Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (22): 4444-4458.doi: 10.3864/j.issn.0578-1752.2024.22.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Strip Intercropping Patterns on the Growth and Productivity in Cotton

ZHANG YongLi1(), ZHANG Ning1, XU Jiao1, XU DouDou1, CHENG Fang1, ZHANG ChengLong1, WU BiBo2, GONG YangCang3, HE YunXin3, WEI ShangZhi4, TU XiaoJu1, LIU AiYu1, ZHOU ZhongHua1()   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128
    2 Hunan Biological and Electromechnical Polytechnic, Changsha 410127
    3 Hunan Institute of Cotton Science, Changde, 415101, Hunan
    4 Agricultural Comprehensive Service Center, Huanggai Town, Linxiang City, Yueyang, 414300, Hunan
  • Received:2024-03-30 Accepted:2024-08-12 Online:2024-11-16 Published:2024-11-22
  • Contact: ZHOU ZhongHua

Abstract:

【Objective】By analyzing the effects of different strip intercropping patterns on cotton biomass accumulation and distribution, photosynthetic performance and yield, the potential mechanism of cotton yield increase and efficiency under different strip intercropping patterns was explored, so the optimum cotton strip intercropping planting pattern suitable for the Yangtze River basin was proposed. 【Method】A two-point field experiment was conducted with monocropping cotton (MC) as the control, and three intercropping patterns of cotton-sweet potato (CS), cotton-bean (CB) and cotton-melon (CM) were set up, while two strip configurations were as follows: 3:3 and 4:2. The effects of different strip intercropping patterns on biomass accumulation, organ distribution, light and performance and yield of cotton were analyzed, and the ratio of cotton to soil equivalent and economic benefit under different strip intercropping patterns were calculated and compared. 【Result】Compared with MC, The average seed cotton yield and lint cotton yield under strip intercropping patterns in two field trials were significantly increased. Among them, compared with cotton intercropping with sweet potato and cotton intercropping with melon, the cotton intercropping with bean had the most significant advantage in cotton yield. and the yield of CB 3:3 pattern seed cotton was 23.20% and 32.46% higher than MC, respectively; compared with MC, the yield of lint was increased by 26.43% and 32.53%, respectively; the main reason was that the number of bolls per plant was 26.58 and 24.43, respectively, which were significantly increased by 22.21% and 28.85% compared with that of single cropping. The boll weight of cotton intercropping with sweet potato CS 4:2 in Hengyang was 3.01% lower than MC. At full boll period, the biomass accumulation of cotton plant was higher than MC, and the proportion of reproductive organs allocation was significantly higher than that of stem and leaf, the proportion of reproductive organs in each intercropping pattern in Hengyang was more than 50%. From full squaring period to boll opening period, the leaf area index of all treatments showed a trend of first increasing and then decreasing. Compared with MC, the relative chlorophyll content and net photosynthetic rate of cotton plants were significantly increased under each intercropping pattern at full boll period. Among them, the cotton intercropping with beans at two field trials was the most advantageous. The net photosynthetic rate was 6.25%-6.29% and 2.85%-2.90% higher than MC, respectively, so it could effectively improve the photosynthetic performance of cotton plant and finally achieve yield increase. Under different strip intercropping patterns, the total economic benefit of cotton field in the two field trials increased by 1.24-2.70 times and 1.42-3.09 times, respectively, compared with MC. From the point of view of partial land equivalent ratio of cotton, except CS 4:2 pattern in Changsha, the other strip intercropping pattern in two field trials showed the advantage of intercropping yield. 【Conclusion】The increase of yield in different strip intercropping patterns was mainly achieved through the improvement of biomass accumulation, assimilate allocation and photosynthetic performance. The best performance was cotton intercropping with sweet potato CS 3:3 pattern, which ensured higher yield and intercropping advantages, and was suitable for spreading planting in the Yangtze River basin.

