传德, 周先学, 王志新, 鹿泽启, 姚杰, 柳璇, 姜蔚. 山东省主产区苹果农药残留水平及累积急性膳食摄入风险评估. 食品安全质量检测学报, 2015, 6(7): 2595-2602.
LAN F, LIU C D, ZHOU X X, WANG Z X, LU Z Q, YAO J, LIU X, JIANG W. Residue levels and cumulative acute risk assessment of pesticides in apples of main fruits area in Shandong Province. Journal of Food Safety and Quality, 2015, 6(7): 2595-2602. (in Chinese)
[5]
李保华, 王彩霞, 董向丽. 我国苹果主要病害研究进展与病害防治中的问题. 植物保护, 2013, 39(5): 46-54.
LI B H, WANG C X, DONG X L. Research progress in apple diseases and problems in the disease management in China. Plant Protection, 2013, 39(5): 46-54. (in Chinese)
[6]
闫淼. 洛川苹果产区主要病虫害发生规律及生物防治方法研究[D]. 杨凌: 西北农林科技大学, 2019.
YAN M. Occurrence rule and biological control measure of main diseases and insect pests in Luochuan[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[7]
ZHOU H X, YU Y, TAN X M, CHEN A D, FENG J G. Biological control of insect pests in apple orchards in China. Biological Control, 2014, 68: 47-56.

doi: 10.1016/j.biocontrol.2013.06.009
[8]
张文军, 呼丽萍, 薛应钰, 梁巧兰, 孙朝华, 张树武, 徐秉良. 甘肃省苹果产区农药使用现状调查与分析. 甘肃农业大学学报, 2018, 53(4): 68-73.
ZHANG W J, HU L P, XUE Y Y, LIANG Q L, SUN C H, ZHANG S W, XU B L. Investigation and analysis of the current status of chemical fungicides and pesticides application in apple production areas of Gansu Province. Journal of Gansu Agricultural University, 2018, 53(4): 68-73. (in Chinese)
[9]
朱小琼, 东保柱, 国立耘, 付学池, 董民. 京津地区苹果园农药使用情况调查. 中国植保导刊, 2017, 37(12): 72-74.
ZHU X Q, DONG B Z, GUO L Y, FU X C, DONG M. Investigation on pesticide application in apple orchards in Beijing and Tianjin. China Plant Protection, 2017, 37(12): 72-74. (in Chinese)
[10]
范昆, 李颖芳, 曲健禄, 付丽, 陶吉寒. 山东省苹果园农药使用情况调查与分析. 落叶果树, 2020, 52(1): 19-21.
FAN K, LI Y F, QU J L, FU L, TAO J H. Investigation and analysis of pesticide application in apple orchards of Shandong Province. Deciduous Fruits, 2020, 52(1): 19-21. (in Chinese)
[11]
王江柱, 周宏宇, 李铁旺. 我国苹果树病虫害防治用药与登记状况分析及探讨. 中国果树, 2022(7): 1-9, 15.
WANG J Z, ZHOU H Y, LI T W. Analysis and discussion of the pesticide utilization and registration for the apple tree pests and diseases in China. China Fruits, 2022(7): 1-9, 15. (in Chinese)
[12]
马杰, 王盛琦, 胡同乐, 王亚南, 王树桐, 曹克强. 苹果园病虫害绿色防控技术应用效果评价. 河南农业科学, 2018, 47(12): 90-95.
MA J, WANG S Q, HU T L, WANG Y N, WANG S T, CAO K Q. Evaluation of application effect of green pest control technique in apple orchard. Journal of Henan Agricultural Sciences, 2018, 47(12): 90-95. (in Chinese)
[13]
闫文涛, 岳强, 张怀江, 孙丽娜, 仇贵生. 苹果园农药精准高效使用技术. 中国果树, 2020(5): 117-119.
YAN W T, YUE Q, ZHANG H J, SUN L N, QIU G S. Apple orchard pesticide precision and efficient application technology. China Fruits, 2020(5): 117-119. (in Chinese)
[14]
李鹏, 周真. 淄博市苹果全生育期有害生物绿色防控技术示范与推广. 中国植保导刊, 2019, 39(8): 85, 86-88.
LI P, ZHOU Z. Demonstration and promotion of green prevention and control technology of pests during the whole growth stage of apple in Zibo. China Plant Protection, 2019, 39(8): 85, 86-88. (in Chinese)
[15]
王亚红, 吴锋, 严攀. 苹果全生育期主要病虫害绿色防控集成技术. 中国果树, 2014(1): 71-74.
WANG Y H, WU F, YAN P. Integrated technology of green prevention and control of main diseases and pests during the whole growth stage of apple. China Fruits, 2014(1): 71-74. (in Chinese)
[16]
MITRE V, BUTA E, LUKACS L, MITRE I, TEODORESCU R, HOZA D, SESTRAS A F, STANICA F. Management of apple scab and powdery mildew using bicarbonate salts and other alternative organic products with fungicide effect in apple cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 46(1): 115-121.

