Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3219-3231.doi: 10.3864/j.issn.0578-1752.2021.15.007

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology

ZHANG XiaoXue(),SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun(),SUN Jie   

  1. College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang
  • Received:2020-11-09 Accepted:2020-12-18 Online:2021-08-01 Published:2021-08-10
  • Contact: YanJun LI E-mail:943124507@qq.com;lyj20022002@sina.com

Abstract:

【Objective】 The objective of this research is to identify xylosidase genes from Verticillium dahliae and study the relationship between xylosidase genes and pathogenicity of V. dahliae, which will provide a theoretical basis for exploring the molecular mechanism of pathogenicity of V. dahliae and a scientific basis for formulating better control strategies for verticillium wilt.【Method】 All xylosidase genes were identified from the genome database of V. dahliae by bioinformatics, and their protein domain, chromosomal location and phylogenetic relationship were analyzed. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of xylosidase genes in V. dahliae cultured with different root exudates from resistant and susceptible cotton varieties for 0, 6, 12, 24 and 48 h. The function of one of the xylosidase genes VdxyL3 in the infection of V. dahliae was analyzed by using host-induced gene silencing (HIGS) method. The target fragment of VdxyL3 was injected into cotton, and then V. dahliae Vd991 was inoculated to those plants injected with target fragment of VdxyL3 by using root-dip approach. The phenotype of transformed plants was observed and the disease index was counted, meanwhile, the biomass of fungi and the expression level of VdxyL3 in the plants were detected by qRT-PCR technique.【Result】 Bioinformatics analysis showed that there were 13 xylosidase genes (VdxyL1-VdxyL13) in V. dahliae, whose coding sequences ranged from 1 461 to 2 544 bp, molecular weight of the encoded proteins ranged from 38.78 to 90.97 kD, and theoretical isoelectric point ranged from 4.67 to 5.89. Protein domain phylogenetic relationship analysis showed that there were 9 glycoside hydrolase 43 family members, 1 glycoside hydrolase 3 family member and 3 glycoside hydrolase 31 family members included in xylosidase genes. The chromosomal location analysis showed that the 13 genes were distributed on 6 chromosomes and no gene clusters were formed. qRT-PCR analysis showed that the expression of 6 xylosidase genes was induced by cotton root exudates. After being cultured in one or more root exudates for 6 h or 12 h, expression levels of these genes were significantly increased and then decreased. Among 6 genes, the expression level of VdxyL3 increased significantly after sensing root exudates from sea island cotton. The results based on HIGS technology showed that after 14 and 21 days of inoculation, the disease symptom of cotton plants transformed with VdxyL3 interfering fragment was more serious, and the disease index (33.3 and 83.9) was significantly higher than that of empty vector control (21.7 and 66.1). qRT-PCR analysis showed that cotton plants transformed with VdxyL3 interfering fragment had higher fungal biomass but lower expression level of VdxyL3 compared to the empty vector control.【Conclusion】 The VdxyL3 gene silencing by using HIGS technology lead to a significant decrease of cotton resistance to V. dahliae, indicating that VdxyL3 may play a certain role in the pathogenesis of V. dahliae and host-pathogen interaction.

Key words: cotton, Verticillium dahliae, verticillium wilt, VdxyL3, xylosidase, host-induced gene silencing (HIGS)

Table 1

Primer sequences"

