Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1845-1859.doi: 10.3864/j.issn.0578-1752.2020.09.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland

Na JIANG1,DongMei SHI1(),GuangYi JIANG2,Ge SONG1,ChengJing SI3,Qing YE1   

  1. 1 College of Resources and Environment, Southwest University, Chongqing 400715;
    2 Chongqing Eco-environment Monitoring Station of Soil and Water Conservation, Chongqing 401147;
    3 Chongqing Wanzhou District Water Resources Bureau, Chongqing 404000
  • Received:2019-07-01 Accepted:2019-10-21 Online:2020-05-01 Published:2020-05-13
  • Contact: DongMei SHI E-mail:shidm_1970@126.com

Abstract:

【Objective】Purple soil slope farmland is an important cultivated land resource for agricultural production in southern hilly area. In order to study the effects of soil erosion on the physical properties and mechanical properties degradation of purple soil slope arable land, based on the classification of soil degradation, the change characteristics of physical and mechanical properties and soil degradation index under different erosion degrees were quantitatively analyzed. 【Method】With non-eroded plots as control group, the soil permeability, soil mechanical properties and soil degradation index of cultivated-layer were compared and analyzed under 5 cm (S-5), 10 cm (S-10), 15 cm (S-15) and 20 cm (S-20) erosion conditions by shovel soil erosion simulation test method, and the degradation degree of physical and mechanical properties of sloping farmland was quantitatively analyzed. 【Result】Soil permeability of cultivated-layer under different erosion degrees was CK>S-5>S-10>S-15>S-20. The initial infiltration rate, stable infiltration rate, average infiltration rate and saturated water conductivity of soil decreased with the increase of erosion degree. Soil permeability index of each layer under different erosion degrees was 0-20 cm soil layer>20-40 cm soil layer. Soil mechanical properties of different erosion degrees were CK-5-10-15-20. Soil shear strength and soil compacted degree increased with erosion degree. Soil mechanical indexes of all layers under different erosion degrees were 0-20 cm soil layer<20-40 cm soil layer. The contribution rate of soil shear strength to the first axis was the largest, and soil shear strength was the main factor affecting the change of soil physical properties and mechanical properties under different erosion degrees. Soil physical properties and mechanical properties were ranked as stable infiltration rate>soil compaction>saturated water conductivity>average infiltration rate>initial infiltration rate>shear strength. Soil degradation index of under different erosion degrees was S-5 (-8.71%)>S-10 (-10.95%)>S-20 (-12.17%)>S-15 (-15.37%). S-15 had the greatest influence on the topsoil physical properties, and the S-15 soil degradation index was the smallest, with the degree of soil degradation being severe. 【Conclusion】Soil compaction was serious in slope farmland of purple soil. According to soil infiltration and mechanical properties, the soil degradation grade with different erosion degree could be classified into four grades: undegraded, mild degradation, moderate degradation and severe degradation. The results could provide the technical parameters for the identification and restoration control of the quality degradation process of sloping farmland.

Key words: purple soil, soil erosion, slope farmland, top layer, soil degradation, physical characteristics of soil

Table 1

Residual thickness of original soil layer in in situ simulation plot of sloping farmland with different erosion degree"

原始不同土层(hi)
Original different soil layers (cm)
模拟侵蚀深度/模拟侵蚀年限Simulated erosion depth (cm)/Simulated erosion age (a)
0/0 5/20 10/40 15/60 20/80
S-0 S-5 S-10 S-15 S-20
0-20 20 15.55 12.09 9.40 5.50
20-25 - 4.45 3.46 2.69 3.90
25-30 - - 4.45 3.46 2.69
30-35 - - - 4.45 3.46
35-40 - - - - 4.45

Fig. 1

Layout of experimental plots with different erosion degrees"

Fig. 2

Change characteristics of soil infiltration under different erosion degrees Different uppercase letters indicate significant differences in erosion degree of the same vertical layer (P<0.05), different small letters indicate significant differences in the same erosion degree of different vertical layers (P<0.05). The same as Fig. 3"

Table 2

Principal component analysis of tillage soil permeability under different erosion degrees"

