Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3398-3407.doi: 10.3864/j.issn.0578-1752.2024.17.007

• PLANT PROTECTION • Previous Articles     Next Articles

Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids

SHI Na(), LU Yang(), SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun(), ZHANG ZhengKun()   

  1. Institute of Plant Protection, Jilin Academy of Agricultural Sciences/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling 136100, Jilin
  • Received:2024-05-02 Accepted:2024-06-04 Online:2024-09-01 Published:2024-09-04
  • Contact: LI QiYun, ZHANG ZhengKun

Abstract:

【Objective】The purpose of this study is to clarify whether the combination of Metarhizium rileyi and Harmonia axyridis can achieve synergistic effect, and to provide theoretical basis and application technology for efficient biological control of aphids.【Method】The direct and indirect pathogenicity of M. rileyi to adult H. axyridis was measured by spraying adult H. axyridis with M. rileyi conidia and feeding H. axyridis with aphids after spraying, the H. axyridis without spraying M. rileyi and the H. axyridis fed with aphids without spraying M. rileyi were used as controls, respectively. After spraying the aphids with conidia of M. rileyi, the feeding selectivity of the H. axyridis to aphids under different starvation times was measured. In order to clarify the impact on the aphid predation ability of H. axyridis after feeding on aphids treated with M. rileyi, the predation function, egg production, and egg hatching rate of the H. axyridis were determined after feeding on aphids treated with M. rileyi. Two treatments were set up to determine the jointly control effect of H. axyridis and M. rileyi on aphids using the reduction rate of insect population as an indicator, one of which was to apply M. rileyi before releasing H. axyridis, and the other was to release H. axyridis alone.【Result】The evaluation of direct and indirect pathogenicity showed that the survival rate of H. axyridis was not significantly different from that of the control group. At 0 h of starvation treatment, the feeding preference rate of H. axyridis to Acyrthosiphon pisum was significantly lower than that of the control group, but there was no significant difference between the two groups at 24 and 48 h of starvation treatment, which was consistent with the conclusion of predation functional response model. The instantaneous attack rate of H. axyridis against A. pisum in M. rileyi treatment group and control group was 0.6585 and 0.6479, respectively, with no significant difference (P>0.05). The total number of eggs laid by single female H. axyridis in M. rileyi treatment group and control group for 7 consecutive days was 161.67 and 167.33, and the egg hatching rate was 65.60% and 67.60%, respectively, with no significant difference (P>0.05). The treatment of releasing H. axyridis after applying M. rileyi showed better control effect on A. pisum on the 2nd to 3rd day and Rhopalosiphum maidis on the 2nd to 4th day after the release of H. axyridis.【Conclusion】M. rileyi had no significant effect on the predation ability, egg production and hatching rate of H. axyridis, and the control effect of H. axyridis on aphids was improved after the application of M. rileyi, and the two agents had a synergistic effect.

Key words: Metarhizium rileyi, Harmonia axyridis, biological control, synergistic effect, aphid

Fig. 1

Effect of M. rileyi MrSlGZL-1 on the survival rate of adult H. axyridis"

Fig. 2

Predating selectivity of H. axyridis on A. pisum at different starvation times"

Table 1

Daily aphids predation amount of H. axyridis in 3 consecutive days after feeding aphids treated with M. rileyi"

处理Treatment 24 h 48 h 72 h
对照Control 17.22±6.74a 15.78±6.06a 17.67±5.15a
MrSlGZL-1 11.80±6.68a 12.33±6.00a 16.44±8.41a

Fig. 3

Predation amount of H. axyridis at different densities of A. pisum after feeding aphids treated with M. rileyi"

Table 2

Predation function of H. axyridis on A. pisum after feeding aphids treated with M. rileyi"