Key words: cotton, strip intercropping pattern, yield, biomass accumulation and distribution, photosynthetic performance, economic benefit

Table 1

Soil chemical properties of each experimental position"

地点
Position
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
全钾
Total potassium (g·kg-1)
有机质
Organic matter (g·kg-1)
长沙 Changsha 2.04 0.66 21.68 32.84
衡阳 Hengyang 1.86 0.64 21.87 31.66

Fig. 1

Schematic diagram of field experiment"

Table 2

Effects of different strip intercropping patterns on cotton yield and its component factors"

地点
Position
带状间作模式
Strip intercropping pattern
单株成铃数
Boll number per plant
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
籽棉产量
Seed cotton yield
(kg·hm-2
皮棉产量
Lint yield
(kg·hm-2
长沙
Changsha
CS 3﹕3 24.55ab 5.22ab 35.36a 6312.55ab 2231.94ab
CS 4﹕2 20.20c 5.42a 34.60a 5381.70c 1862.09c
CB 3﹕3 26.58a 5.18ab 35.63a 6818.79a 2427.73a
CB 4﹕2 24.33ab 5.14ab 34.75a 6148.69abc 2134.48abc
CM 3﹕3 22.95bc 5.00b 34.21a 5678.12bc 1943.00bc
CM 4﹕2 22.73bc 5.00b 35.78a 5625.37bc 2007.60bc
MC 21.75bc 5.14ab 34.56a 5542.68bc 1920.26bc
衡阳
Hengyang
CS 3﹕3 21.88abc 5.14ab 34.92a 5567.99abc 1944.08abc
CS 4﹕2 19.73c 4.99b 36.13a 4875.20c 1766.12bc
CB 3﹕3 24.43a 5.28a 35.18a 6391.82a 2248.60a
CB 4﹕2 22.89ab 5.22ab 35.20a 5925.00ab 2085.18ab
CM 3﹕3 20.91bc 5.23ab 34.52a 5422.06bc 1871.35bc
CM 4﹕2 21.13bc 5.33a 34.54a 5594.30abc 1933.66abc
MC 18.96c 5.14ab 35.16a 4825.45c 1696.67c

Fig. 2

Accumulation of aboveground biomass of cotton plant at different growth stages"

Fig. 3

Distribution of aboveground biomass of cotton plant at different growth stages"

Table 3

Effects of different strip intercropping patterns on cotton leaf area index"

地点
Position
带状间作模式
Strip intercropping pattern
盛蕾期
Full squaring period
盛花期
Full flowering period
盛铃期
Full boll-setting period
吐絮期
Boll opening period
长沙
Changsha
CS 3﹕3 1.68ab 4.68a 5.28ab 4.31ab
CS 4﹕2 1.60ab 4.55ab 4.97b 4.22ab
CB 3﹕3 1.69ab 4.16b 5.32ab 4.37ab
CB 4﹕2 1.36b 4.27ab 5.60a 4.65a
CM 3﹕3 2.06a 4.57a 5.24ab 3.91b
CM 4﹕2 1.86ab 4.38ab 5.09ab 4.44ab
MC 1.36b 4.33ab 4.35c 4.61a
衡阳
Hengyang
CS 3﹕3 1.46a 2.80b 4.04ab 3.38ab
CS 4﹕2 1.76a 3.35ab 3.95ab 3.62a
CB 3﹕3 1.69a 3.53a 4.14ab 3.70a
CB 4﹕2 1.67a 3.03ab 4.17a 3.39ab
CM 3﹕3 1.49a 3.01ab 3.68ab 3.06b
CM 4﹕2 1.70a 3.27ab 4.06ab 3.55ab
MC 1.64a 3.48a 3.64b 3.82a

Fig. 4

Influence of different strip intercropping patterns on SPAD value of cotton"

Fig. 5

Effects of different strip intercropping patterns on the net photosynthetic rate of cotton"

Table 4

Effects of different strip intercropping patterns on intercropping advantages of cotton fields"

