Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1533-1546.doi: 10.3864/j.issn.0578-1752.2024.08.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities

GAO YaFei1,2(), ZHAO YuanBo1,2, XU Lin1,2, SUN JiaYue1,2, XIA YuXuan1,2, XUE Dan3, WU HaiWen4, NING Hang1,2, WU AnChi1,2, WU Lin1,2()   

  1. 1 Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Enshi 445000, Hubei
    2 College of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, Hubei
    3 Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041
    4 Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091
  • Received:2023-11-23 Accepted:2024-01-15 Online:2024-04-24 Published:2024-04-24
  • Contact: WU Lin

Abstract:

【Objective】In southern China, cold waterlogged paddy fields cover an expansive area and hold considerable potential for carbon sequestration and remittance. However, the low yield and modest income derived from rice cultivation in such paddy fields have led to a high rate of abandonment. This study investigated whether conversion of cold waterlogged paddy fields to Sphagnum cultivation, an economically important plant beneficial for carbon sequestration, significantly enhances soil carbon storage while improving the income of farmers. The overall aim of this study was to evaluate the impact of Sphagnum cultivation on the carbon sequestration potential of cold waterlogged paddy soils. 【Method】Zilinshan Village, Dushan County, Qiannan Prefecture, Guizhou Province, was selected as the study site. The physicochemical properties, extracellular enzyme activities, and organic carbon content in the surface soil (0-10 cm depth) were analyzed after transformation of cold waterlogged paddy fields to Sphagnum cultivation for 1, 3, 10, and 20 years. Paddy fields growing rice were used as the control. 【Result】 (1) The years of Sphagnum cultivation altered the physicochemical properties of cold waterlogged paddy soils. Especially after Sphagnum cultivation for 10 years, the soil bulk density, mean weight diameter of aggregates, and total phenol content were increased by 16.9%, 33.8%, and 88.1%, respectively, compared with the control. (2) With an increase in years of Sphagnum cultivation, the activities of cellulose hydrolase, acid phosphatase, β-1,4-N-acetylglucosaminidase, β-1,4-glucosidase, leucine aminopeptidase, and polyphenol oxidase significantly decreased. (3) After Sphagnum cultivation for 10 years, soil organic carbon and recalcitrant organic carbon contents increased significantly, and the dissolved organic carbon and easily oxidizable carbon contents decreased significantly, the activities of cellulose hydrolase, acid phosphatase, β-1,4-N-acetylglucosaminidase, β-1,4-glucosidase, leucine aminopeptidase, and polyphenol oxidase significantly decreased after Sphagnum cultivation for 20 years. (4) The structural equation model revealed that the years of Sphagnum cultivation had maximum direct positive effect on soil organic carbon and recalcitrant organic carbon. In terms of dissolved organic carbon and easily oxidizable carbon, they directly influenced by extracellular enzyme activity to the greatest extent. Generally, soil physicochemical properties have indirect effects on the four kinds of carbon through extracellular enzyme activities,, and the years of Sphagnum cultivation indirectly influenced four types of carbon through soil physicochemical properties. 【Conclusion】 The planting of Sphagnum moss can induce changes in the soil environment, leading to a significant increase in soil organic carbon content and a reduction in extracellular enzyme activity in waterlogged paddy fields. Additionally, it promotes carbon accumulation, with long-term Sphagnum planting further enhancing this process.

Key words: cold waterlogged paddy fields, Sphagnum, artificial planting, soil enzyme activity, carbon accumulation

Fig. 1

Location map of the study area and sampling sites A: Geographical location diagram of the study area; B: Sampling point distribution diagram; C: Details of sampling points"

Table 1

Basic physicochemical properties of 0-30 cm soil layer in Zilin Mountain village, Dushan County, Qiannan Prefecture"

土层深度
Soil depth (cm)
容重
Bulk density (g·cm-3)
pH 全氮
Total nitrogen (g·kg-1)
全硫
Total sulfur (g·kg-1)
全铁
Total iron (mg·kg-1)
0-10 1.28±0.01b 4.93±0.13b 8.54±1.53a 2.37±0.34a 6716.99±40.01b
10-20 1.35±0.01b 5.22±0.03b 3.58±1.99ab 2.09±0.15a 6791.28±94.18ab
20-30 1.51±0.03a 5.58±0.09a 2.82±0.66b 1.93±0.11a 7384.04±290.32a

