Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 649-664.doi: 10.3864/j.issn.0578-1752.2023.04.005

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Antagonistic Bacterium Strain KRS022 and Its Inhibition Effect on Verticillium dahliae

LUO WanZhen1,2(), WANG Dan2,3(), QI HongYue2,4, WANG Tong2,4, LIU Zheng3,5, TIAN Li6, DAI XiaoFeng2,3, CHEN JinYin2,3(), MIJITI Maihemuti1,3,7()   

  1. 1College of Agronomy, Xinjiang Agricultural University/Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi 830052
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang
    4College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang 157012, Heilongjiang
    5Agricultural College of Shihezhi University, Shihezi 832000, Xinjiang
    6College of Life Science, Qufu Normal University, Qufu 273165, Shandong
    7Xinjiang Huier Agriculture Group Co., Ltd., Changji 831199, Xinjiang
  • Received:2022-10-02 Accepted:2022-11-16 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】To clarify the taxonomic status of antagonistic bacterium KRS022 and its inhibitory effect on a variety of pathogenic fungi, and to focus on the control efficacy on Verticillium dahliae, and this study will provide important resources for the research and development of biocontrol preparations against V. dahliae. 【Method】The classification of KRS022 was determined by morphological, physiological and biochemical tests, and 16S rDNA-gyrB gene sequence tandem analysis. The inhibitory effects of KRS022 on various fungi were tested by confrontation and fumigation methods. The effect of KRS022 on the morphology of V. dahliae hyphae and conidia was determined by co-culture of cell-free supernatant and fumigation. The control efficacy of KRS022 on Verticillium wilt of cotton and tobacco was determined by pot experiment and biomass measurement. The RT-qPCR method was used to detect the expression levels of plant resistance-related genes. 【Result】The strain KRS022 was gram-negative bacterium, and it was identified as Pseudomonas alcaligenes. KRS022 has the characteristics of phosphorus and potassium solubilization, nitrogen fixation and siderophore production, and the function of protease, amylase and catalase activities. KRS022 belongs to aerobic alkali-producing bacterium, and 100 μg·mL-1 ampicillin can be used as the screening condition for natural resistance of this strain. KRS022 showed different degrees of antifungal activity against a variety of pathogenic fungi (such as Verticillium dahliae, Fusarium oxysporum, Fusarium graminearum, Magnaporthe oryzae, Botrytis cinerea, Colletotrichum gloeosprioides, Colletotrichum fructicola). The inhibitory rates of confrontation and fumigation against V. dahliae were 75.19% and 99.78%, respectively. The inhibition rates of PDA plates with fermentation liquid, spreading plates and fumigation against Vd991 were 96.21%, 99.72% and 99.44%, respectively. The co-culture of KRS022 cell-free supernatant with conidia of Vd991 completely inhibited spore germination. The hyphae of Vd991 were enlarged and thickened after fumigation treatment of KRS022. The results of pot experiment showed that KRS022 could significantly inhibit the occurrence of Verticillium wilt of cotton and tobacco. After treatment of KRS022 bacterial solution, the biomass of V. dahliae was significantly reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 1.75 and 2.57 folds higher than that in the treatment group (KRS022+Vd991), respectively. Moreover, KRS022 could also promote plants growth, and the leaf dimension and single leaf area of the tobacco treated with KRS022 fermentation broth increased by 65.7% and 146.4%, respectively. At the same time, KRS022 could stimulate the plants resistance-related genes expression. Cotton treated with KRS022 fermentation broth, the salicylic acid (SA) pathway marker gene GhPR1, jasmonic acid (JA) pathway marker gene GhAOC4 and ethylene (ET) pathway marker gene GhEIN2 were significantly up-regulated, the up-regulation folds were 7.23, 1.69 and 15.05 that of water treatment, respectively. Cotton treated with KRS022 fermentation broth and inoculated with V. dahliae, the expression of GhAOC4 and GhEIN2 was significantly induced, and the up-regulation folds were 68.09 and 11.87 that of cotton plants inoculated with V. dahliae, respectively. The up-regulated expression folds of NbHSR203, NbHIN1, NbPR1, NbPR2, NbPR5, NbRbohA and NbRbohB after KRS022 cell-free supernatant injection were 1.98, 2.79, 2.52, 1.25, 1.70, 3.28 and 3.44 that of LB treatment, respectively. 【Conclusion】The antagonistic bacterium KRS022 was identified as P. alcaligenes. It has the characteristics of siderophore production, phosphorus and potassium solubilization, and nitrogen fixation, which suggested KRS022 may have the function of plant growth promotion. It can inhibit the conidia germination and hyphae growth of V. dahliae. In addition, KRS022 can protect plants from V. dahliae infection and trigger plant immunity response. Together, KRS022 is a potential biocontrol microbial resource with development prospect for the prevention and control of Verticillium wilt and other fungal diseases.