地点
Position
带状间作模式
Strip intercropping pattern
配对作物产量
Paired crop yield (kg·hm-2)
总经济效益(元/hm2)
Total economic (yuan·hm-2)
棉花的偏土地当量比
PLER—C
PLER—C比FC的增幅
(%)
长沙
Changsha
CS 3﹕3 34650 163853 0.58 16.00%
CS 4﹕2 32614 159162 0.65 -2.99%
CB 3﹕3 12027 99439 0.66 32.00%
CB 4﹕2 11362 100967 0.74 10.45%
CM 3﹕3 25500 124712 0.56 12.00%
CM 4﹕2 24900 129601 0.68 1.49%
MC 44341
衡阳
Hengyang
CS 3﹕3 33868 157747 0.57 14.00%
CS 4﹕2 32198 154794 0.68 1.49%
CB 3﹕3 11744 96033 0.62 24.00%
CB 4﹕2 10292 93356 0.82 22.39%
CM 3﹕3 24876 121193 0.51 2.00%
CM 4﹕2 22105 118258 0.78 16.42%
MC 38603
[1]
崔爱花, 刘帅, 黄国勤. 棉田间作系统的农田小气候特征及光合特性. 湖北农业科学, 2021, 60(13): 18-25.
CUI A H, LIU S, HUANG G Q. Microclimatic and photosynthetic characteristics of cotton field intercropping systems. Hubei Agricultural Sciences, 2021, 60(13): 18-25. (in Chinese)
[2]
卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望. 中国农业科学, 2018, 51(1): 26-36. doi: 10.3864/j.issn.0578-1752.2018.01.003.
LU X R, JIA X Y, NIU J H. The present situation and prospects of cotton industry development in China. Scientia Agricultura Sinica, 2018, 51(1): 26-36. doi: 10.3864/j.issn.0578-1752.2018.01.003. (in Chinese)
[3]
LI L, ZHANG L Z, ZHANG F S. Crop mixtures and the mechanisms of overyielding. Encyclopedia of Biodiversity. Amsterdam: Elsevier, 2013: 382-395.
[4]
刘登望, 李林, 王正功. 棉花花生间作复合系统的照度、生长发育与生产力效应. 中国农学通报, 2010, 26(24): 270-275.
LIU D W, LI L, WANG Z G. Effects of cotton-peanut intercropping system on relative illumination, growth and development and productivity. Chinese Agricultural Science Bulletin, 2010, 26(24): 270-275. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2010-0593
[5]
肖富良, 肖国滨, 郑伟, 肖小军, 吕伟生, 李亚贞, 黄天宝, 吴艳. 不同行比配置对鲜食玉米—绿豆套种甘薯体系产量效益的影响. 湖南农业科学, 2021(4): 39-43.
XIAO F L, XIAO G B, ZHENG W, XIAO X J, LÜW S, LI Y Z, HUANG T B, WU Y. Effects of different row ratios on yield and benefit of table corn-mung bean rotation +Sweet potato relay intercropping system. Hunan Agricultural Sciences, 2021(4): 39-43. (in Chinese)
[6]
王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30(6): 1057-1066.