主成分 Principal component Norm值
Norm value
F1 F2
X1饱和导水率Saturated hydraulic conductivity 0.021 0.997 1.02
X2初始入渗率Initial soil infiltration 0.978 0.125 1.64
X3稳定入渗率Stable infiltration rate 0.939 -0.161 1.58
X4平均入渗率Average infiltration ratio 0.982 0.008 1.64
主成分特征值Principal component eigenvalue 2.802 1.036 -
主要方差贡献率Contribution rate of major variance 70.06 25.91 -
主要成分累积贡献率Cumulative contribution rate of major components 70.06 95.97 -

Table 3

Tillage soil permeability order of different erosion degrees"

处理
Manage
0-10 cm 10-20 cm 20-30 cm 30-40 cm 平均得分
The average score
排序
The sorting
退化程度
Degradation
得分
Score
排序
The sorting
得分
Score
排序
The sorting
得分
Score
排序
The sorting
得分
Score
排序
The sorting
CK 3.06 1.00 1.23 1.00 0.50 2.00 0.25 2.00 1.26 1 未退化
Non degradation
S-5 1.53 1.00 0.90 2.00 -0.07 3.00 -0.78 3.00 0.40 2 轻度退化
Mild degradation
S-10 0.72 2.00 0.38 2.00 0.05 2.00 -0.74 3.00 0.10 2 轻度退化
Mild degradation
S-15 0.19 2.00 -0.13 3.00 -1.25 4.00 -1.64 4.00 -0.71 3 中度退化
Moderate degradation
S-20 0.06 2.00 -0.41 3.00 -1.59 4.00 -2.08 4.00 -1.01 4 重度退化
Severe degradation

Fig. 3

Change characteristics of soil mechanical properties in tillage layer under different erosion degrees"

Table 4

Correlation analysis of soil physical properties on slope farmland"

土壤容重
Soil bulk density
土壤总
孔隙度
Soil total porosity
毛管孔
隙度
Soil
capillary
porosity
砂粒Sand 粉粒
Silt
黏粒
Clay
饱和导
水率
Saturated hydraulic
conductivity
初始入
渗率
Initial soil infiltration
平均
入渗率
Average infiltration rate
稳定入
渗率
Stable
infiltration rate
抗剪强度
Soil shear strength
土壤紧
实度
Soil compactibility
Z1 1
Z2 -1.000** 1
Z3 -0.696** 0.698** 1
Z4 0.655** -0.655** -0.517* 1
Z5 -0.770** 0.770** 0.549* -0.978** 1
Z6 0.880** -0.881** -0.741** 0.429 -0.561* 1
X1 -0.859** 0.858** 0.697** -0.774** 0.841** -0.824** 1
X2 -0.924** 0.923** 0.763** -0.709** 0.789** -0.873** 0.947** 1
X3 -0.750** 0.749** 0.595** -0.814** 0.843** -0.614** 0.853** 0.857** 1
X4 -0.935** 0.934** 0.788** -0.684** 0.766** -0.865** 0.909** 0.973** 0.872** 1
Y5 0.889** -0.890** -0.696** 0.435 -0.572** 0.991** -0.840** -0.889** -0.644** -0.876** 1
Y6 0.769** -0.770** -0.968** 0.547* -0.606** 0.840** -0.758** -0.825** -0.668** -0.841** 0.807** 1

Fig. 4

Soil physical properties of tillage under different erosion degrees"

Table 5

Statistical results of sorting of physical properties of tillage layer under different erosion degrees of purple soil slope farmland"

Axis 1 Axis 2 Axis 3 Axis 4
特征值Eigenvalue 0.0023 0.0004 0.0003 0
解释变异(累计)Explained variation (cumulative) 73.50 86.03 94.57 94.85
Pseudo-canonical相关性Pseudo-canonical correlation 0.9950 0.9847 0.8347 0.7174
解释拟合变异(累积)Explained fitted variation (cumulative) 77.48 90.70 99.70 100.00

Table 6

Statistical analysis of soil degradation indicators of cultivated land in purple soil slope"

