Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2143-2160.doi: 10.3864/j.issn.0578-1752.2024.11.008

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Exogenous Addition of L-Proline on the Occurrence of Cotton Verticillium Wilt and Its Soil Microbial Community in Rhizosphere

ZHAO WeiSong(), GUO QingGang, CUI NaQi, LU XiuYun, LI SheZeng, MA Ping()   

  1. Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs/IPM Innovation Center of Hebei Province/ International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, Hebei
  • Received:2024-01-04 Accepted:2024-02-16 Online:2024-06-01 Published:2024-06-07
  • Contact: MA Ping

Abstract:

【Objective】Root exudates are signal mediators for the interaction between plants and soil microorganisms, which have important regulatory functions for plant disease occurrence and plant growth. The objective of this study is to clarify the microecological mechanism of L-proline in root exudates of cotton against the occurrence of Verticillium wilt, reveal the relationship of L-proline-mediated interaction between rhizosphere microorganisms and the occurrence of cotton Verticillium wilt, and to provide a new perspective for the construction of beneficial bacterial communities for the biological control of soil-borne diseases.【Method】Through greenhouse pot experiments, different concentrations of L-proline (0, 50, 100, 200, and 400 mmol·L-1) were set as experimental treatments, and real-time fluorescence quantitative PCR and metagenomic sequencing techniques were used to determine the DNA copy numbers of Verticillium dahliae and microbial community structure and function of soil samples treated with L-proline. The microbial community structures of rhizosphere soils under different concentrations of L-proline were compared using principal component analysis. Redundancy analysis was used to study the correlations between soil nutrient factors and microbial community structure, and Spearman correlation analysis was focused on the relationships between microbial community structure and functional metabolic pathways.【Result】Compared with the blank control, the occurrence of cotton Verticillium wilt could not reduce under low concentration (50 mmol·L-1) L-proline treatment, while the disease indexes under high-concentration (100, 200, and 400 mmol·L-1) L-proline treatments were decreased by 22.51%, 60.23%, and 64.23%, respectively. The results of qPCR showed that L-proline treatment did not significantly decrease the copy numbers of V. dahliae in soil. The metagenomic sequencing analysis showed that the Shannon index of bacterial diversity significantly increased after L-proline treatment, while the Shannon index of fungal diversity showed a downward trend. At the genus level, the relative abundances of Nocardioides, Lysobacter, Arthrobacter, Phycicoccus, Pseudomonas, and Mucor were increased after treatment with L-proline. Linear discriminant analysis (LDA) showed that the enrichment of microbial KEGG pathways in rhizosphere soil changed after exogenous addition of L-proline, except for L-proline at the concentration of 100 mmol·L-1. Redundancy analysis showed that bacterial community composition was significantly influenced by pH, conductivity, nitrate nitrogen, ammonium nitrogen, and organic matter (OM), while fungal community composition was significantly correlated with ammonium nitrogen. Spearman correlation analysis showed that the bacterial KEGG pathways were negatively correlated with pH, OM and ammonium nitrogen, while positively correlated with conductivity and nitrate nitrogen. Most of the KEGG pathways of fungi had poor correlation with soil nutrients.【Conclusion】The exogenous addition of an appropriate amount of L-proline can influence the occurrence of cotton Verticillium wilt through altering the structure and function of soil bacterial communities, increasing the relative abundance of beneficial microorganisms, but it cannot change the DNA copy numbers of pathogen. Meanwhile, the composition and function of bacterial community are related to soil nutrients.

Key words: L-proline, rhizospheric microorganism, cotton Verticillium wilt, Verticillium dahliae, soil nutrient

Fig. 1

Effects of L-proline on the occurrence of cotton Verticillium wilt and DNA copy numbers of V. dahliae"

Table 1

Effect of L-proline on plant growth of cotton"

处理
Treatment
指标Index
株高
Plant height
(cm)
地径
Ground diameter (cm)
地上鲜重
Shoot fresh weight
(g)
地上干重
Shoot dry weight
(g)
地下鲜重
Root fresh weight
(g)
地下干重
Root dry weight
(g)
CK 53.48±0.99a 3.04±0.21a 8.73±0.73a 3.12±0.34a 1.02±0.15a 0.40±0.06a
L50 56.73±6.14ab 3.01±0.20a 10.03±1.99a 2.82±0.23a 0.90±0.23a 0.52±0.29a
L100 63.34±6.82b 2.97±0.17a 9.79±0.63a 2.83±0.29a 1.05±0.45a 0.39±0.21a
L200 59.85±6.80ab 3.04±0.21a 10.35±1.57a 2.94±0.61a 0.82±0.26a 0.35±0.09a
L400 55.53±5.08ab 2.80±0.09a 9.73±0.95a 2.83±0.22a 0.85±0.20a 0.26±0.02b

