Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (8): 1560-1574.doi: 10.3864/j.issn.0578-1752.2024.08.011

• HORTICULTURE • Previous Articles     Next Articles

Evaluation of Fruit Texture Quality in Melon

YANG YaHeng1(), JIA PeiLong1, NIE LanChun1(), ZHAO WenSheng1(), ZHAO JiaTeng1, WANG JinXiang1, LIU Jie2   

  1. 1 Horticulture College, Hebei Agricultural University/Key Laboratory of Vegetable Germplasm and Utilization of Hebei Province/ Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding 071000, Hebei
    2 Langfang Ruihai Agriculture Technicl Co., Ltd, Langfang 065000, Hebei
  • Received:2023-08-11 Accepted:2024-03-12 Online:2024-04-16 Published:2024-04-24
  • Contact: NIE LanChun, ZHAO WenSheng

Abstract:

【Objective】The aim of this study was to evaluate the fruit texture of melon (Cucumis melo L. subsp. melo) germplasm resources, so as to provide reference and basis for establishing fruit texture evaluation standards and breeding excellent varieties of melon. 【Method】Texture profile analysis (TPA) (including TPA hardness, springiness, chewiness, cohesiveness and resilience), puncture test (PT) (including puncture hardness, crispness and adhesiveness) and sensory evaluation method (sensory hardness, sensory crispness, juiciness, compactness and pulp texture quality) were performed to evaluate the texture of 278 melon germplasms. Through correlation analysis, stepwise regression analysis and factor analysis, the relationship model between sensory evaluation indexes and texture analyzer test indexes were established, and the important indexes of fruit texture evaluation in melon were defined. 278 melon germplasm resources were classified according to the indexes of fruit texture. 【Result】There was a significant correlation between texture analyzer test indexes and sensory evaluation indexes of fruits texture in melon. The prediction models of sensory hardness, sensory crispness, juiciness, compactness and pulp texture quality were established relying on the independent variables of hardness, crispness, adhesiveness, springiness, chewiness, cohesiveness and resilience evaluated by the texture analyzer, respectively. Three common factors were selected from the factor analysis of texture analyzer test indexes, and the cumulative variance contribution rate was 89.377%. The first common factor reflected the chewiness of pulp, the second common factor reflected the adhesiveness of pulp, and the third common factor reflects the resilience of pulp. Chewiness, adhesiveness and resilience were important parameters affecting the fruit texture of melon. According to the texture indexes, 278 melon were divided into three groups, and each group could be divided into two subcategories. The group I was characterized by the highest hardness, crispness and compactness, the coarsest pulp and the lowest juiciness. The group III was characterized by the lowest hardness, crispness and compactness, the thinnest pulp and the highest juiciness. The group II was characterized by an intermediate level of each index. 【Conclusion】Texture analyzer test indexes could reflect the texture quality of melon fruits. Chewiness, adhesiveness and resilience were important indexes to evaluate the melon fruit texture.

Key words: melon (Cucumis melo L. subsp. melo), germplasm materials, fruit texture, texture profile analysis, puncture test, sensory evaluation

Table 1

Experimental materials"