评价指标
Evaluation index
初始
入渗率
Initial soil infiltration (mm·min-1)
稳定入渗率
Stable infiltration rate (mm·min-1)
平均入渗率
Average infiltration rate
(mm·min-1)
饱和导水率
Saturated hydraulic conductivity (mm·min-1)
抗剪强度
Soil shear strength (kPa)
土壤紧实度
Soil compactibility (N·cm2)
土壤
容重
Soil bulk density (g·cm-3)
土壤总
孔隙度
Soil total porosity (%)
毛管孔隙度
Soil capillary porosity
(%)
粉粒
Silt (%)
砂粒
Sand (%)
黏粒
Clay (%)
最大值
Maximum value
70.75 13.29 39.29 4.00 3.84 251.50 1.58 52.33 36.29 66.67 36.77 32.33
最小值
Minimum value
13.00 8.42 16.00 0.25 1.96 49.98 1.26 40.38 7.95 49.00 16.67 14.33
平均值
Average value
37.79 10.30 27.04 1.86 2.97 96.06 1.43 46.19 30.58 55.39 29.62 22.9
标准差
Standard deviation
13.92 1.31 5.75 1.17 0.61 46.25 0.10 3.91 6.29 4.61 5.03 5.81
变异系数
Coefficient of variation (%)
36.84 12.71 21.27 63.03 20.56 48.15 7.31 8.47 20.56 8.31 17.00 25.37
峰度Kurtosis 0.46 0.02 -0.12 -0.83 -1.27 6.09 -1.38 -1.39 8.87 0.41 0.89 -1.26
偏度Skewness 0.43 0.60 0.03 0.15 -0.2 2.09 0.13 -0.13 -2.74 0.69 -0.74 0.06
K-S检验
K-S test
0.20 0.20 0.20 0.11 0.20 0.08 0.15 0.14 0.22 0.20 0.20 0.20
Norm值
Norm value
3.04 2.70 3.03 2.94 2.81 2.73 2.94 2.94 2.53 2.44 2.66 2.80

Fig. 5

Change characteristics of soil degradation index in tillage layer under different erosion degrees"

Fig. 6

Change characteristics of soil erodibility K value in tillage layer under different erosion degrees"

Table 7

Determines the potential soil erosion grade of slope farmland based on soil infiltration rate and soil compaction"

土壤稳定入渗率
Soil stable infiltration rate
土壤紧实度Soil compactibility
1 2 3 4 5
1 1 M1 M2 M4 M5
2 F3 2 M2 M3 M4
3 F3 F3 1 M2 M1
4 F2 F2 F2 2 M1
5 F1 F1 F1 M1 1

Table 8

Potential soil erosion grades of sloping farmland under different erosion degrees"