处理
Treatment
捕食功能方程
Functional response equation (Na=)
相关系数
Correlation coefficient (R2)
瞬时攻击率
Instantaneous attack rate (a)
处理时间
Handling time (d, Th)
χ2 P
对照Control 0.6479N/(1+0.0173N) 0.819 0.6479±0.0988 0.0173±0.0030 1.904 0.753
MrSlGZL-1 0.6585N/(1+0.0177N) 0.916 0.6585±0.0100 0.0177±0.0034 1.560 0.816

Fig. 4

Control efficiency of the combined application of M. rileyi and H. axyridis on two kinds of aphids"

[1]
张祥, 刘长仲, 宋维虎. 不同CO2浓度条件下两种色型豌豆蚜的种群密度效应. 甘肃农业大学学报, 2019, 54(3): 78-83, 92.
ZHANG X, LIU C Z, SONG W H. Population density effect of two color types of pea aphids under different CO2 concentrations. Journal of Gansu Agricultural University, 2019, 54(3): 78-83, 92. (in Chinese)
[2]
YANG C X, PAN H P, LIU Y, ZHOU X G. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae). PLoS ONE, 2014, 9(11): e110454.
[3]
GUO J, LIU X, PONCELET N, HE K, FRANCIS F, WANG Z. Detection and geographic distribution of seven facultative endosymbionts in two Rhopalosiphum aphid species. MicrobiologyOpen, 2019, 8(8): e00817.
[4]
KARTHI S, VAIDEKI K, SHIVAKUMAR M S, PONSANKAR A, THANIGAIVEL A, CHELLAPPANDIAN M, VASANTHA-SRINIVASAN P, MUTHU-PANDIAN C K, HUNTER W B, SENTHIL-NATHAN S. Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pesticide Biochemistry and Physiology, 2018, 149: 54-60.
[5]
MASOUDI A, KOPROWSKI J L, BHATTARAI U R, WANG D. Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China. Applied Microbiology and Biotechnology, 2018, 102(3): 1483-1499.

doi: 10.1007/s00253-017-8651-4 pmid: 29189901
[6]
BAILEY K L, BOYETCHKO S M, LÄNGLE T. Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 2010, 52(3): 221-229.
[7]
SINNO M, RANESI M, DI LELIO I, IACOMINO G, BECCHIMANZI A, BARRA E, MOLISSO D, PENNACCHIO F, DIGILIO M C, VITALE S, TURRÀ D, HARIZANOVA V, LORITO M, WOO S L. Selection of endophytic Beauveria bassiana as a dual biocontrol agent of tomato pathogens and pests. Pathogens, 2021, 10(10): 1242.
[8]
PHILPOTT S M, LUCATERO A, BICHIER P, EGERER M H, JHA S, LIN B, LIERE H. Natural enemy-herbivore networks along local management and landscape gradients in urban agroecosystems. Ecological Applications, 2020, 30(8): e02201.
[9]
WANG L, WANG J, ZHANG X, YIN Y, LI R, LIN Y, DENG C, YANG K, LIU X, WANG Z. Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: Appressorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genetics and Biology, 2021, 150: 103508.
[10]
ZHOU Y, ZOU X, ZHI J, XIE J, JIANG T. Fast recognition of Lecanicillium spp., and its virulence against Frankliniella occidentalis. Frontiers in Microbiology, 2020, 11: 561381.
[11]
田艺帆, 张正坤, 隋丽, 赵宇, 路杨, 孟钊, 石旺鹏, 李启云. 斜纹夜蛾高致病力生防真菌的筛选与鉴定. 中国生物防治学报, 2024, 40(2): 282-290.