序号
No.
种质名称
Germplasm name
序号
No.
种质名称
Germplasm name
序号
No.
种质名称
Germplasm name
1 1931321 94 玉(17号)院里-2 Yu (17hao) yuanli-2 187 1935303
2 TM214♂ 95 1921209 188 TM247♀
3 M17-47♀ 96 M95♀ 189 1931320细网 1931320 Xiwang
4 21HW-09 97 玉姑♂ Yugu♂ 190 1921321白肉 1921321 Bairou
5 1921407 98 1924301 191 1935213-2稀网 1935213-2 Xiwang
6 21HW-08 99 1924102 192 1935212
7 TM132♂ 100 TM131♂-2 193 1921304
8 1921324-3 101 1921211 194 1923102
9 1921320-5 102 S84♀全网 S84♀ Quanwang 195 1933301
10 1921324-1绿肉 1921324-1 Lvrou 103 1921308土黄 1921308 Tuhuang 196 1935202
11 S04♀ 104 1921204扁圆 1921204 Bianyuan 197 1933303
12 白流星-3-1 Bailiuxing-3-1 105 1921204正圆 1921204 Zhengyuan 198 1935214
13 1931307 106 1921404 199 20180814-14-2海南正圆
20180814-14-2 Hainanzhengyuan
14 1921334 107 1921201扁圆 1921201 Bianyuan 200 21HM-01
15 黄流星-2-5 Huangliuxing-2-5 108 19秋黄-1 19 Qiuhuang-1 201 1935308粗网绿肉1935308 Cuwanglvrou
16 TM157♀ 109 1921324-10 202 21HH-02
17 AM流星-1白肉-3 Amliuxing-1 bairou-3 110 1921308 203 21HHM-01
18 1921309 111 1921204上纹 1921204 Shangwen 204 1935324
19 1924401 112 1921402 205 21HHW-03
20 1921319 113 1921401 206 1931202
21 AM流星-4白皮 Amliuxing-4 Baipi 114 1921213 207 1935325-1高圆 1935325-1 Gaoyuan
22 AM流星-4黄皮-1 Amliuxing-4 Huangpi-1 115 TM214♀ 208 21HHW-01
23 AM流星-5-1 Amliuxing-5-1 116 1921406 209 M95
24 AM流星-4白肉-1 Amliuxing-4 Bairou-1 117 TM153♀ 210 21HHW-06椭圆 21Hhw-06 Tuoyuan
25 1921312-2 118 1921312 211 21HHW-04
26 AM流星-2-1 Amliuxing-2-1 119 1921307 212 21HH-04-1
27 1924101 120 玉姑♀ Yugu♀ 213 21HH-04-2
28 1924203 121 1921317 214 21HH-03-1
29 2019H25♂ 122 1921310 215 21HHW-05
30 TM152♀-1 123 1934501 216 21.35L-H01-7-2
31 2019H25♀ 124 1934405 217 21.35L-H01-7
32 1924305 125 亚州蜜-2正圆 Yazhoumi-2 Zhengyuan 218 20180814♂
33 1924306-1 126 2019W22 219 21.35L-H03-1-1
34 1924106 127 1924213 220 21.35L-H03-1-3
35 2019H24♀-1 128 1921210 (19秋) 1921210 (19 Qiu) 221 21.35H-R01-3
36 红金宝黄皮红肉 Hongjinbaohuangpihongrou 129 2034501 222 21.35H-H01-3
37 1924303 130 1921309 223 21.35H-P01-2
38 TM156♀ 131 1935402-1-4白肉 1935402-1-4 Bairou 224 21.35H-P01-5
39 1924205正圆1924205 Zhengyuan 132 1933403 225 21.35H-P01-4
40 1924107绿肉-2 1924107 Lvrou-2 133 1921314 226 21.35H-H01-4-1
41 1924204 134 1934415黄皮 1934415 Huangpi 227 21.35H-R01-1
42 1924302-2 135 1924304 228 21.35H-H02-2-2
43 1924212 136 25♂B 229 21.35L-R03-3正圆 21.35L-r03-3 Zhengyuan
44 AM流星-6-1 Amliuxing-6-1 137 1924204 230 21.35L-H02-4-1
45 1921324 138 2024201海 2024201 Hai 231 21.35L-H03-5-1
46 原1 Yuan1 139 2034301 232 21.35L-H03-7-1
47 1921201 140 1921333 233 1921204
48 海① Hai① 141 2018618♂ 234 21.35L-R01-3-1
49 玉姑李-1 Yuguli-1 142 ZTG00571-1 235 21.35L-R01-4-1
50 1924307 143 2021301海 2021301 Hai 236 21.35L-H03-6-1
51 玉姑李(半仁) Yuguli (banren) 144 1934502 237 21.35L-H03-2-4
52 玉姑李(17号)21春 Yuguli (17hao) 21 chun 145 2019B06 238 21.35L-H02-3-2
53 21HHW-07 146 2024501海 2024501 Hai 239 21.35L-H01-5-2
54 海星② Haixing② 147 1934404 240 21.35L-H02-1-2
55 1924103 148 1934415灰绿 1934415 Huilv 241 21.35L-H01-6-2
56 1924108 149 2024402海 2024402 Hai 242 21.35L-H03-3-3
57 ZTG00530 150 2022401海 2022401 Hai 243 21.35H-H02-1-2
58 1933201 151 1935401-1绿皮 1935401-1 Lvpi 244 21.35H-H02-3-1
59 21HHW-08 152 1935401-3红肉 1935401-3 Hongrou 245 21.35H-H02-4-1
60 TM244♂ 153 1921316 246 21.35H-H02-5-1
61 21HB-01 154 1935210 247 21.35L-H02-2-2
62 21HBL-01 155 2031501海 2031501 Hai 248 21.35L-R01-2
63 21HB-07 156 1935309 249 21.35L-P02-2-1
64 21HB-02 157 2016619 250 21.35L-P02-1-1
65 21HB-06 158 25♂A 251 1935203
66 2034502 159 20180812-5-4-2 252 21.35L-P02-3-1高圆 21.35L-p02-3-1 Gaoyuan
67 1934401 160 1934409 253 21.35L-P02-4-1
68 2019H26♀ 161 新25♀ Xin25♀ 254 21.35L-R02-2-1
69 21HB-01(全网) 21Hb-01 (Quanwang) 162 1935401-2-2 255 21.35L-P02-6
70 21HB-3 163 1931317 256 21.35L-P01-3-1
71 1934402 164 1931306 257 21.35L-P01-1-1
72 25♂C 165 1921214 258 21.35H-H01-2-2
73 1921203 166 1931309凸粗纹 1931309 Tucuwen 259 21.35H-P01-3-1高圆 21.35H-p01-3-1 Gaoyuan
74 21HB-05 167 1935208 260 21.35H-P01-1-1
75 21HB-04 168 1935328 261 21.35L-H01-1-3
76 1924403 169 1935201 262 21.35H-R01-4-1
77 21HBL-02 170 1933302正圆 1933302 Zhengyuan 263 21.35L-R02-1-1
78 1924302-1 171 ZTG00021 264 21.35L-R02-3-2
79 红金宝♀黄皮白肉 Hongjinbao♀Huangpibairou 172 TM132♀ 265 1935308-1
80 1924206 173 1931319 266 21.35L-R01-1-2
81 1924303扁圆 1924303 Bianyuan 174 1921208 267 21.35L-P01-3-2
82 1924313 175 1931320凸网 1931320 Tuwang 268 21.35L-P01-2-1
83 1924402 176 TM91♀ 269 1935206
84 2016617 177 1935201 270 21HW-03-1
85 1924401-4 178 1935327 271 21HW-06
86 1924210 (2019H123♀-2) 179 1935325-1白皮 1935325-1 Baipi 272 21HW-07
87 2019H23♀-1 180 20180811-1-1海南 20180811-1-1 Hainan 273 21HW-05
88 1934406 181 1935209 274 TM295♀
89 21春-4 21 Chun-4 182 1935204 275 21.35H-R01-2
90 1922401-2 183 2035201海 2035201 Hai 276 CW-1-1
91 1921331-2 184 20180812-9正圆 20180812-9 Zhengyuan 277 21.35H-R01-4-1
92 15074 185 1935213 278 21.35H-R01-3-1
93 1924109 186 ZTG00480