Table 2

Changes of soil physicochemical properties in cold waterlogged paddy field with years of Sphagnum planting (mean ± standard error)"

种植年限
Planting years (a)
容重
Bulk density
(g·cm-3)
pH
团聚体平均重量直径
MWD
(mm)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
总酚
Total phenolics content (mg·kg-1)
CK 1.18±0.04c 6.38±0.07a 0.25±0.01c 2.98±0.07b 1.91±0.08a 0.34±0.02c
1 1.52±0.03ab 5.91±0.08b 0.27±0.02bc 4.88±0.07a 2.21±0.22a 1.70±0.08b
3 1.57±0.03a 5.53±0.04c 0.31±0.02abc 2.42±0.18c 0.95±0.10b 1.75±0.30b
10 1.42±0.04b 5.50±0.03c 0.33±0.03ab 2.24±0.24c 0.82±0.07b 2.86±0.22a
20 1.57±0.05a 5.24±0.06d 0.34±0.02a 2.00±0.14c 0.68±0.11b 3.35±0.29a

Fig. 2

Changes of extracellular soil enzyme activities in cold waterlogged paddy field with years of Sphagnum planting CBH: Cellobiohydrolase; BG: β-1,4-glucosidase; AP: Acid phosphatase; LAP: Leucine amino peptidase; NAG: β-1,4-acetyl-glucosaminidase; PPO: Polyphenol oxidase. Different lowercase letters indicate significant differences between different treatments for the same indicator (P<0.05). The same as below"

Fig. 3

Changes of soil organic carbon contens in cold waterlogged paddy field with years of Sphagnum planting SOC: Soil organic carbon; DOC: Dissolved organic carbon; AC: Activated carbon; ROC: Recalcitrant organic carbon. The same as below"

Fig. 4

Correlation analysis of soil extracellular enzymes, physicochemical properties and soil carbon components BD: Bulk density; MWD: Mean weight diameter; TN: Total nitrogen; TP: Total phosphorus; TPC: Total phenolics content. * P<0.05;** P<0.01"

Fig. 5

Structural equation model of the relationship between years of Sphagnum planting, soil physicochemical properties, extracellular enzymes and soil organic carbon components in cold waterlogged paddy fields The solid lines and dashed lines represent significant positive and negative effects, respectively. Arrow widths is proportional to the strength of the relationship. The numbers near the lines are standardized path coefficients, which show the variables in the model. *P<0.05; **P<0.01; ***P<0.001"

[1]
柴娟娟, 廖敏, 徐培智, 解开治, 徐昌绪, 刘光荣, 杨生茂. 我国主要低产水稻冷浸田养分障碍因子特征分析. 水土保持学报, 2012, 26(2): 284-288.
CHAI J J, LIAO M, XU P Z, XIE K Z, XU C X, LIU G R, YANG S M. Feature analysis on nutrient’s restrictive factors of major low productive waterlogged paddy soil in China. Journal of Soil and Water Conservation, 2012, 26(2): 284-288. (in Chinese)
[2]
XIE K Z, XU P Z, YANG S H, LU Y S, JIANG R P, GU W J, LI W Y, SUN L L. Effects of supplementary composts on microbial communities and rice productivity in cold water paddy fields. Journal of Microbiology and Biotechnology, 2015, 25(5): 569-578.

pmid: 25406532
[3]
曾建新, 龚向胜, 余政军, 刘小燕, 陈灿, 傅志强, 戴振炎, 黄尧, 刘登魁, 陈烈臣, 卢明, 陈双, 周国峰, 余长生, 童中全, 柳文玲, 黄璜. 南方稻区冷浸田及综合种养开发利用技术. 中国稻米, 2022, 28(6): 102-106.