doi: 10.16409/j.cnki.2095-039x.2023.01.050
TIAN Y F, ZHANG Z K, SUI L, ZHAO Y, LU Y, MENG Z, SHI W P, LI Q Y. Screening and identification of biocontrol fungus with high pathogenicity against Spodoptera litura. Chinese Journal of Biological Control, 2024, 40(2): 282-290. (in Chinese)
[12]
赵宇, 姜媛媛, 田艺帆, 王佳江, 隋丽, 张云月, 李启云, 路杨, 张正坤. 4株虫生真菌对亚洲玉米螟致病力评价及其与松毛虫赤眼蜂的相容性. 玉米科学, 2023, 31(6): 135-142.
ZHAO Y, JIANG Y Y, TIAN Y F, WANG J J, SUI L, ZHANG Y Y, LI Q Y, LU Y, ZHANG Z K. Pathogenicity evaluation of four entomopathogenic fungi against Ostrinia furnacalis and their compatibility with Trichogramma dendrolimi. Journal of Maize Sciences, 2023, 31(6): 135-142. (in Chinese)
[13]
ZHANG Z K, SUI L, TIAN Y F, LU Y, XIA X Y, LIU W D, CHENG K, LI Q Y, SHI W P. Metarhizium rileyi with broad-spectrum insecticidal ability confers resistance against phytopathogens and insect pests as a phytoendophyte. Pest Management Science, 2024, 80(7): 3246-3257.
[14]
VU V H, HONG S I, KIM K. Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering, 2007, 104(6): 498-505.

doi: 10.1263/jbb.104.498 pmid: 18215637
[15]
HUANG Z D, QURESHI J, ZHOU X M, PU Z X, CHEN G Q, YU J H, ZHANG H Y. Predation and functional response of the multi-coloured Asian ladybeetle Harmonia axyridis on the adult Asian citrus psyllid Diaphorina citri. Biocontrol Science and Technology, 2019, 29(3): 293-307.
[16]
DI N, ZHANG K, XU Q, ZHANG F, HARWOOD J D, WANG S, DESNEUX N. Predatory ability of Harmonia axyridis (Coleoptera: Coccinellidae) and Orius sauteri (Hemiptera: Anthocoridae) for suppression of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 2021, 12(12): 1063.
[17]
LIN Q C, CHEN H, DAI X Y, YIN S Y, SHI C H, YIN Z J, ZHANG J P, ZHANG F, ZHENG L, ZHAI Y F. Myzus persicae management through combined use of beneficial insects and thiacloprid in pepper seedlings. Insects, 2021, 12(9): 791.
[18]
SAHAYARAJ K, HASSAN E. Commercially available predators// Worldwide Predatory Insects in Agroecosystems. Singapore: Springer, 2023.
[19]
POPRAWSKI T J, LEGASPI J C, PARKER P E. Influence of entomopathogenic fungi on Serangium parcesetosum (Coleoptera: Coccinellidae), an important predator of whiteflies (Homoptera: Aleyrodidae). Environmental Entomology, 1998, 27(3): 785-795.
[20]
王静, 雷仲仁, 徐洪富, 高玉林, 王海鸿. 白僵菌对西花蓟马若虫的致病力和对巴氏钝绥螨的影响. 中国生物防治学报, 2011, 27(4): 479-484.
WANG J, LEI Z R, XU H F, GAO Y L, WANG H H. Pathogenicity of Beauveria bassiana on Frankliniella occidentalis nymphs and effect on Amblyseius barkeri. Chinese Journal of Biological Control, 2011, 27(4): 479-484. (in Chinese)
[21]
AGBOTON B V, HANNA R, ONZO A, VIDAL S, TIEDEMENN A. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa. Experimental and Applied Acarology, 2013, 60(2): 205-217.
[22]
ONZO A, BELLO I A, HANNA R. Effects of the entomopathogenic fungus Neozygites tanajoae and the predatory mite Typhlodromalus aripo on cassava green mite densities: Screenhouse experiments. BioControl, 2013, 58(3): 397-405.
[23]
RASHKI M, KHARAZI-PAKDEL A, ALLAHYARI H, ALPHEN J J M. Interactions among the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales), the parasitoid, Aphidius matricariae (Hymenoptera: Braconidae), and its host, Myzus persicae (Homoptera: Aphididae). Biological Control, 2009, 50(3): 324-328.
[24]
GAO Y, REITZ S R, WANG J, TAMEZ-GUERRA P, WANG E, XU X, LEI Z. Potential use of the fungus Beauveria bassiana against the western flower thrips Frankliniella occidentalis without reducing the effectiveness of its natural predator Orius sauteri (Hemiptera: Anthocoridae). Biocontrol Science and Technology, 2012, 22(7): 803-812.
[25]
JACOBSON R J, CHANDLER D, FENLON J, RUSSELL K M. Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Science and Technology, 2001, 11(3): 391-400.
[26]
杨芷, 路杨, 张庆贺, 毛刚, 徐文静, 赵宇, 隋丽, 崔璐璐, 张正坤, 李启云. 利用荧光观测明确载球孢白僵菌松毛虫赤眼蜂对亚洲玉米螟的防控增效作用. 中国生物防治学报, 2020, 36(1): 58-64.