Key words: Pseudomonas alcaligenes, Verticillium wilt, Verticillium dahliae, biocontrol, plant immunity

Table 1

Specific primers for defense-related genes of cotton and tobacco"

基因Gene 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′) 参考文献Reference
GhUB7 GAAGGCATTCCACCTGACCAAC CTTGACCTTCTTCTTCTTGTGCTTG [26]
GhPR1 ACCTCAACGCTCACAACACA GGTCCACTGGAGTGCACAAG [26]
GhEIN2 TTTTGATCTGGTAGCCCCC CAATATGAAACCTGCCGCAT [26]
GhAOC4 GGCATCACGGCTGGACTCT GCGATGGTGGCACTGGC [26]
NbEF-1α TGAGTTCGAGGCTGGTATCT CACTTGGTGGTGTCCATCTT [25]
NbHSR203 GGCAGTGGAGGAGCTTAAAT GCTATGTCCCACTCCATTGTTA [25]
NbHIN1 ATCCTCGGAGTGATTGCATTAG TGTTGTTTGTGGTGGACAAATC [25]
NbPR1 CCGCCTTCCCTCAACTCAAC GCACAACCAAGACGTACTGAG [25]
NbPR2 AGGTGTTTGCTATGGAATGC TCTGTACCCACCATCTTGC [25]
NbPR5 GGGCCAATCTTGGAGCATTA CAGTCTCCAGTCTCACAATTACC [27]
NbRbohA CTTGCTCGTCAACATCGTG GGAGAAATCTTGTTGAGAGC [28]
NbRbohB TAATACAAGGAGGGCATATT GCAGAACGAGCATCACCT [28]

Fig. 1

Colony morphology and gram staining results"

Table 2

Physiological and biochemical characteristics of KRS022"

特性
Characteristics
KRS022
产碱假单胞菌
P. alcaligenes
特性
Characteristics
KRS022
产碱假单胞菌
P. alcaligenes
铁载体Siderophore + + 厌氧试验Anaerobic test - -
解磷Phosphorus solubilization + + 过氧化氢酶活性 Catalase activity + +
解钾Potassium solubilization + + 葡萄糖酵解试验 Glycolysis test - -
固氮Nitrogen-fixing + + 卡那霉素a Kanamycin - -
明胶水解Gelatin hydrolysis + + 氨苄青霉素a Ampicillin + +
蛋白酶活性Protease activity + + 头孢霉素a Cephalosporin - -
淀粉酶活性Amylase activity + + 氯霉素a Chloramphenicol - -
甲基红试验MR test - - 利福平a Rifampicin - -
柠檬酸盐利用Citrate utilization + + 血平板试验CAMP test + +
吲哚试验Indole test - -

Fig. 2

Phylogenetic tree analysis derived by neighbor joining method"

Fig. 3

The broad-spectrum inhibitory effect of KRS022 on pathogenic fungi growth determined by plate confrontation test"

Fig. 4

The broad-spectrum inhibitory effect of KRS022 volatile metabolites on pathogenic fungi growth"

Fig. 5

Effects of KRS022 on conidia germination and hyphae development of V. dahliae"

Fig. 6

The control efficacy of KRS022 on cotton and tobacco plants Verticillium wilt"

Fig. 7

Detection of relative biomass of V. dahliae in cotton and tobacco stem basal tissue"

Fig. 8

KRS022 induces the expression of defense-related genes"