Fig. 1

Sample of texturing instrument test"

Table 2

Sensory evaluation standard of melon fruit"

描述指标
Descriptive index
定义
Definition
打分规则(1—10分)
Scoring rules(1—10)
感官硬度
Sensory hardness
试样在臼齿之间受压时的抗压强度
Compressive strength of specimen under compression between molars
分越高,果实越硬
The higher the score, the harder the fruit
感官脆度
Sensory crispness
咀嚼甜瓜时,果肉易破碎程度
When chewing melon, the flesh is easily broken
分越高,果实越脆
The higher the score, the crisper the fruit
多汁性
Juiciness
咀嚼甜瓜时的相对汁液释放
Relative juice release when chewing melon
分越高,果实越多汁
The higher the score, the juicier the fruit
紧实度
Compactness
咀嚼甜瓜时,果肉的紧密程度
When chewing melon, the tightness of flesh
分越高,果实越紧实
The higher the score, the firmer the fruit
果肉粗细
Pulp texture quality
果肉的颗粒感越明显,果肉越粗
The more obvious the graininess of pulp, the coarser of pulp
分越高,果肉口感越粗
The higher the score, the coarser the pulp taste

Fig. 2

TPA (A) and puncture (B) characteristic curve"

Table 3

Sensory evaluation results"

感官指标 Sensory index 最大值 Max. 最小值 Min. 平均值 Average 标准差 SD 变异系数 CV (%)
感官硬度 Sensory hardness 9.20 2.70 5.77 1.78 30.85
感官脆度 Sensory crispness 9.20 1.10 5.06 1.85 36.56
多汁性 Juiciness 9.30 3.70 6.54 1.15 17.58
紧实度 Compactness 9.10 2.00 5.06 1.71 33.79
果肉粗细 Pulp texture quality 8.00 0.90 4.18 1.43 34.21

Table 4

Instrument evaluation results"

质地指标Texture index 最大值 Max. 最小值 Min. 平均值 Average 标准差 SD 变异系数CV (%)
TPA硬度 TPA Hardness (N) 53.02 3.70 22.32 9.17 41.08
穿刺硬度 Puncture hardness (N) 4.40 0.50 1.80 0.60 33.33
脆度 Crispness (N) 3.74 0.45 1.57 0.54 34.39
黏附性 Adhesiveness (N) 0.32 0.02 0.13 0.05 38.46
弹性 Springiness 0.79 0.40 0.60 0.07 11.27
咀嚼性 Chewiness (N) 16.77 0.27 6.11 3.45 56.46
内聚性 Cohesiveness 0.62 0.16 0.41 0.08 18.20
回复性 Resilience 0.95 0.14 0.32 0.22 69.80

Table 5

Correlation between instrument evaluation index and sensory evaluation index"

指标
Index
感官硬度
Sensory hardness
感官脆度
Sensory crispness
多汁性
Juiciness
紧实度
Compactness
果肉粗细
Pulp texture quality
TPA硬度 TPA Hardness 0.818** 0.766** -0.177** 0.750** 0.587**
穿刺硬度 Puncture hardness 0.734** 0.679** -0.261** 0.664** 0.539**
脆度 Crispness 0.697** 0.635** -0.309** 0.627** 0.517**
黏附性 Adhesiveness -0.320** -0.263** 0.275** -0.300** -0.281**
弹性 Springiness 0.644** 0.604** -0.124** 0.577** 0.447**
咀嚼性 Chewiness 0.787** 0.728** -0.172** 0.708** 0.549**
内聚性 Cohesiveness 0.542** 0.503** -0.250** 0.490** 0.375**
回复性 Resilience -0.143* -0.126** 0.245** -0.130* -0.148*

Table 6

Stepwise regression results of instrument evaluation index and sensory evaluation index"

感官指标 Sensory index 预测模型 Prediction model R2 PP value
感官硬度 Sensory hardness Y=-3.238+0.002X1+6.749X4-0.003X5+3.633X6+0.993X7 0.700 <0.001
感官脆度 Sensory crispness Y=-2.203+0.002X1-0.039X3+7.346X4-0.003X5 0.621 <0.001
多汁性 Juiciness Y=7.319-0.01X2+0.001X5+0.987X7 0.152 <0.001
紧实度 Compactness Y=-1.572+0.002X1+6.207X4-0.002X5 0.586 <0.001
果肉粗细 Pulp texture quality Y=2.134+0.001X1 0.345 <0.001

Table 7

Correlation of instrument evaluation indicators"

指标
Index
TPA硬度
TPA hardness
脆度
Crispness
黏附性
Adhesiveness
弹性
Springiness
咀嚼性
Chewiness
内聚性
Cohesiveness
回复性
Resilience
TPA硬度 TPA hardness 1
脆度 Crispness 0.829** 1
黏附性 Adhesiveness 0.445** 0.551** 1
弹性 Springiness 0.668** 0.559** 0.222* 1
咀嚼性 Chewiness 0.956** 0.826** 0.385** 0.767** 1
内聚性 Cohesiveness 0.592** 0.625** 0.264** 0.783** 0.724** 1
回复性 Resilience -0.188** -0.206** -0.259** -0.328** -0.175** -0.467** 1

Table 8

Factor load value of pulp texture index after rotation"

质地指标 Texture index F1 F2 F3
硬度 Hardness 0.863 0.390 -0.030
脆度 Crispness 0.753 0.537 0.022
黏附性 Adhesiveness 0.156 0.932 0.168
弹性 Springiness 0.859 -0.052 0.312
咀嚼性 Chewiness 0.942 0.271 0.009
内聚性 Cohesiveness 0.785 0.021 0.482
回复性 Resilience -0.103 -0.156 -0.948
特征值 Eigenvalue 4.292 1.039 0.925
贡献率 Account (%) 51.254 20.138 17.985
累计贡献率 Total account (%) 51.254 71.391 89.377