doi: 10.15835/nbha46110783
[17]
ZHANG X R, OUYANG F, SU J W, LI Z, YUAN Y Y, SUN Y C, SARKAR S C, XIAO Y L, GE F. Intercropping flowering plants facilitate conservation, movement and biocontrol performance of predators in insecticide-free apple orchard. Agriculture, Ecosystems & Environment, 2022, 340: 108157.

doi: 10.1016/j.agee.2022.108157
[18]
CAHENZLI F, SIGSGAARD L, DANIEL C, HERZ A, JAMAR L, KELDERER M, JACOBSEN S K, KRUCZYŃSKA D, MATRAY S, PORCEL M, SEKRECKA M, ŚWIERGIEL W, TASIN M, TELFSER J, PFIFFNER L. Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agriculture, Ecosystems & Environment, 2019, 278: 43-53.

doi: 10.1016/j.agee.2019.03.011
[19]
CHOUINARD G, FIRLEJ A, CORMIER D. Going beyond sprays and killing agents: Exclusion, sterilization and disruption for insect pest control in pome and stone fruit orchards. Scientia Horticulturae, 2016, 208: 13-27.

doi: 10.1016/j.scienta.2016.03.014
[20]
WALKER J T, SUCKLING D M, WEARING C H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annual Review of Entomology, 2017, 62: 231-248.