处理
Manage
土层
Soil horizon (cm)
稳定入渗率
Soil stable infiltration rate
土壤紧实度
Soil compactibility
土壤潜在水土流失等级
Soil degradation grade
CK
0-10 5 1 F1
10-20 5 1 F1
S-5
0-10 3 1 F3
10-20 3 1 F3
S-10 0-10 3 1 F3
10-20 2 1 1
S-15
0-10 3 1 F3
10-20 2 1 1
S-20
0-10 2 1 F3
10-20 1 1 1
[1] 中国科学院成都分院土壤研究室. 中国紫色土(Ⅰ). 北京: 科学出版社, 1991.
Department of Soil Research, Chengdu Branch, Chinese Academy of Sciences. Purple Soil of China(I). Beijing: Science Press, 1991. (in Chinese)
[2] WANG S S, SUN B X, LI C D, LI Z B, MA B . Runoff and soil erosion on slope cropland: A review. Journal of Resources and Ecology, 2018,9(5):461-470.
doi: 10.5814/j.issn.1674-764x.2018.05.002
[3] 韩晓增, 邹文秀, 陆欣春, 段景海 . 旱作土壤耕层及其肥力培育途径. 土壤与作物, 2015,4(4):145-150.
HAN X Z, ZOU X W, LU X C, DUANG J H . The soil cultivated layer in dryland and technical patterns in cultivating soil fertility. Soil and Crop, 2015,4(4):145-150. (in Chinese)
[4] 苏正安, 张建辉, 聂小军 . 紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应. 农业工程学报, 2009,25(5):54-60.
SU Z A, ZHANG J H, NIE X J . Response of spatial variability of soil physical properties to soil erosion in purple soil slope farmland. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(5):54-60. (in Chinese)
[5] 黄少燕, 查轩 . 坡耕地侵蚀过程与土壤理化特性演变. 山地学报, 2002,20(3):290-295.
HUANG S Y, CHA X . Study on soil erosion process and evolution of soil physicochemisty characteristics on sloping farmland. Journal of Mountain Research, 2002,20(3):290-295. (in Chinese)
[6] 葛方龙, 张建辉, 苏正安, 聂小军 . 坡耕地紫色土养分空间变异对土壤侵蚀的响应. 生态学报, 2007(2):459-464.
GE F L, ZHANG J H, SU Z A, NIE X J . Response of changes in soil nutrients to soil erosion on a purple soil of cultivated sloping land. Acta Ecologica Sinica, 2007(2):459-464. (in Chinese)
[7] 史德明, 韦启潘 . 中国南方侵蚀土壤退化指标体系研究. 水土保持学报, 2000,14(3):1-9.
SHI D M, WEI Q P . Research on index system of eroded soil degradation in southern China. Journal of Soil and Water Conservation, 2000,14(3):1-9. (in Chinese)
[8] 史东梅, 蒋光毅, 蒋平, 娄义宝, 丁文斌, 金慧芳 . 土壤侵蚀因素对紫色丘陵区坡耕地耕层质量影响. 农业工程学报, 2017,33(13):270-279.
SHI D M, JIANG G Y, JIANG P, LOU Y B, DING W B, JIN H F . Effects of soil erosion factors cultivated-layer quality of slope farmland in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(13):270-279. (in Chinese)
[9] LARNEY F J, JANZEN H H, OLSON B M, WAYNE L C . Soil quality and productivity responses to simulated erosion and restorative amendments. Canadian Journal of Soil Science, 2000,80(3):515-522.
[10] OYEDELE D J, AINA P O . Response of soil properties and maize yield to simulated erosion by artificial topsoil removal. Plant & Soil, 2006,284(1/2):375-384.
[11] 刘慧, 魏永霞 . 黑土区土壤侵蚀厚度对土地生产力的影响及其评价. 农业工程学报, 2014,30(20):288-296.
LIU H, WEI Y X . Influence of soil erosion thickness on soil productivity of black soil and its evaluation. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(20):288-296. (in Chinese)
[12] 张瑞, 苟晓敏, 赵玉珍, 王志强 . 东北黑土区土壤侵蚀对土壤持水性的影响. 水土保持学报, 2015,29(1):62-65.
ZHANG R, GOU X M, ZHAO Y Z, WANG Z Q . Effects of soil erosion on soil water retention in black soil region of Northeast China. Journal of Soil and Water Conservation, 2015,29(1):62-65. (in Chinese)
[13] 陈奇伯, 王克勤, 李金洪, 朱国进, 李跃 . 元谋干热河谷坡耕地土壤侵蚀造成的土地退化. 山地学报, 2004,22(5):528-532.
CHEN Q B, WANG K Q, LI J H, ZHU G J, LI Y . Land degradation caused by soil erosion in slope farmland in dry-hot of Yuanmou county. Journal of Mountain Science, 2004,22(5):528-532. (in Chinese)
[14] 成婧, 吴发启, 王健, 云峰, 吴光艳, 于晓玲 . 渭北旱塬不同程度土壤侵蚀及生产力恢复试验. 中国水土保持科学, 2013,11(2):19-24.
CHENG J, WU F Q, WANG J, YUN F, WU G Y, YU X L . Effects of soil erosion of different degrees on soil productivity and recovery in Weibei Dryland. Science of Soil and Water Conservation, 2013,11(2):19-24. (in Chinese)