Fig. 3

Cluster pedigree diagram"

Table 9

Cluster analysis of 278 germplasm materials was divided into 3 groups"

类群Group 种质名称 Germplasm name
Ⅰ (36) Ⅰ-1 (8) TM132♂、海星② Haixing②、19秋黄-1 19 Qiuhuang-1、2021301海 2021301 Hai、1934502、2024501海 2024501 Hai、2031501海 2031501 Hai、21HH-04-1
Ⅰ-2 (28) 1931321、AM流星-4黄皮-1 Amliuxing-4 Huangpi-1、1924204、海① Hai①、1924108、TM244♂、2034502、25♂C、21HB-05、1924303扁圆 1924303 Bianyuan、1924402、21春-4 21 Chun-4、1921402、1921401、1921406、1921307、1935402-1-4白肉 1935402-1-4 Bairou、1934415黄皮 1934415 Huangpi、2018618♂、1934415灰绿 1934415 Huilv、2016619、1934409、新25♀ Xin25♀、1935401-2-2、1931319、1921321白肉 1921321Bairou、21HHW-03、21HHW-05
Ⅱ (121) Ⅱ-1 (65) 1921324-3、1921320-5、1921324-1绿肉 1921324-1 Lvrou、1924401、AM流星-4白皮Amliuxing-4 Baipi、AM流星-5-1 Amliuxing-5-1、1921312-2、2019H25♂、2019H25♀、1924305、1924303、1924307、21HHW-07、21HHW-08、1934401、2019H26♀、1934402、1924401-4、M95♀、玉姑♂ Yugu♂、1924301、TM131♂-2、1921308土黄 1921308 Tuhuang、1921204正圆 1921204 Zhengyuan、1921404、1921201扁圆 1921201 Bianyuan、1921204上纹 1921204 Shangwen、1921213、TM214♀、玉姑♀ Yugu♀、1921317、1921310、1934501、1934405、2034501、1933403、25♂B、1924204、2024201海 2024201 Hai、2034301、1934404、2024402海 2024402 Hai、1935401-1绿皮 1935401-1 Lvpi、1935401-3红肉 1935401-3 Hongrou、1935309、25♂A、20180812-5-4-2、1935208、1933302正圆 1933302 Zhengyuan、1931320凸网 1931320 Tuwang、1935327、20180811-1-1海南 20180811-1-1 Hainan、1935204、20180812-9正圆 20180812-9 Zhengyuan、TM247♀、1921304、1923102、1935325-1高圆 1935325-1 Gaoyuan、21HH-04-2、21.35L-H03-1-3、1921204、21.35L-H03-3-3、21.35H-P01-1-1、21.35L-R02-1-1、1935308-1
Ⅱ-2 (56) 1921407、白流星-3-1 Bailiuxing-3-1、AM流星-1白肉-3 Amliuxing-1 Bairou-3、AM流星-4白肉-1 Amliuxing-4 Bairou-1、1924101、TM152♀-1、红金宝黄皮红肉 Hongjinbaohuangpihongrou、1924212、AM流星-6-1 Amliuxing-6-1、原1 Yuan1、1921201、21HB-3、1921203、1924206、2016617、1924210 (2019H123♀-2)、1922401-2、1921331-2、1924102、1921211、S84♀全网 S84♀ Quanwang 、1921204扁圆 1921204 Bianyuan、1921308、TM153♀、亚州蜜-2正圆 Yazhoumi-2 Zhengyuan、1921309、1921333、2019B06、2022401海 2022401 Hai、1931317、1931306、1935201、ZTG00021、TM132♀、1935201、1935325-1白皮 1935325-1Baipi、ZTG00480 、1931320细网 1931320 Xiwang、1933301、1935214、21HH-02、21HHW-01、21HHW-06椭圆 21Hhw-06 Tuoyuan、21HHW-04、21HH-03-1、21.35H-H01-3、21.35H-P01-2、21.35H-P01-5、21.35H-P01-4、21.35L-R03-3正圆 21.35L-r03-3 Zhengyuan、21.35L-H03-2-4、21.35H-H02-1-2、21.35L-R01-2、21.35H-P01-3-1高圆 21.35H-p01-3-1 Gaoyuan、21HW-07、TM295♀
Ⅲ (121) Ⅲ-1 (92) TM214♂、M17-47♀、S04♀、黄流星-2-5 Huangliuxing-2-5、1921309、1921319、AM流星-2-1 Amliuxing-2-1、1924203、1924306-1、1924106、2019H24♀-1、TM156♀、1924205正圆 1924205 Zhengyuan、1924107绿肉-2 1924107 Lvrou-2、1924302-2、1921324、玉姑李(半仁) Yuguli (banren)、玉姑李(17号)21春 Yuguli (17hao) 21chun、1924103、21HB-01、21HB-07、21HB-02、21HB-06、21HB-04、1924403 、21HBL-02、1924302-1、红金宝♀黄皮白肉 Hongjinbao ♀ Huangpibairou、1924313、2019H23♀-1、1934406、15074、1924109、玉(17号)院里-2 Yu (17hao) yuanli-2、1921209、1921324-10、1921312、2019W22、1924213、1921210(19秋) 1921210 (19Qiu)、1921314、1924304、ZTG00571-1、1921316、1921214、1921208、1935209、2035201海 2035201 Hai、1935303、1935213-2稀网 1935213-2 Xiwang、1935212、1935202、1933303、20180814-14-2海南正圆 20180814-14-2 Hainanzhengyuan、21HM-01、1935308粗网绿肉 1935308 Cuwanglvrou、21HHM-01、21.35L-H01-7、20180814♂、21.35L-H03-1-1、21.35H-R01-3、21.35H-H01-4-1、21.35H-R01-1、21.35H-H02-2-2、21.35L-H02-4-1、21.35L-H03-5-1、21.35L-H03-7-1、21.35L-R01-3-1、21.35L-R01-4-1、21.35L-H03-6-1、21.35L-H02-3-2、21.35L-H01-5-2、21.35L-H02-1-2、21,35L-H01-6-2、21.35H-H02-3-1、21.35H-H02-4-1、21.35H-H02-5-1、21.35L-H02-2-2、21.35L-P02-2-1、21.35L-P02-1-1、1935203 、21.35L-P02-3-1高圆21.35L-p02-3-1 Gaoyuan、21.35L-P02-4-1、21.35L-P02-6、21.35L-P01-1-1、21.35H-H01-2-2、21.35H-R01-4-1、21.35L-P01-3-2、1935206、21HW-03-1、21HW-06、21.35H-R01-3-1
Ⅲ-2 (29) 21HW-09、21HW-08、1931307、1921334、TM157♀、玉姑李-1 Yuguli-1、ZTG00530、1933201、21HBL-01、21HB-01(全网) 21Hb-01 (Quanwang)、1935210、1931309凸粗纹 1931309 Tucuwen、1935328、TM91♀、1935213、1935324、1931202、M95、1.35L-H01-7-2、21.35L-R02-2-1、21.35L-P01-3-1、21.35L-H01-1-3、21.35L-R02-3-2、21.35L-R01-1-2、21.35L-P01-2-1、21HW-05、21.35H-R01-2、CW-1-1、21.35H-R01-4-1