doi: 10.1146/annurev-ento-031616-035626 pmid: 28141966
[21]
DELATE K, FRIEDRICH H. Organic apple and grape performance in the Midwestern U.S.. Acta Horticulturae, 2004, 638: 309-320.
[22]
杨勤民, 赵中华, 王亚红, 张东霞, 张秋萍, 张万民. 我国苹果园病虫害防治用药情况及减量增效对策. 中国植保导刊, 2018, 38(4): 57-61.
YANG Q M, ZHAO Z H, WANG Y H, ZHANG D X, ZHANG Q P, ZHANG W M. The situation of drug use for pest and disease control in Chinese orchards and the strategy of reducing quantity and increasing efficiency. China Plant Protection, 2018, 38(4): 57-61. (in Chinese)
[23]
马延庆, 刘长民, 朱海利, 刘玲珠, 马文, 王维. 陕西咸阳渭北旱塬地区优质苹果基地生态气候特征分析. 干旱地区农业研究, 2008, 26(1): 146-153.
MA Y Q, LIU C M, ZHU H L, LIU L Z, MA W, WANG W. The analysis of ecosystem characteristic of high-quality apple producing base on Weibei arid plain region in Xianyang of Shaanxi Province. Agricultural Research in the Arid Areas, 2008, 26(1): 146-153. (in Chinese)
[24]
赵晓敏, 赖忠晓, 陈平强, 江志利, 马志卿. 几种植物源农药对苹果主要害虫的生物活性. 中国生物防治学报, 2022, 38(6): 1385-1392.
ZHAO X M, LAI Z X, CHEN P Q, JIANG Z L, MA Z Q. Biological activities of several plant pesticides against apple pests. Chinese Journal of Biological Control, 2022, 38(6): 1385-1392. (in Chinese)
[25]
王秋萍. 苹果等5种果树测产方法. 果树实用技术与信息, 2014(12): 37-38.
WANG Q P. The yield measurement method of apple and other four kinds of fruit tree. Practical Technology and Information on Fruit Trees, 2014(12): 37-38. (in Chinese)
[26]
中华人民共和国农业部. 苹果品质指标评价规范: NY/T 2316—2013. 北京: 中国标准出版社, 2013.
Ministry of Agriculture of the People’s Republic of China. Evaluation specification for quality indexes of apple: NY/T 2316—2013. Beijing: Standards Press of China, 2013. (in Chinese)
[27]
中华人民共和国国家质量监督检验检疫总局. 食品中总酸的测定: GB/T 12456—2008. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total acid in foods: GB/T 12456—2008. Beijing: Standards Press of China, 2008. (in Chinese)
[28]
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准—食品中抗坏血酸的测定: GB/T 5009.86—2016. 北京: 中国标准出版社, 2016.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standard—Determination of ascorbic acid in food: GB/T 5009.86—2016. Beijing: Standards Press of China, 2016. (in Chinese)
[29]
中华人民共和国农业部. 水果及制品可溶性糖的测定—3,5-二硝基水杨酸比色: NY/T 2742—2015. 北京: 中国标准出版社, 2015.
Ministry of Agriculture of the People’s Republic of China. Determination of soluble sugar in fruits and derived products—3, 5-dinitrosalicylic acid colorimetry: NY/T 2742—2015. Beijing: Standards Press of China, 2015. (in Chinese)
[30]
中华人民共和国国家卫生健康委员会. 食品安全国家标准—食品中农药最大残留限量: GB 2763—2021. 北京: 中国农业出版社, 2021.
National Health Commission of the People’s Republic of China. National food safety standard—Maximum residue limits for pesticides in food: GB 2763—2021. Beijing: China Agriculture Press, 2021. (in Chinese)
[31]
白沙沙, 毕金峰, 方芳, 王沛, 公丽艳. 苹果品质评价技术研究现状及展望. 食品科学, 2011, 32(3): 286-290.
BAI S S, BI J F, FANG F, WANG P, GONG L Y. Current research progress and prospects of technologies for apple quality evaluation. Food Science, 2011, 32(3): 286-290. (in Chinese)
[32]
刘新社, 陈妍. 生物农药对设施和露地黄瓜白粉病的防效及其品质和产量的影响. 河南农业科学, 2019, 48(3): 95-99, 114.
LIU X S, CHEN Y. Effects of biological fungicides on powdery mildew, quality and yield of protected and field cucumber. Journal of Henan Agricultural Sciences, 2019, 48(3): 95-99, 114. (in Chinese)
[33]
徐静, 王晓双, 李佳颖, SHAUKAT A, 吴建辉. 6.003%氨基·芸苔素内酯水剂对芒果树生长、品质和产量的影响. 农药, 2018, 57(3): 232-234.
XU J, WANG X S, LI J Y, SHAUKAT A, WU J H. Effects of amino-brassinolide 6.003% AS on growth, quality and yield of mango tree. Agrochemicals, 2018, 57(3): 232-234. (in Chinese)
[34]
XIONG X, YAO M, FU L L, MA Z Q, ZHANG X. The botanical pesticide derived from Sophora flavescens for controlling insect pests can also improve growth and development of tomato plants. Industrial Crops and Products, 2016, 92: 13-18.

doi: 10.1016/j.indcrop.2016.07.043
[35]
SHARMA R R, DATTA S C, VARGHESE E. Kaolin-based particle film sprays reduce the incidence of pests, diseases and storage disorders and improve postharvest quality of ‘Delicious’ apples. Crop Protection, 2020, 127(3): 104950.

doi: 10.1016/j.cropro.2019.104950
[36]
傅丽君. 农药对枇杷园生态系的影响与主要害虫生态控制研究[D]. 福州: 福建农林大学, 2005.
FU L J. Effect of pesticide on loquat orchard ecosystem and ecological control of major pests[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese)
[37]
SOHEILIFARD F, MARZBAN A, RAINI M G, TAKI M, VAN ZELM R. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Science of the Total Environment, 2020, 732: 139118.