Table 2

Effect of L-proline on soil nutrients in cotton rhizosphere"

指标
Index
处理Treatment
CK L50 L100 L200 L400
速效钾含量AK content (mg·kg-1) 157.40±1.27a 155.99±5.75a 154.45±2.45a 157.96±6.58a 140.38±3.19b
速效磷含量AP content (μmol·g-1) 1.39±0.12a 1.44±0.02a 1.58±0.11a 1.44±0.15a 1.40±0.22a
铵态氮含量NH4+-N content (mg·kg-1) 23.85±2.79a 21.33±1.98a 24.26±0.58a 18.17±0.35b 17.27±2.33b
硝态氮含量NO3--N content (μg·g-1) 11.87±2.86b 4.06±0.32d 6.75±0.79c 12.80±2.55b 375.76±7.31a
有机质含量OM content (%) 4.66±0.02b 4.71±0.11b 4.98±0.07a 4.93±0.04a 4.99±0.03a
pH 7.89±0.01ab 7.90±0.02a 7.93±0.01a 7.85±0.04b 7.75±0.02c
电导率Conductivity (μm·cm-1) 215.67±31.94b 197.37±4.38b 191.20±3.08b 212.67±3.06b 316.00±1.00a

Table 3

Effect of L-proline on α diversity index of microbial community in rhizosphere"

处理
Treatment
细菌Bacteria 真菌Fungi
Shannon ACE Shannon ACE
CK 4.57±0.01c 2806.70±16.17a 4.60±0.11a 388.67±12.67a
L50 4.59±0.01ab 2791.00±17.78a 4.55±0.04a 367.00±7.00a
L100 4.60±0.01a 2808.00±14.53a 4.52±0.10a 382.50±9.19a
L200 4.60±0.01a 2796.00±13.53a 4.46±0.11ab 369.00±54.56a
L400 4.59±0.01ab 2794.00±8.66a 4.32±0.11b 366.00±7.55a

Fig. 2

Principal component analysis of bacterial (A) and fungal (B) community structure in rhizosphere under different treatments at the phylum level"

Fig. 3

Analysis of differences in bacterial (A) and fungal (B) community composition at the phylum level under different treatments (One-way ANOVA)"

Fig. 4

Comparison of relative abundance of dominant bacterial (A) and fungal (B) communities under different treatments at the genus level"

Fig. 5

LDA of KEGG pathways with significant differences based on different treatments A: CK vs L50; B: CK vs L100; C: CK vs L200; D: CK vs L400"

Fig. 6

Redundancy analysis plots of the correlations between soil nutrient factors and microbial community"

Table 4

Differential analysis of the effects of soil nutrient factors on microbial communities composition"

微生物
Microorganism
指标
Index
RDA1 RDA2 决定系数
Coefficients of determination (R2)
P
P value
细菌Bacteria pH 0.9613 -0.2756 0.7921 0.001
电导率Conductivity -0.9959 0.0907 0.7810 0.004
硝态氮含量NO3--N content -0.9977 0.0685 0.8673 0.005
铵态氮含量NH4+-N content 0.8755 -0.4833 0.7556 0.001
速效磷含量AP content 0.6975 -0.7166 0.0443 0.760
速效钾含量AK content 0.9999 0.0116 0.6554 0.002
有机质含量OM content 0.3713 -0.9285 0.5679 0.005
真菌Fungi pH -0.8198 -0.5723 0.0988 0.532
电导率Conductivity 0.4810 0.8767 0.0553 0.729
硝态氮含量NO3--N content 0.3452 0.9385 0.0345 0.827
铵态氮含量NH4+-N content -0.8095 -0.5872 0.5188 0.015
速效磷含量AP content -0.6515 0.7587 0.0989 0.543
速效钾含量AK content -0.5847 -0.8113 0.0306 0.850
有机质含量OM content -0.9769 0.2136 0.3668 0.064

Fig. 7

Heatmap of relationships between top 20 KEGG pathways and nutrient factors of rhizospheric soil according to the result of Spearman’s correlation Positive relationships are represented in red, while negative relationships are represented in blue. The significant correlations are presented as asterisks (* P<0.05; ** P<0.01; *** P<0.001)"