Table 10

Value interval and average of each index in each group"

类群
Group
硬度
Hardness
(N)
脆度
Crispness(N)
黏附性
Adhesiveness
(N)
弹性
Springiness
咀嚼性
Chewiness
(N)
内聚性
Cohesiveness
回复性
Resilience
Ⅰ-1 最小值 Min. 42.11 2.45 0.15 0.64 13.21 0.42 0.27
最大值 Max. 53.02 3.74 0.26 0.73 16.77 0.56 0.42
平均值 Average 45.82 2.79 0.17 0.68 14.79 0.48 0.33
Ⅰ-2 最小值 Min. 32.66 1.23 0.14 0.57 9.27 0.40 0.24
最大值 Max. 39.79 2.38 0.18 0.75 13.44 0.52 0.61
平均值 Average 36.49 2.15 0.15 0.66 11.74 0.47 0.32
Ⅱ-1 最小值 Min. 25.02 1.68 0.12 0.52 6.80 0.38 0.14
最大值 Max. 32.57 2.46 0.18 0.79 10.12 0.54 0.61
平均值 Average 28.32 1.88 0.15 0.63 8.06 0.44 0.28
Ⅱ-2 最小值 Min. 19.67 1.11 0.12 0.49 4.17 0.32 0.19
最大值 Max. 25.31 1.84 0.14 0.71 7.00 0.52 0.83
平均值 Average 22.55 1.61 0.13 0.62 6.11 0.42 0.31
Ⅲ-1 最小值 Min. 11.30 1.16 0.10 0.47 1.67 0.31 0.14
最大值 Max. 20.30 1.79 0.13 0.74 4.49 0.44 0.92
平均值 Average 15.92 1.29 0.12 0.58 3.74 0.39 0.26
Ⅲ-2 最小值 Min. 3.70 0.45 0.06 0.40 0.27 0.16 0.17
最大值 Max. 11.13 1.18 0.11 0.65 2.92 0.34 0.95
平均值 Average 8.55 0.83 0.09 0.49 1.43 0.30 0.62

Table 11

Average sensory scores and trait of various groups"

类群
Group
感官硬度
Sensory
hardness
感官脆度
Sensory
crispness
多汁性
Juiciness
紧实度
Compactness
果肉粗细
Pulp texture quality
特征
Trait
Ⅰ-1 最小值 Min. 7.70 7.60 4.70 6.70 4.90 硬度、脆度、紧实度最高,果肉最粗,多汁性最低。Ⅰ-2较Ⅰ-1的硬度、脆度、紧实度更低,果肉偏细,更为多汁
Hardness, crispness and compactness are the highest, pulp is the coarsest and juiciness is the lowest. I-2 has lower hardness, crispness and compactness, and the pulp is more delicate and juicier than I-1.
最大值 Max. 9.20 9.20 6.00 9.10 8.00
平均值Average 8.38 8.33 5.75 7.25 6.00
Ⅰ-2 最小值 Min. 6.90 6.40 5.10 6.10 3.90
最大值 Max. 8.10 8.00 6.50 8.00 5.80
平均值Average 7.86 7.18 6.30 6.71 5.18
Ⅱ-1 最小值 Min. 5.80 5.20 5.20 5.10 3.40 各项指标处于中间水平。Ⅱ-2较Ⅱ-1的硬度、脆度、紧实度更低,果肉偏细,更为多汁
Each index is in the middle level. Compared with Ⅱ-1, Ⅱ-2 has lower hardness, crispness and compactness, and the pulp is more delicate and juicier.
最大值 Max. 7.80 7.40 7.20 7.40 5.70
平均值Average 6.89 6.28 6.31 6.28 4.92
Ⅱ-2 最小值 Min. 5.60 5.00 5.40 4.50 3.20
最大值 Max. 6.90 6.50 7.50 6.40 5.30
平均值Average 6.16 5.45 6.54 5.43 4.20
Ⅲ-1 最小值 Min. 3.70 3.30 5.90 3.50 3.30 硬度、脆度、紧实度最低,果肉最细,多汁性最高。Ⅲ-2较Ⅲ-1的硬度、脆度、紧实度更低,果肉偏细,更为多汁
Hardness, crispness and compactness are the lowest, pulp is the thinnest and juiciness is the highest. The group Ⅲ-2 has lower hardness, crispness and compactness, and the pulp is more delicate and juicier than group Ⅲ-1.
最大值 Max. 5.50 5.30 7.80 4.80 4.60
平均值Average 4.68 3.95 6.62 3.95 3.65
Ⅲ-2 最小值 Min. 2.10 1.10 6.10 2.00 0.9
最大值 Max. 3.90 3.40 9.30 3.80 3.90
平均值Average 3.21 2.55 7.00 3.00 2.72
[1]
朱彩华, 高婷, 李梅, 龙荣华. 厚皮甜瓜种质资源果实性状的综合分析及评价. 中国瓜菜, 2023, 36(10): 32-41.
ZHU C H, GAO T, LI M, LONG R H. Principal component analysis and comprehensive evaluation of fruit traits of muskmelon germplasm resources. China Cucurbits and Vegetables, 2023, 36(10): 32-41. (in Chinese)
[2]
FARCUH M, COPES B, LE-NAVENEC G, MARROQUIN J, JAUNET T, CHI-HAM C, CANTU D, BRADFORD K J, VAN DEYNZE A. Texture diversity in melon (Cucumis melo L.): Sensory and physical assessments. Postharvest Biology and Technology, 2020, 159: 111024.