doi: 10.1016/j.scitotenv.2020.139118
[38]
肖云丽, 郭炜, 唐文颖, 蔡志平, 于凯, 刘同先. 不同生态措施苹果园主要害虫及天敌发生特征. 应用昆虫学报, 2020, 57(1): 113-123.
XIAO Y L, GUO W, TANG W Y, CAI Z P, YU K, LIU T X. Comparison of the main pest insects and their natural enemies in apple orchards with different pest control methods. Chinese Journal of Applied Entomology, 2020, 57(1): 113-123. (in Chinese)
[39]
王艳廷, 冀晓昊, 吴玉森, 毛志泉, 姜远茂, 彭福田, 王志强, 陈学森. 我国果园生草的研究进展. 应用生态学报, 2015, 26(6): 1892-1900.
WANG Y T, JI X H, WU Y S, MAO Z Q, JIANG Y M, PENG F T, WANG Z Q, CHEN X S. Research progress of cover crop in Chinese orchard. Chinese Journal of Applied Ecology, 2015, 26(6): 1892-1900. (in Chinese)
[40]
CHEN Y, LV M, ZHOU J, HUANG K, SUN Y, FENG J T. Potential value of wood tar as a natural fungicide against Valsa mali. Molecules, 2022, 27(5): 1531.

doi: 10.3390/molecules27051531
[41]
赵国康, 李焰, 张树武, 徐秉良, 刘佳. 5种植物源农药对苹果斑点落叶病的防效评价. 中国果树, 2020(5): 46-49.
ZHAO G K, LI Y, ZHANG S W, XU B L, LIU J. Evaluation the control effects of five botanical fungicides on apple Alternaria leaf spot (Alternaria mali). China Fruits, 2020(5): 46-49. (in Chinese)
[42]
唐永清. 伊犁垦区苹果、桃园食心虫种类调查及综合防治技术研究[D]. 石河子: 石河子大学, 2016.
TANG Y Q. Research on species and integrated control technique of fruit-borer in Yili reclamation area[D]. Shihezi: Shihezi University, 2016. (in Chinese)
[1] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[2] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[3] JIA ShiRong. Risk Assessment and Regulation of Genetically Engineered Crops: History and Reformation [J]. Scientia Agricultura Sinica, 2018, 51(4): 601-612.
[4] ZHU Zhi-wei, CHEN Ming-xue, MOU Ren-xiang, CAO Zhao-yun, ZHANG Wei-xing, LIN Xiao-yan. Advances in Research of Cadmium Metabolism and Control in Rice Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3633-3640.
[5] LI Pei-Wu, DING Xiao-Xia, BAI Yi-Zhen, ZHOU Hai-Yan, YIN 南Ri. Advance in Research on Risk Assessment of Aflatoxin in Agricultural Products [J]. Scientia Agricultura Sinica, 2013, 46(12): 2534-2542.
[6] WEI Yi-Min, GUO Bo-Li, WEI Shuai, SUN Shu-Min, ZHAO Hai-Yan. The Principle of Food Geographical Origin Traceability and Authenticity Technique [J]. Scientia Agricultura Sinica, 2012, 45(24): 5073-5081.
[7] HUANG Chen-yang,CHEN Qiang,ZHAO Yong-chang,ZHANG Jin-xia
. Investigation on Heavy Metals of Main Wild Edible Mushrooms in Yunnan Province#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1198-1203 .
[8] ZHANG Shu,WANG Min,HAN Mei-lin,CHEN Qiang,MA Rong-cai,GAO Jun-lian
. Study on Synthesis of HrpNEcc Protein in Recombinant Escherichia coli Induced by Yeast Extract
[J]. Scientia Agricultura Sinica, 2009, 42(11): 3880-3887 .
[9] LU Liang-shu, XU Shi-wei. Expectation of the Research Projection of China Grain and Food Safety Development Strategy in 2020 [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 2931-2940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!