基因名称
Gene name
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
VdxyL3 (VDAG_01866) VdxyL3-F1 GGAATTCCTGGGCCTCTTCGCTCTATG PCR
VdxyL3-R1 GGGTACCACAGCACTGAGACCAGCATC PCR
VdxyL3-F CGGAAACATTCACCTCCCCA qRT-PCR
VdxyL3-R GGCGTAAGCCTCGAAAGCAT qRT-PCR
VdxyL4 (VDAG_04702) VdxyL4-F CAGCGCCATTGAAATCGAGG qRT-PCR
VdxyL4-R GGATTATTCCAGAGAAACCC qRT-PCR
VdxyL6 (VDAG_09393) VdxyL6-F CTCAACGCCAGCTTCTACGT qRT-PCR
VdxyL6-R CGTCGGGATCGTAGCGTAAA qRT-PCR
VdxyL8 (VDAG_05579) VdxyL8-F TAAGACCATTGAGAGCCGCG qRT-PCR
VdxyL8-R AGTTAACGTCGTGCCCTTGT qRT-PCR
VdxyL10 (VDAG_09302) VdxyL10-F CGCCAAACCCACTTCTCCTA qRT-PCR
VdxyL10-R TAGGACGACTCGGAGCTCAT qRT-PCR
VdxyL12 (VDAG_02226) VdxyL12-F CGATCTGCTGCTTGAGGAGT qRT-PCR
VdxyL12-R AGGTCGAGGAATGGCTGTTG qRT-PCR
Tubulin Tubulin-F TCCACCTTCGTCGGTAACTC qRT-PCR
Tubulin-R GCCTCCTCCTCGTACTCCTC qRT-PCR
Ve-ITS1 Ve-ITS1-F AAAGTTTTAATGGTTCGCTAAGA qRT-PCR
ST-VE1 ST-VE1-R CTTGGTCATTTAGAGGAAGTAA qRT-PCR
GhUBQ7 GhUBQ7-F GAAGGCATTCCACCTGACCAAC qRT-PCR
GhUBQ7-R CTTGACCTTCTTCTTCTTGTGCTTG qRT-PCR

Table 2

Identification of xylosidase genes in V. dahliae"

基因名称
Gene name
序列号
Sequence number
编码序列
Coding sequence (bp)
编码蛋白
Coding protein (aa)
分子量
Molecular weight (kD)
等电点
pI
基因的描述
Gene description
亚细胞定位预测
Subcellular location prediction
VdxyL1 VDAG_01169 1786 558 62.33 5.16 β-木糖苷酶β-xylosidase 细胞膜外的蛋白质
Extracellular proteins
VdxyL2 VDAG_02166 1804 571 65.15 4.97 木糖苷酶/阿拉伯糖苷酶
Xylosidase/arabinosidase
细胞膜外的蛋白质
Extracellular proteins
VdxyL3 VDAG_01866 2544 834 90.97 4.67 木糖苷酶/阿拉伯糖苷酶
Xylosidase/arabinosidase
细胞膜外的蛋白质
Extracellular proteins
VdxyL4 VDAG_04702 1089 335 38.78 5.31 α-木糖苷酶α-xylosidase 细胞质Cytoplasm
VdxyL5 VDAG_07817 1611 512 56.13 5.04 β-木糖苷酶β-xylosidase 细胞膜外的蛋白质
Extracellular proteins
VdxyL6 VDAG_09393 1943 609 67.13 4.88 β-木糖苷酶β-xylosidase 细胞膜外的蛋白质
Extracellular proteins
VdxyL7 VDAG_03859 1881 572 62.66 5.89 β-葡糖苷酶/β-木糖苷酶
β-glucosidase/β-xylosidase
溶酶体Lysosome
VdxyL8 VDAG_05579 2353 764 85.22 5.18 α-木糖苷酶α-xylosidase 溶酶体Lysosome
VdxyL9 VDAG_06173 2020 488 54.44 5.96 β-木糖苷酶β-xylosidase 高尔基体Golgi apparatus
VdxyL10 VDAG_09302 1614 537 60.70 5.68 β-木糖苷酶β-xylosidase 细胞质Cytoplasm
VdxyL11 VDAG_00716 1841 533 59.45 5.28 木糖苷酶/阿拉伯糖苷酶
Xylosidase/arabinosidase
细胞核Cell nucleus
VdxyL12 VDAG_02226 1995 664 76.09 5.88 α-木糖苷酶α-xylosidase 细胞质Cytoplasm
VdxyL13 VDAG_03628 1461 400 44.70 5.78 木糖苷酶/阿拉伯糖苷酶
Xylosidase/arabinosidase
细胞膜外的蛋白质
Extracellular proteins

Fig. 1

Domains analysis of xylosidase proteins in V. dahliae Black indicates the signal peptide; Blue indicates the Glyco_hydro 43 domain; Green indicates the Glyco_hydro 31 domain; Red indicates the Glyco_hydro 3 domain; Yellow indicates the Glyco_hydro 3_C domain; Orange indicates the Gal_mutarotas_2 domain"

Fig. 2

Phylogenetic tree analysis of xylosidase proteins in V. dahliae and other species Red indicates the Glyco_hydro 3 family; Purple indicates the Glyco_hydro 31 family, Blue indicates the Glyco_hydro 43 family"