[1]
HARTING R, NAGEL A, NESEMANN K, HÖFER A M, BASTAKIS E, KUSCH H, STANLEY C E, STÖCKLI M, KAEVER A, HOFF K J, et al. Pseudomonas strains induce transcriptional and morphological changes and reduce root colonization of Verticillium spp. Frontiers in Microbiology, 2021, 12: 652468. doi: 10.3389/fmicb.2021.652468.

doi: 10.3389/fmicb.2021.652468.
[2]
纪晓彬, 王丹, 刘政, 李冉, 宋健, 张丹丹, 陈捷胤, 戴小枫, 林克剑. 芽胞杆菌BvR001对大丽轮枝菌抑制效果研究. 植物保护, 2021, 47(1): 40-47. doi: 10.16688/j.zwbh.2019568.

doi: 10.16688/j.zwbh.2019568.
JI X B, WANG D, LIU Z, LI R, SONG J, ZHANG D D, CHEN J Y, DAI X F, LIN K J. Inhibitory efficacy of Bacillus BvR001 against Verticillium dahliae. Plant Protection, 2021, 47(1): 40-47. doi: 10.16688/j.zwbh.2019568. (in Chinese)

doi: 10. 16688/j.zwbh.2019568.
[3]
LI S, XIAO Q, YANG H, HUANG J, LI Y. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold. Pesticide Biochemistry and Physiology, 2022, 187: 105199. doi: 10.1016/j.pestbp.2022.105199.

doi: 10.1016/j.pestbp.2022.105199.
[4]
HASAN N, FARZAND A, HENG Z, KHAN I U, MOOSA A, ZUBAIR M, NA Y, YING S, CANMING T. Antagonistic potential of novel endophytic Bacillus strains and mediation of plant defense against Verticillium wilt in upland cotton. Plants, 2020, 9(11): 1438. doi: 10.3390/plants9111438.

doi: 10.3390/plants9111438.
[5]
DEKETELAERE S, TYVAERT L, FRANÇA S C, HÖFTE M. Desirable traits of a good biocontrol agent against Verticillium wilt. Frontiers in Microbiology, 2017, 8: 1186. doi: 10.3389/fmicb.2017.01186.

doi: 10.3389/fmicb.2017.01186 pmid: 28729855
[6]
TAO X Y, ZHANG H L, GAO M T, LI M L, ZHAO T, GUAN X Y. Pseudomonas species isolated via high-throughput screening significantly protect cotton plants against Verticillium wilt. AMB Express, 2020, 10(1): 193. doi: 10.1186/s13568-020-01132-1.

doi: 10.1186/s13568-020-01132-1.
[7]
PATTEN C L, GLICK B R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 2002, 68(8): 3795-3801. doi: 10.1128/ AEM.68.8.3795-3801.2002.

doi: 10.1128/ AEM.68.8.3795-3801.2002.
[8]
AFZAL I, SHINWARI Z K, SIKANDAR S, SHAHZAD S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 2019, 221: 36-49. doi: 10.1016/j.micres.2019.02.001.

doi: S0944-5013(18)30459-2 pmid: 30825940
[9]
张煜琦, 刘勇, 陈应凤, 曾军, 贺东方, 方守国. 沼泽红假单胞菌PSB-06菌剂对番茄褪绿病的防效及其作用机制. 植物保护学报, 2021, 48(6): 1496-1507. doi: 10.13802/j.cnki.zwbhxb.2021.2021905.

doi: 10.13802/j.cnki.zwbhxb.2021.2021905.
ZHANG Y Q, LIU Y, CHEN Y F, ZENG J, HE D F, FANG S G. Control efficacy and mechanism of fungicide Rhodopseudomonas palustris PSB-06 on tomato chlorosis virus. Journal of Plant Protection, 2021, 48(6): 1496-1507. doi: 10.13802/j.cnki.zwbhxb.2021.2021905. (in Chinese)

doi: 10.13802/j.cnki.zwbhxb. 2021.2021905.
[10]
BIESSY A, NOVINSCAK A, ST-ONGE R, LÉGER G, ZBORALSKI A, FILION M. Inhibition of three potato pathogens by phenazine- producing Pseudomonas spp. is associated with multiple biocontrol- related traits. mSphere, 2021, 6(3): e00427-21. doi: 10.1128/mSphere.00427-21.