doi: 10.3969/j.issn.1006-8082.2022.06.020
ZENG J X, GONG X S, YU Z J, LIU X Y, CHEN C, FU Z Q, DAI Z Y, HUANG Y, LIU D K, CHEN L C, LU M, CHEN S, ZHOU G F, YU C S, TONG Z Q, LIU W L, HUANG H. Development and utilization technology of cold coaked field and comprehensive planting and breeding in southern rice area. China Rice, 2022, 28(6): 102-106. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2022.06.020
[4]
王飞, 林诚, 李清华, 林新坚, 余广兰. 江南冷浸田治理利用研究进展. 中国生态农业学报, 2016, 24(9): 1151-1160.
WANG F, LIN C, LI Q H, LIN X J, YU G L. A review on improvement and utilization of southern cold-waterlogged paddy fields in China. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1151-1160. (in Chinese)
[5]
李庆逵. 中国水稻土. 北京: 科学出版社, 1992.
LI Q K. Paddy Soils of China. Beijing: Science Press, 1992. (in Chinese)
[6]
余珂, 张尹, 吕雪艳, 于志国. 泥炭沼泽湿地关键元素地球化学特征及其对碳排放的影响机制. 生态学报, 2021, 41(24): 9705-9716.
YU K, ZHANG Y, X Y, YU Z G. Geochemical characteristics of key elements in peatland and its underlying potential impact on carbon emission. Acta Ecologica Sinica, 2021, 41(24): 9705-9716. (in Chinese)
[7]
BENGTSSON F, RYDIN H, HÁJEK T. Biochemical determinants of litter quality in 15 species of Sphagnum. Plant and Soil, 2018, 425(1): 161-176.

doi: 10.1007/s11104-018-3579-8
[8]
FENNER N, FREEMAN C. Drought-induced carbon loss in peatlands. Nature Geoscience, 2011, 4: 895-900.

doi: 10.1038/ngeo1323
[9]
DORREPAAL E, TOET S, VAN LOGTESTIJN R S P, SWART E, VAN DE WEG M J, CALLAGHAN T V, AERTS R. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 2009, 460: 616-619.

doi: 10.1038/nature08216
[10]
CLYMO R S, TURUNEN J, TOLONEN K. Carbon accumulation in peatland. Oikos, 1998, 81(2): 368.

doi: 10.2307/3547057
[11]
朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展. 生物多样性, 2022, 30(7): 86-97.
ZHU R L, MA X Y, CAO C, CAO Z Y. Advances in research on bryophyte diversity in China. Biodiversity Science, 2022, 30(7): 86-97. (in Chinese)
[12]
麻俊虎, 彭涛, 李大华. 中国泥炭藓属植物研究进展. 贵州师范大学学报(自然科学版), 2017, 35(1): 114-120.
MA J H, PENG T, LI D H. Recent advances of Sphagnum plant research in China. Journal of Guizhou Normal University (Natural Sciences), 2017, 35(1): 114-120. (in Chinese)
[13]
POULIOT R, HUGRON S, ROCHEFORT L. Sphagnum farming: A long-term study on producing peat moss biomass sustainably. Ecological Engineering, 2015, 74: 135-147.

doi: 10.1016/j.ecoleng.2014.10.007
[14]
丁海峰. 稻田种植泥炭藓碳汇能力以及生态经济效益评估[D]. 贵阳: 贵州师范大学, 2023.
DING H F. Evaluation of carbon sink capacity and ecological and economic benefits of planting sphagnum in rice fields[D]. Guiyang: Guizhou Normal University, 2023. (in Chinese)
[15]
熊源新. 贵州独山都柳江源湿地自然保护区综合科学考察集. 北京: 中国林业出版社, 2017.
XIONG Y X. Comprehensive Scientific Investigation Collection of Duliujiangyuan Wetland Nature Reserve in Dushan, Guizhou Province. Beijing: China Forestry Publishing House, 2017. (in Chinese)
[16]
蒙文萍, 冉景丞, 文洁斌, 白万堂, 莫秀模. 泥炭藓人工种植实验初探. 贵州林业科技, 2018, 46(2): 33-39.
MENG W P, RAN J C, WEN J B, BAI W T, MO X M. A preliminary study on artificial planting experiment of Sphagnum. Guizhou Forestry Science and Technology, 2018, 46(2): 33-39. (in Chinese)
[17]
刘富玉. 海花草种植技术研究与探讨. 农家参谋, 2018(21): 99.
LIU F Y. Research and discussion on planting techniques of seaweed. The Farmers Consultant, 2018(21): 99. (in Chinese)
[18]
王雪洁. 秸秆还田条件下麦玉两熟轮耕农田团聚体碳排放效应研究[D]. 泰安: 山东农业大学, 2019.
WANG X J. Effect of straw returning and rotational system on carbon emission of aggregates in wheat-maize farmland[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[19]
AINSWORTH E A, GILLESPIE K M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin- Ciocalteu reagent. Nature Protocols, 2007, 2(4): 875-877.