Fig. 3

Structure analysis of xylosidase genes in V. dahliae"

Fig. 4

Chromosomal distribution of xylosidase genes in V. dahliae"

Fig. 5

The expression pattern of xylosidase genes in V. dahliae induced by root exudates from different cotton varieties"

Fig. 6

Detection of HIGS silencing effect A: Phenotypes of susceptible variety Xinluzao 8 after 10 days of injection with pTRV2-GhCHLI;B:qRT-PCR analysis of VdxyL3 expression in the pTRV2-00 and pTRV2-VdxyL3 treated plants. Total RNA was isolated from stems at 14 dpi. Tubulin was used as the control"

Fig. 7

Disease investigation on cotton plants treated with HIGS A: Disease symptom of the pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 and 21 dpi;B:Plant height of the pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 dpi;C:Disease index of the pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 and 21 dpi;D: Disease symptom in stems of the pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 dpi"

Fig. 8

Recovery experiment and relative content detection of V. dahliae in cotton plants treated with HIGS A:Quantification of the relative fungal biomass in stems of the pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 dpi;B:Fungal isolation in the stem sections from pTRV2-00 and pTRV2-VdxyL3 treated plants at 14 dpi. Stems were plated on PDA medium. Photos were taken at 7 dpi of culture at 25℃"