doi: 10.1128/mSphere.00427-21.
[11]
LI C H, SHI L, HAN Q, HU H L, ZHAO M W, TANG C M, LI S P. Biocontrol of Verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. Journal of Applied Microbiology, 2012, 113(3): 641-651. doi: 10.1111/j.1365-2672.2012.05371.x.

doi: 10.1111/j.1365-2672.2012.05371.x pmid: 22726297
[12]
LÓPEZ-ESCUDERO F J, MERCADO-BLANCO J. Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant and Soil, 2011, 344: 1-50. doi: 10.1007/s11104-010-0629-2.

doi: 10.1007/s11104-010-0629-2.
[13]
BERG G, OPELT K, ZACHOW C, LOTTMANN J, GÖTZ M, COSTA R, SMALLA K. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiology Ecology, 2006, 56(2): 250-261. doi: 10.1111/j.1574-6941.2005.00025.x.

doi: 10.1111/j.1574-6941.2005.00025.x.
[14]
LIU K Z, DING H T, YU Y, CHEN B. A cold-adapted chitinase- producing bacterium from antarctica and its potential in biocontrol of plant pathogenic fungi. Marine Drugs, 2019, 17(12): 695. doi: 10.3390/md17120695.

doi: 10.3390/md17120695.
[15]
GÓMEZ-LAMA CABANÁS C, LEGARDA G, RUANO-ROSA D, PIZARRO-TOBÍAS P, VALVERDE-CORREDOR A, NIQUI J L, TRIVIÑO J C, ROCA A, MERCADO-BLANCO J. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: From the host roots to the bacterial genomes. Frontiers in Microbiology, 2018, 9: 277. doi: 10.3389/fmicb.2018.00277.

doi: 10.3389/fmicb.2018.00277.
[16]
MALDONADO-GONZÁLEZ M M, BAKKER P A, PRIETO P, MERCADO-BLANCO J. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 2015, 6: 266. doi: 10.3389/fmicb.2015.00266.

doi: 10.3389/fmicb.2015.00266.
[17]
王明元, 徐志周, 刘建福, 李文魁, 林思锻. 伯克霍尔德菌HQB-1抑制香蕉枯萎病菌的活性化合物分离鉴定. 微生物学通报, 2021, 48(6): 1965-1975. doi: 10.13344/j.microbiol.china.200863.

doi: 10.13344/j.microbiol.china.200863.
WANG M Y, XU Z Z, LIU J F, LI W K, LIN S D. Isolation and identification of bioactive compounds of Burkholderia HQB-1 strain inhibiting banana wilt. Microbiology China, 2021, 48(6): 1965-1975. doi: 10.13344/j.microbiol.china.200863. (in Chinese)

doi: 10.13344/j.microbiol.china.200863.
[18]
蒋宝贵, 赵斌. 解磷解钾自生固氮菌的分离筛选及鉴定. 华中农业大学学报, 2005, 24(1): 43-48. doi: 10.3321/j.issn:1000-2421.2005.01.011.

doi: 10.3321/j.issn:1000-2421.2005.01.011.
JIANG B G, ZHAO B. Screening and identification of the bacterium which have high efficiency on resolving phosphorus and potassium and in nitrogen fixation. Journal of Huazhong Agricultural University, 2005, 24(1): 43-48. doi: 10.3321/j.issn:1000-2421.2005.01.011. (in Chinese)