doi: 10.1038/nprot.2007.102
[20]
刘合明, 杨志新, 刘树庆. 不同粒径土壤活性有机碳测定方法的探讨. 生态环境, 2008, 17(5): 2046-2049.
LIU H M, YANG Z X, LIU S Q. Methods for determining labile orange matter in different sized soil particles of different soils. Ecology and Environment, 2008, 17(5): 2046-2049. (in Chinese)
[21]
李玉梅, 王根林, 孟祥海, 胡颖慧, 王伟, 李建英, 张冬梅. 秸秆还田方式对旱地草甸土活性有机碳组分的影响. 农业资源与环境学报, 2021, 38(2): 268-276.
LI Y M, WANG G L, MENG X H, HU Y H, WANG W, LI J Y, ZHANG D M. Effects of different straw returning methods on labile organic carbon distribution in upland meadow soil. Journal of Agricultural Resources and Environment, 2021, 38(2): 268-276. (in Chinese)
[22]
GHILOUFI W, SEO J, KIM J, CHAIEB M, KANG H. Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem. Microbial Ecology, 2019, 77(1): 201-216.

doi: 10.1007/s00248-018-1219-8 pmid: 29922904
[23]
SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315.

doi: 10.1016/S0038-0717(02)00074-3
[24]
鲁泽让, 夏梓泰, 芦美, 赵吉霞, 李永梅, 王自林, 范茂攀. 周年轮作休耕对土壤 AMF群落和团聚体稳定性的影响. 环境科学, 2023, 44(9): 5154-5163.
LU Z R, XIA Z T, LU M, ZHAO J X, LI Y M, WANG Z L, FAN M P. Effects of annual crop rotation and fallow on soil AMF community and aggregate stability. Environmental Science, 2023, 44(9): 5154-5163. (in Chinese)
[25]
李可依, 愚广灵, 陈末, 买迪努尔·阿不来孜, 胡洋, 贾宏涛. 不同利用方式对高寒草地土壤团聚体稳定性及其有机碳含量分布的影响. 水土保持通报, 2023, 43(1): 332-340, 349.
LI K Y, YU G L, CHEN M, Maidinuer·Abulaizi, HU Y, JIA H T. Effects of different land utilization methods on soil aggregate stability and organic carbon content in alpine grassland. Bulletin of Soil and Water Conservation, 2023, 43(1): 332-340, 349. (in Chinese)
[26]
毛鑫, 杨建利, 周翔, 王乃江, 姬祥祥, 冯浩, 何建强. 基于结构方程模型的油菜性状和产量关系研究. 中国油料作物学报, 2019, 41(1): 33-39.
MAO X, YANG J L, ZHOU X, WANG N J, JI X X, FENG H, HE J Q. Relationships between traits and yields of rapeseed based on the structural equation modeling. Chinese Journal of Oil Crop Sciences, 2019, 41(1): 33-39. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2019.01.005
[27]
杨敏, 阳珍, 胥晓, 严贤春, 刘华峰, 陈亚梅. 不同植被恢复类型对四川泸石高速公路边坡土壤胞外酶及化学计量特征的影响. 土壤通报, 2024, 55(1): 161-172.
YANG M, YANG Z, XU X, YAN X C, LIU H F, CHEN Y M. Effects of different vegetation restoration types on extracellular enzymes and stoichiometric characteristics of soil in Lushi expressway slope, Sichuan Province. Chinese Journal of Soil Science, 2024, 55(1): 161-172. (in Chinese)
[28]
FREEMAN C, OSTLE N, KANG H. An enzymic ‘latch’ on a global carbon store. Nature, 2001, 409: 149.
[29]
张闯, 邹洪涛, 张心昱, 寇亮, 杨洋, 孙晓敏, 李胜功, 王辉民. 氮添加对湿地松林土壤水解酶和氧化酶活性的影响. 应用生态学报, 2016, 27(11): 3427-3434.

doi: 10.13287/j.1001-9332.201611.016
ZHANG C, ZOU H T, ZHANG X Y, KOU L, YANG Y, SUN X M, LI S G, WANG H M. Effects of nitrogen additions on soil hydrolase and oxidase activities in Pinus elliottii plantations. Chinese Journal of Applied Ecology, 2016, 27(11): 3427-3434. (in Chinese)
[30]
WANG Z P, DELAUNE R D, PATRICK W H Jr, MASSCHELEYN P H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal, 1993, 57(2): 382-385.