doi: 10.1016/j.postharvbio.2019.111024
[3]
LUZ L N D, VETTORAZZI J C F, SANTA-CATARINA R, BARROS F R, BARROS G B A, PEREIRA M G, CARDOSO D L. Sensory acceptance and qualitative analysis of fruits in papaya hybrids. Anais Da Academia Brasileira De Ciencias, 2018, 90(4): 3693-3703.

doi: 10.1590/0001-3765201820170111
[4]
SHIU J W, SLAUGHTER D C, BOYDEN L E, BARRETT D M. Correlation of descriptive analysis and instrumental puncture testing of watermelon cultivars. Journal of Food Science, 2016, 81(6): S1506-S1514.
[5]
AMYOTTE B, BOWEN A J, BANKS T, RAJCAN I, SOMERS D J. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS ONE, 2017, 12(2): e0171710.

doi: 10.1371/journal.pone.0171710
[6]
李三培, 华德平, 高星, 徐伟欣, 杨旭辉, 刘莉. 不同类型甜瓜成熟过程中果肉质地及其细胞显微结构的变化. 西北植物学报, 2017, 37(6): 1118-1125.
LI S P, HUA D P, GAO X, XU W X, YANG X H, LIU L. Variation characteristics of flesh texture and cell microstructure of different types of melon during ripening. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1118-1125. (in Chinese)
[7]
LI G H, REN Y M, REN X L, ZHANG X R. Non-destructive measurement of fracturability and chewiness of apple by FT-NIRS. Journal of Food Science and Technology, 2015, 52(1): 258-266.

doi: 10.1007/s13197-013-0990-2 pmid: 25593368
[8]
SONG S, JIN J, LI M Y, KONG D C, CAO M, WANG X, LI Y Y, CHEN X X, ZHANG X L, PANG X M, BO W H, HAO Q. The key metabolic network and genes regulating the fresh fruit texture of jujube (Ziziphus jujuba Mill.) revealed via metabolomic and transcriptomic analysis. Plants, 2023, 12(11): 2087.

doi: 10.3390/plants12112087
[9]
FARNETI B, DI GUARDO M, KHOMENKO I, CAPPELLIN L, BIASIOLI F, VELASCO R, COSTA F. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. Journal of Experimental Botany, 2017, 68(7): 1467-1478.

doi: 10.1093/jxb/erx018 pmid: 28338794
[10]
CHRISTOFI M, MOURTZINOS I, LAZARIDOU A, DROGOUDI P, TSITLAKIDOU P, BILIADERIS C G, MANGANARIS G A. Elaboration of novel and comprehensive protocols toward determination of textural properties and other sensorial attributes of canning peach fruit. Journal of Texture Studies, 2021, 52(2): 228-239.

doi: 10.1111/jtxs.12577 pmid: 33314120
[11]
JHA S N, JAISWAL P, NARSAIAH K, KAUR P P, SINGH A K, KUMAR R. Textural properties of mango cultivars during ripening. Journal of Food Science and Technology, 2013, 50(6): 1047-1057.

doi: 10.1007/s13197-011-0431-z pmid: 24426016
[12]
JAISWAL P, JHA S N, KAUR P P, BHARDWAJ R, SINGH A K, WADHAWAN V. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening. Journal of Food Science and Technology, 2014, 51(6): 1179-1184.

doi: 10.1007/s13197-012-0614-2
[13]
李丽娜, 赵武奇, 曾祥源, 薛珊, 霍瑶瑶, 方媛, 郭玉蓉. 苹果的质构与感官评定相关性研究. 食品与机械, 2017, 33(6): 37-41, 45.
LI L N, ZHAO W Q, ZENG X Y, XUE S, HUO Y Y, FANG Y, GUO Y R. Correlation between texture and sensory evaluation of Apple. Food & Machinery, 2017, 33(6): 37-41, 45. (in Chinese)
[14]
张杨, 梁怡蕾, 潘琦雯, 张文. 猕猴桃感官评定与质地剖面分析的相关性. 食品工业科技, 2018, 39(16): 243-247, 252.
ZHANG Y, LIANG Y L, PAN Q W, ZHANG W. Correlation between the sensory evaluation and texture profile analysis of kiwifruit. Science and Technology of Food Industry, 2018, 39(16): 243-247, 252. (in Chinese)
[15]
QIU X, ZHANG H N, ZHANG H Y, DUAN C W, XIONG B, WANG Z H. Fruit textural characteristics of 23 plum (Prunus salicina Lindl) cultivars: Evaluation and cluster analysis. HortScience, 2021, 56(7): 816-823.