[15] LIU J X, TU S H, GUO Y Z, JIA Q H . Effect of soil erosion on productivity of sloping field in Mico-plot experiment. Agricultural Science & Technology, 2013,14(1):127-130.
doi: 10.13227/j.hjkx.201703025 pmid: 29965201
[16] ZHENG S U, ZHANG J H, NIE X J . Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin, China. Pedosphere, 2010,20(6):740-746.
doi: 10.1002/(sici)1097-4598(199706)20:6&amp;lt;740::aid-mus12&amp;gt;3.0.co;2-y pmid: 9149082
[17] 王志强, 刘宝元, 王旭艳, 高晓飞, 刘刚 . 东北黑土区土壤侵蚀对土地生产力影响试验研究. 中国科学: 地球科学, 2009(10):1397-1412.
WANG Z Q, LIU B Y, WANG X Y, GAO X F, LIU G . Experimental study on the effect of soil erosion on land productivity in black soil region of Northeast China. Science in China: Earth Science, 2009(10):1397-1412. (in Chinese)
[18] 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定方法. 北京: 科学出版社, 1978: 140-148.
Department of Soil Physics, Institute of Soil Science, Chinese Academy of Sciences. Method for Determination of Soil Physical Properties. Beijing: Science Press, 1978:140-148. (in Chinese)
[19] ADEJUWON J O, EKANADE O . A comparison of soil properties under different land use types in a part of the Nigerian cocoa belt. Catena, 1988,15(3):319-331.
doi: 10.1016/0341-8162(88)90054-9
[20] SHIRAZI M A, HART J W, BOERSMA L . A unifying quantitative analysis of soil texture: improvement of precision and extension of scale. Soil Science Society of America Journal, 1988,52(1):181.
doi: 10.2136/sssaj1988.03615995005200010032x
[21] 金慧芳, 史东梅, 陈正发, 刘益军, 娄义宝, 杨旭 . 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标. 农业工程学报, 2018,34(7):155-164.
JIN H F, SHI D M, CHEN Z F, LIU Y J, LOU Y B, YANG X . Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(7):155-164. (in Chinese)
[22] 许明祥, 刘国彬, 赵允格 . 黄土丘陵区土壤质量评价指标研究. 应用生态学报, 2005,16(10):1843-1848.
pmid: 16425459
XU M X, LIU G B, ZHAO Y G . Assessment indicators of soil quality in hilly Loess Plateau. Chinese Journal of Applied Ecology, 2005,16(10):1843-1848. (in Chinese)
pmid: 16425459
[23] XU M, LI Q, WILSON G . Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China. Soil & Tillage Research, 2016,155:9-18.
[24] MA W M, ZHANG X C . Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. Journal of Arid Land, 2016,8(3):331-340.
doi: 10.1007/s40333-016-0122-8
[25] 林芳, 朱兆龙, 曾全超, 安韶山 . 延河流域三种土壤可蚀性K值估算方法比较. 土壤学报, 2017,54(5):1136-1146.
LIN F, ZHU Z L, ZENG Q C, AN S S . Comparative study of three different methods for estimation of soil erodibility K in Yanhe Watershed of China. Acta Pedologica Sinica, 2017,54(5):1136-1146. (in Chinese)
[26] 周宁, 李超, 琚存勇, 马亚怀 . 黑龙江省土壤可蚀性K值特征分析. 农业工程学报, 2015,31(10):182-189.
ZHOU N, LI C, QU C Y, MA Y H . Analysis of K-value characteristics of soil erodibility in Heilongjiang Province. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(10):182-189. (in Chinese)
[27] ZHANG K, LI L, ZHANG Z . Reliability of soil erodibility estimation in areas outside the US: A comparison of erodibility for main agricultural soils in the US and China. Environmental Earth Sciences, 2016,75(3):252.
doi: 10.1007/s12665-015-4980-8
[28] 张慧利, 蔡洁, 夏显力 . 水土流失治理效益与生态农业发展的耦合协调性分析. 农业工程学报, 2018,34(8):162-169.
ZHANG H L, CAI J, XIA X L . Coupling coordinative degree analysis on benefit of water and soil erosion control and development of ecological agriculture. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(8):162-169. (in Chinese)
[29] 潘剑君, Ir. E. Bergsma. . 利用土壤入渗速率和土壤抗剪力确定土壤侵蚀等级. 水土保持学报, 1995(2):93-96.
PAN J. Bergsma E . Determination of soil erosion grade using soil infiltration rate and soil shear resistance. Journal of Soil and Water Conservation, 1995(2):93-96. (in Chinese)