doi: 10.3321/j.issn:1000-2421.2005.01.011.
[19]
王晓丹, 闵凡祥, 郭梅, 胡林双, 魏琪, 董学志, 李学湛. 马铃薯青枯病菌生化型研究及菌株接种方法的比较. 中国马铃薯, 2010, 24(1): 38-40.
WANG X D, MIN F X, GUO M, HU L S, WEI Q, DONG X Z, LI X Z. A study on biotypes of Ralstonia solanacearum from potato hosts and comparison of inoculation methods. Chinese Potato Journal, 2010, 24(1): 38-40. (in Chinese)
[20]
东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001.
DONG X Z, CAI M Y. Systematic Identification Manual of Common Bacteria. Beijing: Science Press, 2001. (in Chinese)
[21]
BUCHANAN R E, GIBBONS N E. 中国科学院微生物研究所, 译. 8 版. 伯杰细菌鉴定手册. 北京: 科学出版社, 1984.
BUCHANAN R E, GIBBONS N E. Instituteof Microbiology, Chinese Academy of Sciencestrans. 8th ed. Bergey’s Manual of Determinative Bacteriology. Beijing: Science Press, 1984. (in Chinese)
[22]
王信, 程亮, 王亚艺, 高旭升, 蔡晓剑. 一种由山葵果胶杆菌引起的马铃薯细菌性软腐病. 西南农业学报, 2018, 31(7): 1386-1392. doi: 10.16213/j.cnki.scjas.2018.7.010.

doi: 10.16213/j.cnki.scjas.2018.7.010.
WANG X, CHENG L, WANG Y Y, GAO X S, CAI X J. Bacterial soft rot disease of Solanum tuberosum L. by Pectobacterium wasabiae. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1386-1392. doi: 10.16213/j.cnki.scjas.2018.7.010. (in Chinese)

doi: 10.16213/j.cnki.scjas.2018.7.010.
[23]
李文学, 肖瑞刚, 吕苗苗, 丁宁, 石华荣, 顾沛雯. 葡萄霜霉病菌实时荧光定量PCR检测体系的建立和应用. 中国农业科学, 2019, 52(9): 1529-1540. doi: 10.3864/j.issn.0578-1752.2019.09.005.

doi: 10.3864/j.issn.0578-1752.2019.09.005.
LI W X, XIAO R G, M M, DING N, SHI H R, GU P W. Establishment and application of real-time PCR for quantitatively detecting Plasmopara viticola in Vitis vinifera. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540. doi: 10.3864/j.issn.0578-1752.2019.09.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019. 09.005.
[24]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262.

doi: 10.1006/meth.2001.1262.
[25]
王丹. 大丽轮枝菌CFEM类小分子富含半胱氨酸蛋白家族基因功能研究[D]. 北京: 中国农业科学院, 2020.
WANG D. Functional analysis of CFEM domain-containing small secreted cysteine-rich proteins in Verticillium dahliae[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
[26]
NINH T T, GAO W, TRUSOV Y, ZHAO J R, LONG L, SONG C P, BOTELLA J R. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. Plant Direct, 2021, 5(11): e359. doi: 10.1002/pld3.359.

doi: 10.1002/pld3.359 pmid: 34765865
[27]
张丽. 烟草NtabSPL6-2NtabSPL6-3基因的功能研究[D]. 西安: 西北大学, 2019.
ZHANG L. Functional research of NtabSPL6-2 and NtabSPL6-3 genes in Nicotiana tabacum[D]. Xi’an: Northwest University, 2019. (in Chinese)
[28]
于世霞. 烟草和番茄中活性氧介导的绒毡层程序性细胞死亡影响花粉的发育[D]. 泰安: 山东农业大学, 2017.
YU S X. Reactive oxygen species mediated tapetal programmed cell death affects pollen development in tobacco and tomato[D]. Taian: Shandong Agricultural University, 2017. (in Chinese)
[29]
石中全, 杨致邦, 朱黎黎, 马廉举, 蒋仁举, 杨露. 一株地塞米松磷酸钠降解菌的分离鉴定. 中国微生态学杂志, 2014, 26(11): 1250-1256. doi: 10.13381/j.cnki.cjm.201411003.