[1] KLOSTERMAN S J, ATALLAH Z K, VALLAD G E, SUBBARAO K V. Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 2009, 47:39-62.
doi: 10.1146/annurev-phyto-080508-081748
[2] 马存, 简桂良, 孙文姬. 我国棉花抗黄萎病育种现状、问题及对策. 中国农业科学, 1997, 30(2):58-64.
MA C, JIAN G L, SUN W J. Current status, problem and countermeasure on resistance breeding to verticillium wilt of cotton in China. Scientia Agricultura Sinica, 1997, 30(2):58-64. (in Chinese)
[3] 张绪振, 张树琴, 陈吉棣, 李庆基, 陈壁, 姚跃文. 我国棉花黄萎病菌“种”的鉴定. 植物病理学报, 1981, 11(3):13-20.
ZHANG X Z, ZHANG S Q, CHEN J D, LI Q J, CHEN B, YAO Y W. Identification of verticillium wilt pathogen of cotton in China. Acta Phytopathologica Sinica, 1981, 11(3):13-20. (in Chinese)
[4] GERIK J S, HUISMAN O C. Study of field-grown cotton roots infected with Verticillium dahliae using an immunoenzymatic staining technique. Phytopathology, 1988, 78(9):1174-1178.
doi: 10.1094/Phyto-78-1174
[5] FRADIN E F, THOMMA B P H J. Physiology and molecular aspects of verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7(2):71-86.
doi: 10.1111/mpp.2006.7.issue-2
[6] GUI Y J, CHEN J Y, ZHANG D D, LI N Y, LI T G, ZHANG W Q, WANG X Y, SHORT D P, LI L, GUO W, KONG Z Q, BAO Y M, SUBBARAO K V, DAI X F. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environmental Microbiology, 2017, 19(5):1914-1932.
doi: 10.1111/1462-2920.13695
[7] QIN J, WANG K L, SUN L F, XING H Y, WANG S, LI L, CHEN S, GUO H S, ZHANG J. The plant-specific transcription factors CBP60G and SARD1 are targeted by a Verticillium secretory protein VDSCP41 to modulate immunity. eLife, 2018, 7:e34902.
doi: 10.7554/eLife.34902
[8] ZHANG L S, NI H, DU X, WANG S, MA X W, NRNBERGER T, GUO H S, HUA C L. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist, 2017, 215(1):368-381.
doi: 10.1111/nph.2017.215.issue-1
[9] XU J, WANG X Y, LI Y Q, ZENG J G, WANG G L, DENG C Y, GUO W Z. Host-induced gene silencing of a regulator of G protein signaling gene (VdRGS1) confers resistance to verticillium wilt in cotton. Plant Biotechnology Journal, 2018, 16(9):1629-1643.
doi: 10.1111/pbi.2018.16.issue-9
[10] ZHAO Y L, ZHANG T, GUO H S. Penetration assays, fungal recovery and pathogenicity assays for Verticillium dahliae. Bio-Protocol, 2017, 7(4): DOI: 10.21769/BioProtoc.2133.
doi: 10.21769/BioProtoc.2133
[11] HOGENHOUT S A, VAN DER HOORN R A, TERAUCHI R, KAMOUN S. Emerging concepts in effector biology of plant- associated organisms. Molecular Plant-Microbe Interactions, 2009, 22(2):115-122.
doi: 10.1094/MPMI-22-2-0115
[12] 张志东. 棉花黄萎病致病相关基因的挖掘与功能分析[D]. 上海: 上海交通大学, 2017.
ZHANG Z D. Mining and function analysis of genes related to cotton verticillium wilt[D]. Shanghai: Shanghai Jiaotong University, 2017. (in Chinese)
[13] HUANG X L, LI Z, DU C Y, WANG J F, LI S. Improved expression and characterization of a multidomain xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis. Journal of Agricultural and Food Chemistry, 2015, 63(28):6430-6439.
doi: 10.1021/acs.jafc.5b01259
[14] ZHANG S Y, WANG H M, SHI P J, XU B, BAI Y G, LUO H Y, YAO B. Cloning, expression, and characterization of a thermostable β-xylosidase from thermoacidophilic Alicyclobacillus sp. A4. Process Biochemistry, 2014, 49(9):1422-1428.
doi: 10.1016/j.procbio.2014.05.020
[15] NGUYEN Q B, ITOH K, VU B V, TOSA Y, NAKAYASHIKI H. Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Molecular Microbiology, 2011, 81(4):1008-1019.
doi: 10.1111/mmi.2011.81.issue-4
[16] BRITO N, ESPINO J J, GONZÁLEZ C. The endo-β-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Molecular Plant-Microbe Interactions, 2006, 19(1):25-32.
doi: 10.1094/MPMI-19-0025
[17] MUSSATTO S I, MANCILHA I M. Non-digestible oligosaccharides: A review. Carbohydrate Polymers, 2007, 68(3):587-597.
doi: 10.1016/j.carbpol.2006.12.011
[18] VAN RENSBURG P, STRAUSS M L A, LAMBRECHTS M G, CORDERO OTERO R R, PRETORIU I S. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. Journal of Applied Microbiology, 2007, 103(6):2248-2257.
doi: 10.1111/jam.2007.103.issue-6
[19] BOSETTO A, JUSTO P I, ZANARDI B, VENZON S S, GRACIANO L, DOS SANTOS E L, DE CASSIA GARCIA SIMAO R. Research progress concerning fungal and bacterial β-xylosidases. Applied Biochemistry and Biotechnology, 2016, 178(4):766-795.
doi: 10.1007/s12010-015-1908-4
[20] MUSTAFA G, KOUSAR S, RAJOKA M I, JAMIL A. Molecular cloning and comparative sequence analysis of fungal β-xylosidases. AMB Express, 2016, 6(1):30.
doi: 10.1186/s13568-016-0202-3