[1]
EISENHAUER N, SCHEU S, JOUSSET A. Bacterial diversity stabilizes community productivity. PLoS ONE, 2012, 7: e34517.
[2]
PANG Z Q, DONG F, LIU Q, LIN W X, HU C H, YUAN Z N. Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community. Frontiers in Microbiology, 2021, 12: 627569.
[3]
SINGH B K, TRIVEDI P. Microbiome and the future for food and nutrient security. Microbial Biotechnology, 2017, 10: 50-53.

doi: 10.1111/1751-7915.12592 pmid: 28074557
[4]
TRIVEDI P, LEACH J E, TRINGE S G, SA T, SINGH B K. Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 2020, 18: 607-621.
[5]
KAMINSKY L M, TREXLER R V, MALIK R J, HOCKETT K L, BELL T H. The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology, 2019, 37(2): 140-151.

doi: S0167-7799(18)30334-2 pmid: 30587413
[6]
BUSBY P E, SOMAN C, WAGNER M R, FRIESEN M L, KREMER J, BENNETT A, MORSY M, EISEN J A, LEACH J E, DANGL J L. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 2017, 15: e2001793.
[7]
PREECE C, PENUELAS J. A return to the wild: Root exudates and food security. Trends in Plant Science, 2020, 25: 14-21.

doi: S1360-1385(19)30247-X pmid: 31648938
[8]
WEN T, ZHAO M L, YUAN J, KOWALCHUK G, SHEN Q R. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecology Letters, 2021, 3(1): 42-51.

doi: 10.1007/s42832-020-0057-z
[9]
WEN T, ZHAO M L, LIU T, HUANG Q W, YUAN J, SHEN Q R. High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biology, 2020, 20: 166.
[10]
ZHAO M L, ZHAO J, YUAN J, HALE L, WEN T, HUANG Q W, VIVANCO J M, ZHOU J Z, KOWALCHUK G A, SHEN Q R. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell and Environment, 2021, 44(2): 613-628.
[11]
YUAN J, WU Y C, ZHAO M L, WEN T, HUANG Q W, SHEN Q R. Effect of phenolic acids from banana root exudates on root colonization and pathogen suppressive properties of Bacillus amyloliquefaciens NJN-6. Biological Control, 2018, 125: 131-137.
[12]
YUAN J, ZHAO J, WEN T, ZHAO M L, LI R, GOOSSENS P, HUANG Q W, BAI Y, VIVANCO J M, KOWALCHUK G A, BERENDSEN R L, SHEN Q R. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6: 156.