doi: 10.2136/sssaj1993.03615995005700020016x
[31]
LIN X J, TFAILY M M, STEINWEG J M, CHANTON P, ESSON K, YANG Z K, CHANTON J P, COOPER W, SCHADT C W, KOSTKA J E. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 2014, 80(11): 3518-3530.

doi: 10.1128/AEM.00205-14 pmid: 24682300
[32]
FREEMAN C, OSTLE N J, FENNER N, KANG H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 2004, 36(10): 1663-1667.

doi: 10.1016/j.soilbio.2004.07.012
[33]
魏艳. 水田耕作对泥炭沼泽土壤酶活性的影响[D]. 长春: 东北师范大学, 2019.
WEI Y. Effects of rice cultivation on peatland soil enzyme activities[D]. Changchun: Northeast Normal University, 2019. (in Chinese)
[34]
魏亮, 汤珍珠, 祝贞科, 蔡观, 葛体达, 王久荣, 吴金水. 水稻不同生育期根际与非根际土壤胞外酶对施氮的响应. 环境科学, 2017, 38(8): 3489-3496.
WEI L, TANG Z Z, ZHU Z K, CAI G, GE T D, WANG J R, WU J S. Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil. Environmental Science, 2017, 38(8): 3489-3496. (in Chinese)
[35]
BURNS R G, DEFOREST J L, MARXSEN J, SINSABAUGH R L, STROMBERGER M E, WALLENSTEIN M D, WEINTRAUB M N, ZOPPINI A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234.

doi: 10.1016/j.soilbio.2012.11.009
[36]
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006.
YAO H Y, HUANG C Y. Soil Microbial Ecology and Its Experimental Technology. Beijing: Science Press, 2006. (in Chinese)
[37]
范金生. 寒地水稻秸秆还田对土壤氮组分及相关酶活性的影响[D]. 哈尔滨: 东北农业大学, 2022.
FAN J S. Effects of rice straw returning to field in cold region on soil nitrogen composition and related enzyme activities[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese)
[38]
徐丽丽, 王秋兵, 张心昱, 孙晓敏, 戴晓琴, 杨风亭, 部金凤, 王辉民. 不同肥料对稻田红壤碳、氮、磷循环相关酶活性的影响. 应用生态学报, 2013, 24(4): 909-914.
XU L L, WANG Q B, ZHANG X Y, SUN X M, DAI X Q, YANG F T, BU J F, WANG H M. Effects of applying different kind fertilizers on enzyme activities related to carbon, nitrogen, and phosphorus cycles in reddish paddy soil. Chinese Journal of Applied Ecology, 2013, 24(4): 909-914. (in Chinese)
[39]
朱长伟, 孟威威, 石柯, 牛润芝, 姜桂英, 申凤敏, 刘芳, 刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征. 中国农业科学, 2022, 55(21): 4237-4251. doi: 10.3864/j.issn.0578-1752.2022.21.011.
ZHU C W, MENG W W, SHI K, NIU R Z, JIANG G Y, SHEN F M, LIU F, LIU S L. The characteristics of soil nutrients and soil enzyme activities during wheat growth stage under different tillage patterns. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251. doi: 10.3864/j.issn.0578-1752.2022.21.011. (in Chinese)
[40]
YANG Y G, YANG Y, GENG Y Q, HUANG G L, CUI X Q, HOU M. Effects of different land types on soil enzyme activity in the Qinghai Lake region. Wetlands, 2018, 38(4): 711-721.

doi: 10.1007/s13157-018-1014-9
[41]
秦猛, 董全中, 薛红, 张明明, 李微微, 宋欢, 翟玲侠. 我国保护性耕作的研究进展. 河南农业科学, 2023, 52(7): 1-11.
QIN M, DONG Q Z, XUE H, ZHANG M M, LI W W, SONG H, ZHAI L X. Research progress of conservation tillage in China. Journal of Henan Agricultural Sciences, 2023, 52(7): 1-11. (in Chinese)

doi: 10.15933/j.cnki.1004-3268.2023.07.001
[42]
CLARKSON B, WHINAM J, GOOD R, WATTS C. Restoration of Sphagnum and restiad peatlands in Australia and New Zealand reveals similar approaches. Restoration Ecology, 2017, 25(2): 301-311.

doi: 10.1111/rec.2017.25.issue-2
[43]
白义鑫, 盛茂银, 胡琪娟, 赵楚, 吴静, 张茂莎. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响. 应用生态学报, 2020, 31(5): 1607-1616.