doi: 10.16409/j.cnki.2095-039x.2019.05.009
YANG Z, LU Y, ZHANG Q H, MAO G, XU W J, ZHAO Y, SUI L, CUI L L, ZHANG Z K, LI Q Y. The synergistic effect of Beauveria bassiana with Trichogramma dendrolimi on Ostrinia furnacalis by fluorescence observation. Chinese Journal of Biological Control, 2020, 36(1): 58-64. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2019.05.009
[27]
WANG P, LI M J, BAI Q R, ALI A, DESNEUX N, DAI H J, ZANG L S. Performance of Trichogramma japonicum as a vector of Beauveria bassiana for parasitizing eggs of rice striped stem borer, Chilo suppressalis. Entomologia Generalis, 2021, 41(2): 147-155.
[28]
WANG P, ZHENG M X, LI J J, YU Y, HU Y, MONTICELLI L S, RUAN C C, DESNEUX N, ZHANG J J. The effect of Beauveria bassiana on the host location of rice striped stem borer, Chilo suppressalis by Trichogramma japonicum. Journal of Pest Science, 2023, https://doi.org/10.1007/s10340-023-01712-7.
[29]
陈亚丰, 王甦, 邸宁, 金道超. 利用功能反应模型评价球孢白僵菌对东亚小花蝽捕食二斑叶螨的影响. 昆虫学报, 2021, 64(8): 967-975.
CHEN Y F, WANG S, DI N, JIN D C. Evaluation of the effects of Beauveria bassiana on the predation of Tetranychus urticae (Acari: Tetranychidae) by Orius sauteri (Hemiptera: Anthocoridae) using functional response model. Acta Entomologica Sinica, 2021, 64(8): 967-975. (in Chinese)
[30]
DOGAN Y O, HAZIR S, YILDIZ A, BUTT T M, CAKMAK I. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biological Control, 2017, 111: 6-12.
[31]
TRIZELIA T, BUSNIAH M, PERMADI A. Pathogenicity of entomopathogenic fungus Metarhizium spp. against predators Menochilus sexmaculatus Fabricius (Coleoptera: Coccinellidae). Asian Journal of Agriculture, 2017, 1(1): 1-5.
[32]
RIDDICK E W, COTTRELL T E, KIDD K A. Natural enemies of the Coccinellidae: Parasites, pathogens, and parasitoids. Biological Control, 2009, 51(2): 306-312.
[33]
汤秋玲, 马康生, 高希武. 蔬菜蚜虫抗药性现状及抗性治理策略. 植物保护, 2016, 42(6): 11-20.
TANG Q L, MA K S, GAO X W. Current status and management strategies of insecticide resistance in aphids on the vegetable crops. Plant Protection, 2016, 42(6): 11-20. (in Chinese)
[34]
HOLLING C S. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 1959, 91(7): 385-398.
[35]
COTTRELL T E, SHAPIRO-ILAN D I. Susceptibility of endemic and exotic North American ladybirds (Coleoptera: Coccinellidae) to endemic fungal entomopathogens. European Journal of Entomology, 2008, 105(3): 455-460.
[36]
葛银银. 昆虫病原真菌对蚜虫的田间防效及与异色瓢虫的联合控制作用[D]. 合肥: 安徽农业大学, 2020.
GE Y Y. Field control effect of entomopathogenic fungi on aphids and its joint control with Harmonia axyridis[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese)
[37]
BAYISSA W, EKESI S, MOHAMED S A, KAAYA G P, WAGACHA J M, HANNA R, MANIANIA N K. Interactions among vegetable- infesting aphids, the fungal pathogen Metarhizium anisopliae (Ascomycota: Hypocreales) and the predatory coccinellid Cheilomenes lunata (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 2016, 26(2): 274-290.
[38]
SEIEDY M, SABOORI A, ALLAHYARI H. Interactions of two natural enemies of Tetranychus urticae, the fungal entomopathogen Beauveria bassiana and the predatory mite, Phytoseiulus persimilis. Biocontrol Science and Technology, 2012, 22(8): 873-882.