[30] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 . 容重对土壤水分入渗能力影响模拟试验. 农业工程学报, 2009,25(6):40-45.
LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H . Simulated experiment on effect of soil bulk density on soil infiltration capacity. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(6):40-45. (in Chinese)
[31] 李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 . 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010,47(4):611-620.
LI Z, WU P T, FENG H, ZHAO X N, HUANG J, ZHUANG W H . Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010,47(4):611-620. (in Chinese)
[32] WANG G Q, WU B, ZHANG L, JIANG H, XU Z X . Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. Journal of Hydrology, 2014,514:180-191.
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[3] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[4] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[5] LI Na,SUN ZhanXiang,ZHANG YanQing,LIU EnKe,LI FengMing,LI ChunQian,LI Fei. Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model [J]. Scientia Agricultura Sinica, 2021, 54(14): 3057-3064.
[6] YAO YiWen,DAI QuanHou,GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong. Effects of Rainfall Intensity and Underground Hole (Fracture) Gap on Nutrient Loss in Karst Sloping Farmland [J]. Scientia Agricultura Sinica, 2021, 54(1): 140-151.
[7] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[8] LOU YiBao,SHI DongMei,JIN HuiFang,JIANG GuangYi,DUAN Teng,JIANG Na. Coupling Degree Diagnosis on Suitability Evaluation of Cultivated-Layer Quality for Slope Farmland in Purple Hilly Region of South-Western China [J]. Scientia Agricultura Sinica, 2019, 52(4): 661-675.
[9] CHENG YongYi, LI ZhongYi, BAI YingYan, LIU Li . Acidification Characteristics of Purple Soil, Yellow Soil and Latosol with Electrodialysis Method [J]. Scientia Agricultura Sinica, 2018, 51(7): 1325-1333.
[10] FENG XiaoJie, ZHENG ZiCheng, LI TingXuan, FAN Li. Characteristics of Nitrogen Loss in Sloping Cropland of Purple Soil During Maize Growth Stage Under Rainstorm [J]. Scientia Agricultura Sinica, 2018, 51(4): 738-749.
[11] Rong HUANG,Ming GAO,JiaCheng LI,GuoXin XU,FuHua WANG,Jiao LI,ShiQi CHEN. Effects of Combined Application of Various Organic Materials and Chemical Fertilizer on Soil Nitrogen Formation and Greenhouse Gas Emission Under Equal Nitrogen Rates from Purple Soil [J]. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101.
[12] Ke WANG, ChunLi XU, YuTing ZHANG, ZhiBin ZHENG, DingYong WANG, XiaoJun SHI. Cd Accumulation and Safety Assessment of Soil-Crop System Induced by Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2018, 51(18): 3542-3550.
[13] ZHAO QianXu, SHI Jing, XIA YunSheng, ZHANG NaiMing, NING DongWei, YUE XianRong, YANG HaiHong. Effect of AMF Inoculation on N Uptake of Interspecific Competition Between Maize and Soybean Growing on the Purple Soil [J]. Scientia Agricultura Sinica, 2017, 50(14): 2696-2705.
[14] XIAO Ji-bing, SUN Zhan-xiang, JIANG Chun-guang, ZHENG Jia-ming, LIU Yang, YANG Ning, FENG Liang-shan, BAI Wei. Effect of Technique of Ridge Film Mulching and Furrow Seeding on Soil Erosion and Crop Yield on Sloping Farmland in Western Liaoning [J]. Scientia Agricultura Sinica, 2016, 49(20): 3904-3917.
[15] LUO Jian, YIN Zhong, ZHENG Zi-cheng, HE Shu-qin, LI Ting-xuan. Variation Characteristics of Microtopography of Ridge Tillage of Purple Soil Under Different Rainfall Patterns [J]. Scientia Agricultura Sinica, 2016, 49(16): 3162-3173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!