doi: 10.13287/j.1001-9332.202005.016
BAI Y X, SHENG M Y, HU Q J, ZHAO C, WU J, ZHANG M S. Effects of land use change on soil organic carbon and its components in Karst rocky desertification of southwest China. Chinese Journal of Applied Ecology, 2020, 31(5): 1607-1616. (in Chinese)
[44]
ZHAO Y P, LIU C Z, LI X Q, MA L X, ZHAI G Q, FENG X J. Sphagnum increases soil’s sequestration capacity of mineral-associated organic carbon via activating metal oxides. Nature Communications, 2023, 14: 5052.

doi: 10.1038/s41467-023-40863-0
[45]
TAYLOR N G, GRILLAS P, SUTHERLAND W J. Peatland conservation: Global evidence for the effects of interventions to conserve peatland vegetation. Synopses of Conservation Evidence Series. University of Cambridge. (2018).
[46]
周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展. 地球科学进展, 2005, 20(1): 99-105.

doi: 10.11867/j.issn.1001-8166.2005.01.0099
ZHOU L, LI B G, ZHOU G S. Advances in controlling factors of soil organic carbon. Advance in Earth Sciences, 2005, 20(1): 99-105. (in Chinese)
[47]
BRAGAZZA L, FREEMAN C. High nitrogen availability reduces polyphenol content in Sphagnum peat. Science of the Total Environment, 2007, 377(2/3): 439-443.

doi: 10.1016/j.scitotenv.2007.02.016
[48]
RYDIN H, JEGLUM J K. The Biology of Peatlands. Oxford: Oxford University Press, 2013.
[49]
GAGNON Z E, GLIME J M. The pH-lowering ability of Sphagnum magellanicum Brid. Journal of Bryology, 1992, 17(1): 47-57.

doi: 10.1179/jbr.1992.17.1.47
[50]
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制:研究进展与展望. 土壤学报, 2023, 60(3): 627-643.
LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. (in Chinese)
[51]
荣慧, 房焕, 张中彬, 蒋瑀霁, 赵旭, 单军, 彭新华, 孙波, 周虎. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响. 土壤学报, 2022, 59(2): 476-485.
RONG H, FANG H, ZHANG Z B, JIANG Y J, ZHAO X, SHAN J, PENG X H, SUN B, ZHOU H. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization. Acta Pedologica Sinica, 2022, 59(2): 476-485. (in Chinese)
[52]
SEQUEIRA C H, WILLS S A, SEYBOLD C A, WEST L T. Predicting soil bulk density for incomplete databases. Geoderma, 2014, 213: 64-73.

doi: 10.1016/j.geoderma.2013.07.013
[53]
柴华, 何念鹏. 中国土壤容重特征及其对区域碳贮量估算的意义. 生态学报, 2016, 36(13): 3903-3910.
CHAI H, HE N P. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale. Acta Ecologica Sinica, 2016, 36(13): 3903-3910. (in Chinese)
[54]
MAKILA M, SAAVUORI H, GRUNDSTROM A, SUOMI T. Sphagnum decay patterns and bog microtopography in south-eastern Finland. Mires and Peat, 2018, 21(13): 1.
[55]
姚云柯. 促腐菌对水稻秸秆腐解的影响及其机理[D]. 北京: 中国农业科学院, 2021.
YAO Y K. Effect of Rot-promoting Bacteria on Decomposition of Rice Straw and Its Mechanism[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[56]
HARWOOD C S, PARALES R E. The beta-ketoadipate pathway and the biology of self-identity. Annual Review of Microbiology, 1996, 50: 553-590.

doi: 10.1146/micro.1996.50.issue-1
[57]
朱瑞良. 泥炭藓: 一类具有重要生态、经济和科学价值的碳封存植物. 植物学报, 2022, 57(5): 559-578.