doi: 10.1186/s40168-018-0537-x pmid: 30208962
[13]
GU Y A, WEI Z, WANG X Q, FRIMAN V P, HUANG J F, WANG X F, MEI X L, XU Y C, SHEN Q R, JOUSSET A. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biology and Fertility of Soils, 2016, 52: 997-1005.
[14]
董丽红, 郭庆港, 张晓云, 李社增, 鹿秀云, 马平. 棉花根系分泌物对枯草芽胞杆菌NCD-2生物膜形成和根际定殖的影响. 植物病理学报, 2015, 45(5): 541-547.
DONG L H, GUO Q G, ZHANG X Y, LI S Z, LU X Y, MA P. Effects of cotton root exudates on the biofilm formation and root colonization of Bacillus subtilis strain NCD-2. Acta Phytopathologica Sinica, 2015, 45(5): 541-547. (in Chinese)
[15]
ZHAO W S, GUO Q G, LI S Z, LU X Y, DONG L H, WANG P P, ZHANG X Y, SU Z H, MA P. Application of Bacillus subtilis NCD-2 can suppress cotton Verticillium wilt and its effect on abundant and rare microbial communities in rhizosphere. Biological Control, 2022, 165: 104812.
[16]
李社增, 马平, 刘杏忠, HUANG H C, 陈新华. 利用拮抗细菌防治棉花黄萎病. 华中农业大学学报, 2001, 20(5): 422-425.
LI S Z, MA P, LIU X Z, HUANG H C, CHEN X H. Biological control of cotton Verticillium wilt by antagonistic bacteria. Journal of Huazhong Agricultural University, 2001, 20(5): 422-425. (in Chinese)
[17]
赵卫松, 郭庆港, 李社增, 王亚娇, 鹿秀云, 王培培, 苏振贺, 张晓云, 马平. 西兰花残体还田对棉花黄萎病防治效果及其对不同生育时期土壤细菌群落的影响. 中国农业科学, 2019, 52(24): 4505-4517. doi: 10.3864/j.issn.0578-1752.2019.24.006.
ZHAO W S, GUO Q G, LI S Z, WANG Y J, LU X Y, WANG P P, SU Z H, ZHANG X Y, MA P. Control efficacy of broccoli residues on cotton Verticillium wilt and its effect on soil bacterial community at different growth stages. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517. doi: 10.3864/j.issn.0578-1752.2019.24.006. (in Chinese)
[18]
WANG C, ZHENG M M, SONG W F, WEN S L, WANG B R, ZHU C Q, SHEN R F. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biology and Biochemistry, 2017, 113: 240-249.
[19]
REN C, ZHANG W, ZHONG Z K, HAN X, YANG G, FENG Y, REN G. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 2018, 610/611: 750-758.
[20]
SUN H, JIANG S, JIANG C, WU C, GAO M, WANG Q. A review of root exudates and rhizosphere microbiome for crop production. Environmental Science and Pollution Research International, 2021, 28(39): 54497-54510.
[21]
LÓPEZ-MORAL A, SANCHEZ-RODRGUEZ A R, TRAPERO A, AGUSTI-BRISACH C. Establishment of a method to collect root exudates from olive plants and its validation by determining the effect of root exudates against Verticillium dahliae. Plant and Soil, 2023, 483: 625-642.
[22]
杨章明, 王姣, 李石力, 丁伟. 施用外源有机酸对早期烟草青枯病菌的影响. 植物医生, 2018, 31(10): 41-44.
YANG Z M, WANG J, LI S L, DING W. Effect of exogenous organic acids on early tobacco bacterial wilt. Plant Health and Medicine, 2018, 31(10): 41-44. (in Chinese)
[23]
文景芝, 高新颖, 赵钰琦, 于涵, 张卓群, 徐莹, 宋光梅, 陈宇飞, 贾梦瑱, 阴勃廷. 寄主和非寄主种子分泌物中游离氨基酸和可溶性糖含量及其对大豆疫霉的作用. 东北农业大学学报, 2019, 50(5): 1-7.
WEN J Z, GAO X Y, ZHAO Y Q, YU H, ZHANG Z Q, XU Y, SONG G M, CHEN Y F, JIA M Z, YIN B T. Determination of free amino acids and soluble sugars concentrations in host and non-host seed exudates and their effects on Phytophthora sojae. Journal of Northeast Agricultural University, 2019, 50(5): 1-7. (in Chinese)
[24]
董艳, 董坤, 汤利, 郑毅, 李欣然, 胡国彬, 刘一鸣. 蚕豆根系分泌物中氨基酸含量与枯萎病的关系. 土壤学报, 2015, 52(4): 919-925.
DONG Y, DONG K, TANG L, ZHENG Y, LI X R, HU G B, LIU Y M. Relationship of free amino acids in root exudates with wilt disease (Fusarium oxysporum) of faba bean. Acta Pedologica Sinica, 2015, 52(4): 919-925. (in Chinese)
[25]
OCHOLA J, CORTADA L, NG’ANG’A M, HASSANALI A, COYNE D, TORTO B. Mediation of potato-potato cyst nematode, G. rostochiensis interaction by specific root exudate compounds. Frontiers in Plant Science, 2020, 11: 649.
[26]
REN G D, MENG T Z, MA Y. Sugars altered fungal community composition and caused high network complexity in a Fusarium wilt pathogen-infested soil. Biology and Fertility of Soils, 2020, 56: 395-409.
[27]
LIU Y X, LI X, CAI K, CAI L T, LU N, SHI J X. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Applied Soil Ecology, 2015, 93: 78-87.
[28]
YANG R X, GAO Z G, LIU X, YAO Y, CHENG Y, HUANG J, MCDERMOTT M. Effects of phenolic compounds of muskmelon root exudates on growth and pathogenic gene expression of Fusarium oxysporum f. sp. melonis. Allelopathy Journal, 2015, 35(2): 175-186.
[29]
陈娜, 高翔, 涂攀峰, 邓兰生. 施钾调控烟草根系酚酸的释放及其防控青枯病的研究. 热带农业工程, 2018, 42(2): 1-6.
CHEN N, GAO X, TU P F, DENG L S. Analysis on the release of phenolic acids from tobacco and control of tobacco bacterial wilt by potassium fertilizer. Tropical Agricultural Engineering, 2018, 42(2): 1-6. (in Chinese)
[30]
ZHOU B L, CHEN Z X, DU L, XIE Y H, ZHANG Q, YE X L. Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals. African Journal of Biotechnology, 2011, 10(42): 8284-8290.
[31]
CHONG K P, ROSSALL S, ATONG M. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. Journal of Agricultural Science, 2009, 1(2): 15-20.
[32]
CHEN S C, YU H J, ZHOU X G, WU F Z. Cucumber (Cucumis sativus L.) seedling rhizosphere Trichoderma and Fusarium spp. communities altered by vanillic acid. Frontiers in Microbiology, 2018, 9: 2195.
[33]
TAN S Y, YANG C L, MEI X L, SHEN S Y, RAZA W, SHEN Q R, XU Y C. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 2013, 64(1): 15-22.
[34]
DE WEERT S, VERMEIREN H, MULDERS I H M, KUIPER I, HENDRICKX N, BLOEMBERG G V, VANDERLEYDEN J, DE MOT R, LUGTENBERG B J J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. International Society for Molecular Plant-Microbe Interactions, 2002, 15(11): 1173-1180.
[35]
LING N, RAZA W, MA J H, HUANG Q W, SHEN Q R. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. European Journal of Soil Biology, 2011, 47(6): 374-379.
[36]
涂书新, 孙锦荷, 郭智芬, 谷峰. 植物根系分泌物与根际营养关系评述. 土壤与环境, 2000, 9(1): 64-67.
TU S X, SUN J H, GUO Z F, GU F. On relationship between root exudates and plant nutrition in rhizosphere. Soil and Environmental Sciences, 2000, 9(1): 64-67. (in Chinese)
[37]
MA W M, TANG S H, DENGZENG Z M, ZHANG D, ZHANG T, MA X L. Root exudates contribute to belowground ecosystem hotspots: A review. Frontiers in Microbiology, 2022, 13: 937940.
[38]
BAIS H P, WEIR T L, PERRY L G, GILROY S, VIVANCO J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57: 233-266.