doi: 10.13381/j.cnki.cjm.201411003.
SHI Z Q, YANG Z B, ZHU L L, MA L J, JIANG R J, YANG L. Isolation and identification of a strain of bacteria degradating dexamethasone sodium phosphate. Chinese Journal of Microecology, 2014, 26(11): 1250-1256. doi: 10.13381/j.cnki.cjm.201411003. (in Chinese)

doi: 10.13381/j.cnki.cjm.201411003.
[30]
薛菊兰, 艾彪, 张艳华. 产碱假单胞菌在医院环境中分布情况调查. 中国消毒学杂志, 2011, 28(2): 241.
XUE J L, AI B, ZHANG Y H. Investigation of the distribution of Pseudomonas alcaligenes in hospital settings. Chinese Journal of Disinfection, 2011, 28(2): 241. (in Chinese)
[31]
华杰, 李艳霞.20株产碱假单胞菌的分离鉴定及药敏分析. 湖北省暨武汉市微生物学会分析微生物专业委员会第十届第五次学术会议论文汇编, 2008: 324-326.
HUA J, LI Y X.Isolation and identification of 20 strains of Pseudomonas alcaligenes and their susceptibility analysis. Proceedings of the 10th Fifth Academic Conference of Analytical Microbiology Professional Committee of Hubei Province and Wuhan Society of Microbiology, 2008: 324-326. (in Chinese)
[32]
孙崇思, 陈晓敏, 束长龙, 齐放军, 高继国, 张杰. 对大丽轮枝菌具有拮抗作用的萎缩芽胞杆菌的分离和鉴定. 植物保护, 2014, 40(1): 30-37. doi: 10.3969/j.issn.0529-1542.2014.01.005.

doi: 10.3969/j.issn.0529-1542.2014.01.005.
SUN C S, CHEN X M, SHU C L, QI F J, GAO J G, ZHANG J. Isolation and identification of Bacillus atrophaeus antagonistic against Verticillium dahliae. Plant Protection, 2014, 40(1): 30-37. doi: 10.3969/j.issn.0529-1542.2014.01.005. (in Chinese)

doi: 10.3969/j.issn.0529-1542.2014.01.005.
[33]
KURANISHI T, SEKIGUCHI J I, YANAGISAWA I, AKIWA M, TOKUNO Y. Development of a new semi-selective lysine-ornithine- mannitol-arginine-charcoal medium for the isolation of Pantoea species from environmental sources in Japan. Microbes and Environments, 2019, 34(2): 136-145. doi: 10.1264/jsme2.ME18128.

doi: 10.1264/jsme2.ME18128.
[34]
ZHOU J P, XIE Y Q, LIAO Y H, LI X Y, LI Y M, LI S P, MA X G, LEI S M, LIN F, JIANG W, HE Y Q. Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Frontiers in Microbiology, 2022, 13: 983781. doi: 10.3389/fmicb.2022.983781.

doi: 10.3389/fmicb.2022.983781.
[35]
CESA-LUNA C, BAEZ A, AGUAYO-ACOSTA A, LLANO- VILLARREAL R C, JUÁREZ-GONZÁLEZ V R, GAYTÁN P, BUSTILLOS-CRISTALES M D R, RIVERA-URBALEJO A, MUÑOZ-ROJAS J, QUINTERO-HERNÁNDEZ V. Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances. PLoS ONE, 2020, 15(10): e0240545. doi: 10.1371/journal.pone.0240545.

doi: 10.1371/journal.pone.0240545.
[36]
SURESH P, REKHA M, GOMATHINAYAGAM S, RAMAMOORTHY V, SHARMA M P, SAKTHIVEL P, SEKAR K, VALAN ARASU M, SHANMUGAIAH V. Characterization and assessment of 2, 4- diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens VSMKU3054 for the management of tomato bacterial wilt caused by Ralstonia solanacearum. Microorganisms, 2022, 10(8): 1508. doi: 10.3390/microorganisms10081508.

doi: 10.3390/microorganisms10081508.
[37]
阳洁, 秦莹溪, 王晓甜, 尹坤, 江院, 袁涛, 谭志远. 广西药用野生稻内生细菌多样性及促生作用. 生态学杂志, 2015, 34(11): 3094-3100. doi: 10.13292/j.1000-4890.20151023.006.