[21] ZHANG X Y, CHENG W H, FENG Z D, ZHU Q H, SUN Y Q, LI Y J, SUN J. Transcriptomic analysis of gene expression of Verticillium dahliae upon treatment of the cotton root exudates. BMC Genomics, 2020, 21(1):155.
doi: 10.1186/s12864-020-6448-9
[22] 熊显鹏. Gh4CL30GhWRKY70D13在棉花抗黄萎病中的功能研究[D]. 石河子: 石河子大学, 2020.
XIONG X P. Functional analysis of Gh4CL30 and GhWRKY70D13 in cotton resistance to verticillium wilt[D]. Shihezi: Shihezi University, 2020. (in Chinese)
[23] ELLENDORFF U, FRADIN E F, DE JONGE R, THOMMA B P. RNA silencing is required for Arabidopsis defence against verticillium wilt disease. Journal of Experimental Botany, 2009, 60(2):591-602.
doi: 10.1093/jxb/ern306
[24] YANG X Z, SHI P J, HUANG H Q, LUO H Y, WANG Y R, ZHANG W, YAO B. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry, 2014, 148:381-387.
doi: 10.1016/j.foodchem.2013.10.062
[25] JORDAN D B, LI X L. Variation in relative substrate specificity of bifunctional β-d-xylosidase/α-l-arabinofuranosidase by single-site mutations: Roles of substrate distortion and recognition. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2007, 1774(9):1192-1198.
doi: 10.1016/j.bbapap.2007.06.010
[26] LEE R C, HRMOVA M, BURTON R A, LAHNSTEIN J, FINCHER G B. Bifunctional family 3 glycoside hydrolases from barley with α-L-arabinofuranosidase and β-D-xylosidase activity. Journal of Biological Chemistry, 2003, 278(7):5377-5387.
doi: 10.1074/jbc.M210627200
[27] El-BEBANY A F, HENRIQUEZ M A, BADAWI M, ADAM L R, HADRAMI A E, DAAYF F. Induction of putative pathogenicity- related genes in Verticillium dahliae in response to elicitation with potato root extracts. Environmental and Experimental Botany, 2011, 72(2):251-257.
doi: 10.1016/j.envexpbot.2011.03.012
[28] 袁虹霞, 李洪连, 王烨, 房卫平, 王振跃. 棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响. 植物病理学报, 2002, 32(2):127-131.
YUAN H X, LI H L, WANG Y, FANG W P, WANG Z Y. The root exudates of cotton cultivars with the different resistance and their effects on Verticillium dahliae. Acta Phytopathologica Sinica, 2002, 32(2):127-131. (in Chinese)
[29] 郑倩, 李俊华, 危常州, 褚贵新. 不同抗性棉花品种根系分泌物及酚酸类物质对黄萎病菌的影响. 棉花学报, 2012, 24(4):363-369.
ZHENG Q, LI J H, WEI C Z, CHU G X. Effects of root exudates and phenolic acids from differently resistant cotton cultivars on Verticillium dahliae. Cotton Science, 2012, 24(4):363-369. (in Chinese)
[30] KOMBRINK A, ROVENICH H, SHI-KUNNE X, ROJAS-PADILLA E, DOMAZAKIS E, VAN DEN BERG G C M, DOMAZAKIS E, DE JONGE R, VALKENBURG D J, SANCHEZ-VALLET A, SEIDL M F, THOMMA B P H J. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. Molecular Plant Pathology, 2017, 18(4):596-608.
doi: 10.1111/mpp.2017.18.issue-4
[31] TZIMA A K, PAPLOMATAS E J, RAUYAREE P, OSPINA- GIRALDO M D, KANG S. VdSNF1, the sucrose non-fermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Molecular Plant-Microbe Interactions, 2011, 24(1):129-142.
doi: 10.1094/MPMI-09-09-0217
[32] LIU S Y, CHEN J Y, WANG J L, LI L, XIAO H L, ADAM S M, DAI X F. Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene, 2013, 529(2):307-316.
doi: 10.1016/j.gene.2013.06.089
[33] SANTHANAM P, THOMMA B P. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions, 2013, 26(2):249-256.
doi: 10.1094/MPMI-08-12-0198-R
[34] LI Z F, LIU Y J, FENG Z L, FENG H J, KLOSTERMAN S J, ZHOU F F, ZHAO L H, SHI Y Q, ZHU H Q. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. PLoS ONE, 2015, 10(12):e0144020.
doi: 10.1371/journal.pone.0144020
[35] ZHANG Y L, LI Z F, FENG Z L, FENG H J, SHI Y Q, ZHAO L H, ZHANG X L, ZHU H Q. Functional analysis of the pathogenicity- related gene VdPR1 in the vascular wilt fungus Verticillium dahliae. PLoS ONE, 2016, 11(11):e0166000.
doi: 10.1371/journal.pone.0166000
[36] QI X L, SU X F, GUO H M, QI J C, CHENG H M. VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae. Molecular Plant-Microbe Interactions, 2016, 29(7):545-559.
doi: 10.1094/MPMI-03-16-0057-R
[37] CHEN J Y, XIAO H L, GUI Y J, ZHANG D D, LI L, BAO Y M, DAI X F. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Frontiers in Microbiology, 2016, 7:1709.
[38] 赵玉兰, 苏晓峰, 程红梅. 利用寄主诱导的基因沉默技术验证大丽轮枝菌糖代谢相关基因的致病力. 中国农业科学, 2015, 48(7):1321-1329.
ZHAO Y L, SU X F, CHENG H M. Verification of Verticillium dahliae pathogenicity of glycometabolism related genes by using host-induced gene silencing method. Scientia Agricultura Sinica, 2015, 48(7):1321-1329. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[15] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!