doi: 10.21273/HORTSCI15828-21
[16]
姜建福, 樊秀彩, 张颖, 孙磊, 李民, 刘勇翔, 牛生洋, 张振文, 刘崇怀. 基于TPA法葡萄果肉质地的鉴定评价. 中国果树, 2022(3): 31-36.
JIANG J F, FAN X C, ZHANG Y, SUN L, LI M, LIU Y X, NIU S Y, ZHANG Z W, LIU C H. Analysis and comprehensive evaluation of grape berry texture based on TPA method. China Fruits, 2022(3): 31-36. (in Chinese)
[17]
崔永宁, 陈洁珍, 史发超, 姜永华, 严倩, 欧良喜, 刘海伦, 蔡长河. 基于TPA法的荔枝资源果肉质地品质分析. 果树学报, 2022, 39(12): 2241-2252.
CUI Y N, CHEN J Z, SHI F C, JIANG Y H, YAN Q, OU L X, LIU H L, CAI C H. Analysis of texture quality of the fruits in litchi based on the texture profile analysis (TPA). Journal of Fruit Science, 2022, 39(12): 2241-2252. (in Chinese)
[18]
潘好斌, 刘东, 邵青旭, 高歌, 齐红岩. 不同品种薄皮甜瓜成熟期果实质地品质分析及综合评价. 食品科学, 2019, 40(21): 35-42.

doi: 10.7506/spkx1002-6630-20181025-299
PAN H B, LIU D, SHAO Q X, GAO G, QI H Y. Analysis and comprehensive evaluation of textural quality of ripe fruits from different varieties of oriental melon (Cucumis melo var. makuwa Makino). Food Science, 2019, 40(21): 35-42. (in Chinese)

doi: 10.1111/jfds.1975.40.issue-1
[19]
BLAKER K M, PLOTTO A, BALDWIN E A, OLMSTEAD J W. Correlation between sensory and instrumental measurements of standard and crisp-texture southern highbush blueberries (Vaccinium corymbosum L. interspecific hybrids). Journal of the Science of Food and Agriculture, 2014, 94(13): 2785-2793.

doi: 10.1002/jsfa.2014.94.issue-13
[20]
CLIFF M A, BEJAEI M. Inter-correlation of apple firmness determinations and development of cross-validated regression models for prediction of sensory attributes from instrumental and compositional analyses. Food Research International, 2018, 106: 752-762.

doi: S0963-9969(18)30049-8 pmid: 29579984
[21]
马庆华, 王贵禧, 梁丽松. 质构仪穿刺试验检测冬枣质地品质方法的建立. 中国农业科学, 2011, 44(6): 1210-1217.
MA Q H, WANG G X, LIANG L S. Establishment of the detecting method on the fruit texture of Dongzao by puncture test. Scientia Agricultura Sinica, 2011, 44(6): 1210-1217. (in Chinese)
[22]
LI J, HUANG B H, WU C P, SUN Z, XUE L, LIU M H, CHEN J Y. Nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology. International Journal of Food Properties, 2022, 25(1): 1697-1713.

doi: 10.1080/10942912.2022.2098972
[23]
BEJAEI M, STANICH K, CLIFF M A. Modelling and classification of apple textural attributes using sensory, instrumental and compositional analyses. Foods, 2021, 10(2): 384.

doi: 10.3390/foods10020384
[24]
沈颖越, 宋婷婷, 蔡为明, 范丽军. 基于质构仪质地多面分析法对香菇质地评价. 菌物学报, 2021, 40(5): 1180-1189.

doi: 10.13346/j.mycosystema.200291
SHEN Y Y, SONG T T, CAI W M, FAN L J. Evaluation on fruiting body texture of Lentinula edodes based on texture profile analysis. Mycosystema, 2021, 40(5): 1180-1189. (in Chinese)
[25]
刘莉, 高星, 华德平, 刘翔, 李志文, 张平, 李三培, 张少慧. 不同的质构检测方法对甜瓜果肉质构的评价. 天津大学学报(自然科学与工程技术版), 2016, 49(8): 875-881.
LIU L, GAO X, HUA D P, LIU X, LI Z W, ZHANG P, LI S P, ZHANG S H. Evaluation of the textural properties of melon flesh by different texture test methods. Journal of Tianjin University (Science and Technology), 2016, 49(8): 875-881. (in Chinese)
[26]
SWISHER L L, BECKSTEAD J W, BEBEAU M J. Factor analysis as a tool for survey analysis using a professional role orientation inventory as an example. Physical Therapy, 2004, 84(9): 784-799.

pmid: 15330692
[27]
张佳, 聂继云, 张惠, 李静, 李也. 越橘品质指标评价. 中国农业科学, 2019, 52(12): 2128-2139. doi: 10.3864/j.issn.0578-1752.2019.12.010.
ZHANG J, NIE J Y, ZHANG H, LI J, LI Y. Evaluation indexes for blueberry quality. Scientia Agricultura Sinica, 2019, 52(12): 2128-2139. doi: 10.3864/j.issn.0578-1752.2019.12.010. (in Chinese)
[28]
王佳豪, 段雅倩, 乜兰春, 宋立彦, 赵文圣, 方思雨, 赵佳腾. ‘羊角脆’类甜瓜果实品质因子分析及综合评价. 中国农业科学, 2019, 52(24): 4582-4591. doi: 10.3864/j.issn.0578-1752.2019.24.012.
WANG J H, DUAN Y Q, NIE L C, SONG L Y, ZHAO W S, FANG S Y, ZHAO J T. Factor analysis and comprehensive evaluation of the fruit quality of Yangjiaocui melons. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591. doi: 10.3864/j.issn.0578-1752.2019.24.012. (in Chinese)
[29]
孙亚强, 吴翠云, 王德, 王志强. 野生酸枣资源果实品质因子分析及评价指标选择. 食品科学, 2016, 37(9): 29-34.