pmid: 16669762
[39]
DONG J, HUNT J, DELHAIZE E, ZHENG S J, JIN C W, TANG C X. Impacts of elevated CO2 on plant resistance to nutrient deficiency and toxic ions via root exudates: A review. Science of the Total Environment, 2021, 754: 142434.
[40]
WANG Y L, LAMBERS H. Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant and Soil, 2020, 447: 135-156.
[41]
HAASE S, NEUMANN G, KANIA A, KUZYAKOV Y, ROMHELD V, KANDELER E. Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biology and Biochemistry, 2007, 39: 2208-2221.
[42]
CARVALHAIS L C, DENNIS P G, FEDOSEYENKO D, HAJIREZAEI M R, BORRISS R, VON WIREN N. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. Journal of Plant Nutrition and Soil Science, 2011, 174: 3-11.
[43]
LI L, LI S M, SUN J H, ZHOU L L, BAO X G, ZHANG H G, ZHANG F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192-11196.
[44]
KHASHI U R M, WANG X X, GAO D M, ZHOU X G, WU F Z. Root exudates increase phosphorus availability in the tomato/potato onion intercropping system. Plant and Soil, 2021, 464: 45-62.
[45]
GILES C D, RICHARDSON A E, CADE-MENUN B J, MEZELI M M, BROWN L K, MENEZES-BLACKBURN D, DARCH T, BLACKWELL M S, SHAND C A, STUTTER M I, et al. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling. Physiologia Plantarum, 2018, 163: 356-371.
[46]
CHEN Y T, WANG Y, YEH K C. Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 2017, 39: 66-72.
[47]
TSAI H H, SCHMIDT W. Mobilization of iron by plant-borne coumarins. Trends in Plant Science, 2017, 22: 538-548.

doi: S1360-1385(17)30048-1 pmid: 28385337
[48]
刘志中, 陈汉章, 杨娇. 不同浓度根系分泌物调控植物土壤微生物群落结构研究. 林业调查规划, 2022, 47(6): 20-25, 30.
LIU Z Z, CHEN H Z, YANG J. Regulation of plant soil microbial community structure by different concentrations of root exudates. Forest Inventory and Planning, 2022, 47(6): 20-25, 30. (in Chinese)
[49]
沈凤英, 吴伟刚, 李亚宁, 刘大群, 滕云. 不同浓度植物根系分泌物微生态效应研究. 生态环境学报, 2021, 30(2): 313-319.