[39]
吴圣勇, 王鹏新, 张治科, 徐学农, 雷仲仁. 捕食螨携带白僵菌孢子的能力及所携孢子的活性和毒力. 中国农业科学, 2014, 47(20): 3999-4006. doi: 10.3864/j.issn.0578-1752.2014.20.008.
WU S Y, WANG P X, ZHANG Z K, XU X N, LEI Z R. Capability of the predatory mite in carrying conidia of Beauveria bassiana and conidia vitality and virulence to Frankliniella occidentalis. Scientia Agricultura Sinica, 2014, 47(20): 3999-4006. doi: 10.3864/j.issn.0578-1752.2014.20.008. (in Chinese)
[40]
SIMELANE D O, STEINKRAUS D C, KRING T J. Predation rate and development of Coccinella septempunctata L. influenced by Neozygites fresenii-infected cotton aphid prey. Biological Control, 2008, 44(1): 128-135.
[41]
AQUEEL M A, LEATHER S R. Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Management Science, 2013, 69(4): 493-498.
[42]
SUN W, SARKAR S C, XU X, LEI Z, WU S, MENG R. The entomopathogenic fungus Beauveria bassiana used as granules has no impact on the soil-dwelling predatory mite Stratiolaelaps scimitus. Systematic and Applied Acarology, 2018, 23(11): 2165-2172.
[43]
WU S, GAO Y, XU X, GOETTEL M S, LEI Z. Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis. Journal of Integrative Agriculture, 2015, 14(1): 98-105.
[44]
MANIANIA N K, EKESI S, KUNGU M M, SALIFU D, SRINIVASAN R. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Protection, 2016, 90: 49-53.
[45]
LIN G Y, TANGUAY A, GUERTIN C, TODOROVA S, BRODEUR J. A new method for loading predatory mites with entomopathogenic fungi for biological control of their prey. Biological Control, 2017, 115: 105-111.
[1] LIAO XinLin, GUO Xin, YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua. Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function [J]. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334.
[2] JIANG YaNan, QI FangJian, LI WeiWei, CHEN JuLian, TAN XiaoLing. The Increasing Temperature Accelerated the Population Growth of Rhopalosiphum padi and Sitobion avenae by Wheat Rhizosphere Microorganisms [J]. Scientia Agricultura Sinica, 2024, 57(20): 4045-4056.
[3] CHAI HaiYan, PAN YiYuan, BAI Xue, MENG LingMin, ZHANG Wei, WU HongBin, WANG YiSheng, GAO YueBo, JIA Jiao, SU QianFu. Analysis of the Relationship Between Aphid-Damage and Fusarium Composition, Mycotoxin Pollution on Maize Ears [J]. Scientia Agricultura Sinica, 2024, 57(16): 3171-3181.
[4] GUO Ning, SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie, ZHENG XiaoJuan, DONG YueGuang. Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot [J]. Scientia Agricultura Sinica, 2023, 56(22): 4453-4466.
[5] LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005.
[6] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[7] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[8] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[9] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[10] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[11] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[12] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[13] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[14] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[15] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!