doi: 10.11983/CBB22031
ZHU R L. Peat mosses(Sphagnum): ecologically, economically, and scientifically important group of carbon sequestration plants. Chinese Bulletin of Botany, 2022, 57(5): 559-578. (in Chinese)
[58]
郭戎博, 李国栋, 潘梦雨, 郑险峰, 王朝辉, 何刚. 秸秆还田与施氮对耕层土壤有机碳储量、组分和团聚体的影响. 中国农业科学, 2023, 56(20): 4035-4048.doi: 10.3864/j.issn.0578-1752.2023.20.009.
GUO R B, LI G D, PAN M Y, ZHENG X F, WANG Z H, HE G. Effects of long-term straw return and nitrogen application rate on organic carbon storage, components and aggregates in cultivated layers. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048. doi: 10.3864/j.issn.0578-1752.2023.20.009. (in Chinese)
[59]
李霞, 罗丽卉, 周娅, 杨定清, 王棚, 李森. 秸秆还田对水稻-油菜轮作体系土壤活性有机碳组分及酶活性的影响. 华北农学报, 2022, 37(5): 124-131.

doi: 10.7668/hbnxb.20193054
LI X, LUO L H, ZHOU Y, YANG D Q, WANG P, LI S. Effects of straw returning on soil active organic carbon components and enzyme activities in rice-rape rotation. Acta Agriculturae Boreali-Sinica, 2022, 37(5): 124-131. (in Chinese)

doi: 10.7668/hbnxb.20193054
[60]
柳敏, 宇万太, 姜子绍, 马强. 土壤活性有机碳. 生态学杂志, 2006, 25(11): 1412-1417.
LIU M, YU W T, JIANG Z S, MA Q. A research review on soil active organic carbon. Chinese Journal of Ecology, 2006, 25(11): 1412-1417. (in Chinese)
[61]
黄琼, 朱小莉, 沈皖豫, 樊迪, 张广斌, 马静, 徐华. 秸秆还田年限及还田量对稻田净温室效应的影响. 土壤, 2022, 54(5): 912-919.
HUANG Q, ZHU X L, SHEN W Y, FAN D, ZHANG G B, MA J, XU H. Effects of straw incorporation years and rates on net global warming potential in paddy fields. Soils, 2022, 54(5): 912-919. (in Chinese)
[1] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[2] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[3] REN HaiYing,ZHOU HuiMin,QI XingJiang,ZHENG XiLiang,YU ZhePing,ZHANG ShuWen,WANG ZhenShuo. Effects of Paclobutrazol on Soil and Endophytic Microbial Community Structure of Bayberry [J]. Scientia Agricultura Sinica, 2021, 54(17): 3752-3765.
[4] Lü ZhenZhen,LIU XiuMei,ZHONG JinFeng,LAN XianJin,HOU HongQian,JI JianHua,FENG ZhaoBin,LIU YiRen. Effects of Long-Term Fertilization on Mineralization of Soil Organic Carbon in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2019, 52(15): 2636-2645.
[5] SU YongZhong, ZHANG Ke, LIU TingNa, FAN GuiPing, WANG Ting. Changes in Soil Properties and Accumulation of Soil Carbon After Cultivation of Desert Sandy Land in a Marginal Oasis in Hexi Corridor Region, Northwest China [J]. Scientia Agricultura Sinica, 2017, 50(9): 1646-1654.
[6] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
[7] YANG Lin-sheng, ZHANG Yu-ting, HUANG Xing-cheng, ZHANG Yue-qiang, ZHAO Ya-nan, SHI Xiao-jun. Effects of Long-Term Application of Chloride Containing Fertilizers on the Biological Fertility of Purple Soil Under a Rice-Wheat Rotation System [J]. Scientia Agricultura Sinica, 2016, 49(4): 686-694.
[8] ZHANG Xiao-long, ZHANG Zhen-hua, SONG Hai-xing, YU Jia-ling, GUAN Chun-yun. Differences in Carbon Accumulation and Transport in Brassica napus with Different Nitrogen Use Efficiency and Its Effects on Oil Formation [J]. Scientia Agricultura Sinica, 2016, 49(18): 3542-3550.
[9] YU Hui-yong, SONG Xiao-li, WANG Shu-sheng, CAO Li-jun, GUO Li, WANG Xiao-li, PENG Gong-yin. Effects of Low Molecular Weight Organic Acids on Soil Enzymes Activities and Bacterial Community Structure [J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947.
[10]

. Effects of Long-Term Continuous Cropping System of Cotton on Soil Physical-Chemical Properties and Activities of Soil Enzyme in Oasis in Xinjiang
[J]. Scientia Agricultura Sinica, 2009, 42(2): 725-733 .
[11] ,. Characteristics of carbon fixation in different rice cultivars during yield formation process [J]. Scientia Agricultura Sinica, 2006, 39(12): 2441-2448 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!