doi: 10.13292/j.1000-4890.20151023.006.
YANG J, QIN Y X, WANG X T, YIN K, JIANG Y, YUAN T, TAN Z Y. Diversity and growth promotion of endophytic bacteria isolated from Orzy officinalis in Guangxi. Chinese Journal of Ecology, 2015, 34(11): 3094-3100. doi: 10.13292/j.1000-4890.20151023.006. (in Chinese)

doi: 10.13292/j.1000-4890.20151023.006.
[38]
WANG X, ZHOU X, CAI Z, GUO L, CHEN X, CHEN X, LIU J, FENG M, QIU Y, ZHANG Y, WANG A. A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens, 2020, 10(1): 22. doi: 10.3390/pathogens10010022.

doi: 10.3390/ pathogens10010022.
[39]
GAO Y, FENG J, WU J, WANG K, WU S, LIU H, JIANG M. Transcriptome analysis of the growth-promoting effect of volatile organic compounds produced by Microbacterium aurantiacum GX14001 on tobacco (Nicotiana benthamiana). BMC Plant Biology, 2022, 22(1): 208. doi: 10.1186/s12870-022-03591-z.

doi: 10.1186/s12870-022-03591-z.
[40]
HERNÁNDEZ-LEÓN R, ROJAS-SOLÍS D, CONTRERAS-PÉREZ M, OROZCO-MOSQUEDA M D C, MACÍAS-RODRÍGUEZ L I, REYES-DE LA CRUZ H, VALENCIA-CANTERO E, SANTOYO G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 2015, 81: 83-92. doi: 10.1016/j.biocontrol.2014.11.011.

doi: 10.1016/j.biocontrol.2014.11.011.
[41]
ZHOU J Y, YUAN J, LI X, NING Y F, DAI C C. Endophytic bacterium-triggered reactive oxygen species directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. Applied and Environmental Microbiology, 2015, 82(5): 1577-1585. doi: 10.1128/AEM.03434-15.

doi: 10.1128/AEM.03434-15.
[42]
杨艺炜, 黎妍妍, 张安盛, 周建云, 李斌, 王静, 陈德鑫. 烟草黑胫病拮抗菌XF10的筛选与鉴定. 烟草科技, 2018, 51(4): 20-27.
YANG Y W, LI Y Y, ZHANG A S, ZHOU J Y, LI B, WANG J, CHEN D X. Screening and identification of an antagonistic bacterium XF10 against tobacco black shank. Tobacco Science and Technology, 2018, 51(4): 20-27. (in Chinese)
[43]
SAFARA S, HARIGHI B, BAHRAMNEJAD B, AHMADI S. Antibacterial activity of endophytic bacteria against sugar beet root rot agent by volatile organic compound production and induction of systemic resistance. Frontiers in Microbiology, 2022, 13: 921762. doi: 10.3389/fmicb.2022.921762.

doi: 10.3389/fmicb.2022.921762.
[44]
BERG G, ROSKOT N, STEIDLE A, EBERL L, ZOCK A, SMALLA K. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Applied and Environmental Microbiology, 2002, 68(7): 3328-3338. doi: 10.1128/AEM.68.7.3328-3338.2002.

doi: 10.1128/AEM.68.7.3328-3338.2002.
[45]
赵君洁, 曾卫军, 李艳红, 葛风伟, 杜钰, 袁琳琳, 赵歉歉, 王敏, 谢红桃, 白若翔, 韩生成, 赵和平, 赵惠新. 大丽轮枝菌拮抗芽孢菌株的分离、鉴定及两株菌抑菌特性研究. 北京师范大学学报(自然科学版), 2017, 53(3): 294-300. doi: 10.16360/j.cnki.jbnuns.2017.03.009.

doi: 10.16360/j.cnki.jbnuns.2017.03.009.
ZHAO J J, ZENG W J, LI Y H, GE F W, DU Y, YUAN L L, ZHAO Q Q, WANG M, XIE H T, BAI R X, HAN S C, ZHAO H P, ZHAO H X. Isolation and identification of antagonistic Bacillus spp. against Verticillium dahliae: The antibacterial properties of two strains. Journal of Beijing Normal University (Natural Science Edition), 2017, 53(3): 294-300. doi: 10.16360/j.cnki.jbnuns.2017.03.009. (in Chinese)

doi: 10.16360/j.cnki.jbnuns.2017.03.009.
[46]
DUAN Y, CHEN R, ZHANG R, JIANG W, CHEN X, YIN C, MAO Z. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Frontiers in Microbiology, 2021, 12: 746799. doi: 10.3389/fmicb.2021.746799.