doi: 10.16258/j.cnki.1674-5906.2021.02.010
SHEN F Y, WU W G, LI Y N, LIU D Q, TENG Y. Study on microecological effects of root exudates of garden plants with different concentrations. Ecology and Environmental Sciences, 2021, 30(2): 313-319. (in Chinese)
[50]
SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 2018, 23: 25-41.

doi: S1360-1385(17)30199-1 pmid: 29050989
[51]
SINGH G, MUKERJI K G. Root exudates as determinant of rhizospheric microbial biodiversity//MUKERJI K G, MANOHARACHARY C, SINGH J. Microbial Activity in the Rhizosphere. Berlin: Springer, 2006: 39-53.
[52]
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310.

doi: 10.3724/SP.J.1258.2014.00027
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. (in Chinese)
[53]
PRIKRYL Z, VANCURA V. Root exudates of plants: VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant and Soil, 1980, 57: 69-83.
[54]
BADRI D V, CHAPARRO J M, ZHANG R F, SHEN Q R, VIVANCO J M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 2013, 288(7): 4502-4512.
[55]
HUANG A C, JIANG T, LIU Y X, BAI Y C, REED J, QU B Y, GOOSSENS A, NUTZMANN H W, BAI Y, OSBOURN A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science, 2019, 364(6440): eaau6389.
[56]
ZHOU X G, WU F Z. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f. sp. cucumerinum Owen. PLoS ONE, 2012, 7: e48288.
[57]
严文辉, 李志丹, 邓逐流, 谢忱, 谷益安, 雷鹏, 王瑞, 李莎, 徐虹. 番茄根系分泌物苹果酸和丁香酸对土壤细菌群落结构和潜在功能的影响. 江苏农业学报, 2022, 38(5): 1340-1347.
YAN W H, LI Z D, DENG Z L, XIE C, GU Y A, LEI P, WANG R, LI S, XU H. Effects of malic acid and syringic acid from tomato root exudates on soil bacterial community structure and potential function. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1340-1347. (in Chinese)
[58]
MENDES R, KRUIJT M, DE BRUIJN I, DEKKERS E, VAN DER VOORT M, SCHNEIDER J H, PICENO Y M, DE SANTIS T Z, ANDERSEN G L, BAKKER P A, RAAIJMAKERS J M. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 2011, 332(6033): 1097-1100.

doi: 10.1126/science.1203980 pmid: 21551032
[59]
VAN DEYNZE A, ZAMORA P, DELAUX P M, HEITMANN C, JAYARAMAN D, RAJASEKAR S, GRAHAM D, MAEDA J, GIBSON D, SCHWARTZ K D, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16(8): e2006352.
[1] BU MingNa, YANG XiWen, TENG ZhengKai, HU NaiYue, ZHANG Shuo, WANG ChunYan, YANG Jian, LIANG WenXian, MA WenQi, HE DeXian, ZHOU SuMei. Effects of Layered Fertilization Under Different Irrigation Conditions on Vertical Distribution of Soil Nutrients and Root Growth and Function of Wheat [J]. Scientia Agricultura Sinica, 2024, 57(11): 2125-2142.
[2] LUO WanZhen, WANG Dan, QI HongYue, WANG Tong, LIU Zheng, TIAN Li, DAI XiaoFeng, CHEN JinYin, MIJITI Maihemuti. Identification of Antagonistic Bacterium Strain KRS022 and Its Inhibition Effect on Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(4): 649-664.
[3] ZHANG YaLin, JIANG Yan, ZHAO LiHong, FENG ZiLi, FENG HongJie, WEI Feng, ZHOU JingLong, ZHU HeQin, MA ZhiYing. Effect of Temperature on the Occurrence of Cotton Verticillium Wilt and Host Defense Response [J]. Scientia Agricultura Sinica, 2023, 56(23): 4671-4683.
[4] ZHANG YuJia, CUI KaiWen, DUAN LiSheng, CAO AiPing, XIE QuanLiang, SHEN HaiTao, WANG Fei, LI HongBin. Identification and Expression of CAD and CAD-Like Gene Families from Gossypium barbadense and Their Response to Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(19): 3759-3771.
[5] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[6] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[7] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[8] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[9] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[10] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[11] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[12] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[13] REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei. Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China [J]. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616.
[14] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[15] WEN YanChen,LI HaiYan,YUAN Liang,XU JiuKai,MA RongHui,LIN ZhiAn,ZHAO BingQiang. Effect of Long-Term Fertilization on Nutrient Distribution of Fluvo-Aquic Soil Profile [J]. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!