doi: 10.7506/spkx1002-6630-201609006
SUN Y Q, WU C Y, WANG D, WANG Z Q. Selection of quality indicators and factor analysis for fruit quality evaluation of Ziziphus jujuba var. spinosa germplasms. Food Science, 2016, 37(9): 29-34. (in Chinese)

doi: 10.1111/jfds.1972.37.issue-1
[30]
李颖, 张树航, 郭燕, 张馨方, 王广鹏. 211份板栗种质资源花序表型多样性和聚类分析. 中国农业科学, 2020, 53(22): 4667-4682. doi: 10.3864/j.issn.0578-1752.2020.22.013.
LI Y, ZHANG S H, GUO Y, ZHANG X F, WANG G P. Catkin phenotypic diversity and cluster analysis of 211 Chinese chestnut germplasms. Scientia Agricultura Sinica, 2020, 53(22): 4667-4682. doi: 10.3864/j.issn.0578-1752.2020.22.013. (in Chinese)
[31]
王燕霞, 王晓蔓, 关军锋. 梨果肉质地性状分析. 中国农业科学, 2014, 47(20): 4056-4066. doi: 10.3864/j.issn.0578-1752.2014.20.014.
WANG Y X, WANG X M, GUAN J F. Flesh texture characteristic analysis of pear. Scientia Agricultura Sinica, 2014, 47(20): 4056-4066. doi: 10.3864/j.issn.0578-1752.2014.20.014. (in Chinese)
[1] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[2] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[3] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[4] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[5] Yue GE,DeQuan ZHANG,ShaoBo LI,Li CHEN,XiaoChun ZHENG,Ce LIANG,TongJing YAN,JinHuo LI,ZhenYu WANG. Eating Quality Evaluation of Lamb in Different Postmortem Phases Based on Consumers’ Sensory Preferences [J]. Scientia Agricultura Sinica, 2022, 55(18): 3640-3651.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] Hui LU,YuJie YUAN,SiQi ZHANG,Hong CHEN,Duo CHEN,XiaoYuan ZHONG,Bo LI,Fei DENG,Yong CHEN,GuiYong LI,WanJun REN. Evaluation of Rice Eating Quality and Optimization of Varieties of Southwest Indica Hybrid Rice Based on Three Taste Evaluation Methods [J]. Scientia Agricultura Sinica, 2021, 54(6): 1243-1257.
[8] ZOU YunQian,ZHANG Li,WU FangFang,XU RangWei,XU Juan,HU ShiQuan,XIE HePing,CHENG YunJiang. Effects of Wax Coating on Off-Flavor Compound Accumulation in the Pulp of Satsuma Mandarin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2450-2459.
[9] LI Ling,XU Shu,CAO RuXia,CHEN LingLing,CUI Peng,LÜ ZunFu,LU GuoQuan. Evaluation of Texture Quality of Sweetpotato Storage Roots Based on PCA-Entropy TOPSIS [J]. Scientia Agricultura Sinica, 2020, 53(11): 2161-2170.
[10] SHI FangFang, ZHANG QingAn. Effects of Different Citric Acid Solutions on the Quality of Apricot Kernels During Debitterizing Mediated by Ultrasound Irradiation [J]. Scientia Agricultura Sinica, 2019, 52(17): 3034-3048.
[11] WANG Qiong, XU BaoCai, YU Hai, LI Cong. Electronic Nose and Electronic Tongue Combined with Fuzzy Mathematics Sensory Evaluation to Optimize Bacon Smoking Procedure [J]. Scientia Agricultura Sinica, 2017, 50(1): 161-170.
[12] WEI Yi-min, XING Ya-nan, ZHANG Ying-quan, KONG Yan, LI Ming, ZHANG Bo, TANG Na. The Sensory Evaluation Methods of Production Process and Product of Lanzhou Hand-Extended Noodles [J]. Scientia Agricultura Sinica, 2016, 49(20): 4016-4029.
[13] XIE Yue-jie, HE Zhi-fei, LI Hong-jun. The Odor of Rabbit Meat Extracted by Supercritical Carbon Dioxide Fluid Extraction [J]. Scientia Agricultura Sinica, 2016, 49(16): 3208-3218.
[14] ZHANG Rui, ZHANG Zong-ying, GAO Li-ping, JI Xiao-hao, MAO Zhi-quan, XU Hai-feng, WANG Nan, WU Shu-jing, CHEN Xue-sen. Study on the Molecular Mechanism Controlling Differences in Fruit Texture Formation of Apple Soft/Crisp Strains [J]. Scientia Agricultura Sinica, 2015, 48(18): 3676-3688.
[15] HE Yi-Zhong-1, CHEN Zhao-Xing-1, 2 , LIU Run-Sheng-1, FANG Yi-Wen-2, GU Zu-Liang-3, YAN Xiang-2, CHEN Hong-3, ZHANG Hong-Ming-2, TANG Huan-Qing-3, CHENG Yun-Jiang-1. Effects of Different Storage Methods on Fruit Quality of ‘Newhall’ Navel Orange (Citrus sinensis Osbeck‘Newhall’) in Southern Jiangxi Province [J]. Scientia Agricultura Sinica, 2014, 47(4): 736-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!