doi: 10.3389/fmicb.2021.746799.
[47]
黄艺烁, 谢学文, 石延霞, 柴阿丽, 李磊, 李宝聚. 一株绿针假单胞菌桔黄亚种在防治番茄匍柄霉叶斑病中的应用. 中国生物防治学报, 2021, 37(6): 1265-1275. doi: 10.16409/j.cnki.2095-039x.2021.06.018.

doi: 10.16409/j.cnki.2095-039x.2021.06.018.
HUANG Y S, XIE X W, SHI Y X, CHAI A L, LI L, LI B J. Application of Pseudomonas chlororaphis subsp. aurantiaca against gray leaf spot of tomato. Chinese Journal of Biological Control, 2021, 37(6): 1265-1275. doi: 10.16409/j.cnki.2095-039x.2021.06.018. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.06.018.
[48]
沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响. 中国农业科学, 2022, 55(2): 320-328. doi: 10.3864/j.issn.0578-1752.2022.02.007.

doi: 10.3864/j.issn.0578-1752.2022.02.007.
SHA Y X, HUANG Z Y, MA R. Control efficacy of Pseudomonas alcaliphila strain Ej2 against rice blast and its effect on endogenous hormones in rice. Scientia Agricultura Sinica, 2022, 55(2): 320-328. doi: 10.3864/j.issn.0578-1752.2022.02.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.02.007.
[49]
HU L J, WU X Q, WEN T Y, YE J R, QIU Y J, RUI L, ZHANG Y. The key molecular pattern BxCDP1 of Bursaphelenchus xylophilus induces plant immunity and enhances plant defense response via two small peptide regions. Frontiers in Plant Science, 2022, 13: 937473. doi: 10.3389/fpls.2022.937473.

doi: 10.3389/fpls.2022.937473.
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[3] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[4] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[5] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[6] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[7] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[8] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[9] ZHANG Liang, ZHANG Jing-ze. Isolation and Purification of Active Compound from Trichoderma viridescens and Its Inhibitory Activities Against Phytopathogens [J]. Scientia Agricultura Sinica, 2015, 48(5): 882-888.
[10] ZHAO Jian, YUAN Ling, HUANG Jian-Guo. Fermentation Parameter Optimization of Pythium oligandrum and Biocontrol Effect of the Fermentation Broth [J]. Scientia Agricultura Sinica, 2013, 46(2): 292-299.
[11] YIN You-Ping, HUANG Shan, SONG Zhang-Yong, WANG Zhong-Kang. Microsclerotia Artificial Inductions of Nomuraea rileyi CQNr01 [J]. Scientia Agricultura Sinica, 2012, 45(23): 4801-4807.
[12] DI Xi-Lun, YANG Jin-Guang, SHEN Li-Li, QIAN Yu-Mei, WANG Pan, SUN Li-Ping, WANG Hui-Qing, ZHAO Hong-Dong, WANG Yong, WANG Feng-Long. Selection and Identification of a Biocontrol Bacteria Strain with Inhibitory Activity Against TMV and PVY [J]. Scientia Agricultura Sinica, 2012, 45(11): 2180-2188.
[13] ZHENG Xue-Fang, LIU Bo, 蓝Jiang-Lin , SU Ming-Xing, LU Shu-Xian, ZHU Chang-Xiong. Study on the Biocontrol Effects of Microbial-Fermentation Bed on the Pig Pathogen Escherichia coli in the Piggery [J]. Scientia Agricultura Sinica, 2011, 44(22): 4728-4739.
[14] ZHU Wei-jie,WANG Nan,YU Xue-ping,WANG Wei . Effects of the Biocontrol Agent Pseudomonas fluorescens 2P24 on Microbial Community Diversity in the Melon Rhizosphere
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1389-1396 .
[15] LIU Lu-ning,TU Yan-la,ZHANG Jing-ze . Biocontrol Potential of Trichoderma virens Strain TY009 Against Rice Sheath Blight and Other Main Fungal Diseases
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2031-2038 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!