doi: 10.11849/zrzyxb.2015.06.016
WANG Z K, WU P T, ZHAO X N, LI Z Z, FU X J. A review of light interception and utilization by intercropped canopies. Journal of Natural Resources, 2015, 30(6): 1057-1066. (in Chinese)
[7]
CHI B J, ZHANG Y J, ZHANG D M, ZHANG X J, DAI J L, DONG H Z. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns. Field Crops Research, 2019, 243: 107617.
[8]
苏本营, 陈圣宾, 李永庚, 杨文钰. 间套作种植提升农田生态系统服务功能. 生态学报, 2013, 33(14): 4505-4514.
SU B Y, CHEN S B, LI Y G, YANG W Y. Intercropping enhances the farmland ecosystem services. Acta Ecologica Sinica, 2013, 33(14): 4505-4514. (in Chinese)
[9]
HUANG C D, LIU Q Q, GOU F, LI X L, ZHANG C C, VAN DER WERF W, ZHANG F S. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Research, 2017, 201: 41-51.
[10]
ZHANG Z G, WANG J, XIONG S W, HUANG W B, LI X F, XIN M H, HAN Y C, WANG G P, FENG L, LEI Y P, YANG B F, LI Y B, WANG Z B. Orychophragmus violaceus/cotton relay intercropping with reduced N application maintains or improves crop productivity and soil carbon and nitrogen fractions. Field Crops Research, 2023, 291: 108807.
[11]
许豆豆, 贺云新, 李飞, 刘爱玉, 周仲华. 间套作模式在棉田上的研究进展. 河南农业科学, 2023, 52(6): 1-11.
XU D D, HE Y X, LI F, LIU A Y, ZHOU Z H. Research progress of intercropping patterns in cotton fields. Journal of Henan Agricultural Sciences, 2023, 52(6): 1-11. (in Chinese)

doi: 10.15933/j.cnki.1004?3268.2023.06.001
[12]
AI P R, MA Y J, HAI Y. Influence of jujube/cotton intercropping on soil temperature and crop evapotranspiration in an arid area. Agricultural Water Management, 2021, 256: 107118.
[13]
刘郁娜, 徐文修, 张巨松, 曹公利, 欧扬, 李晓龙. 杏棉间作系统棉花冠层小气候特征及棉花产量边际效应研究. 新疆农业科学, 2011, 48(12): 2176-2182.
LIU Y N, XU W X, ZHANG J S, CAO G L, OU Y, LI X L. Study on microclimatic characteristic of cotton canopy and marginal effect of cotton yield of apricot-cotton intercropping system. Xinjiang Agricultural Sciences, 2011, 48(12): 2176-2182. (in Chinese)
[14]
马雨荷, 苏康妮, 廖晨宇, 徐业勇, 王宝庆, 张萍, 虎海防. 核桃—棉花间作模式下核桃果实品质及间作物光合特性. 林业科技通讯, 2021(2): 6-11.
MA Y H, SU K N, LIAO C Y, XU Y Y, WANG B Q, ZHANG P, HU H F. Fruit quality and photosynthetic characteristics of intercropping in walnut-cotton intercropping model. Forest Science and Technology, 2021(2): 6-11. (in Chinese)
[15]
LIANG J P, SHI W J. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: a three-year field experiment. Field Crops Research, 2021, 262: 108027.
[16]
崔爱花, 孙巨龙, 刘帅, 胡启星, 白志刚, 刘婷. 三种间作模式对棉花产量和品质及棉田效益的影响比较. 棉花科学, 2021, 43(2): 22-28.
CUI A H, SUN J L, LIU S, HU Q X, BAI Z G, LIU T. Comparison of the effects of three intercropping patterns on cotton yield and quality and cotton benefits. Cotton Sciences, 2021, 43(2): 22-28. (in Chinese)
[17]
王国平, 刘连涛, 雷亚平, 冯璐, 张永江, 王占彪, 李小飞, 李亚兵, 李存东. 机采棉模式下麦棉两熟配置方式对作物产量和棉花早熟性的影响. 棉花学报, 2022, 34(5): 430-442.

doi: 10.11963/cs20220028
WANG G P, LIU L T, LEI Y P, FENG L, ZHANG Y J, WANG Z B, LI X F, LI Y B, LI C D. The effect of crop configuration between wheat and cotton on crop yield and cotton maturity under the machine-harvested cotton cropping mode. Cotton Science, 2022, 34(5): 430-442. (in Chinese)
[18]
田树飞, 郭润泽, 张晓军, 邹晓霞, 于晓娜, 王月福, 司彤. 间作隔根对花生和棉花叶片光合特性的影响. 花生学报, 2019, 48(4): 35-42.
TIAN S F, GUO R Z, ZHANG X J, ZOU X X, YU X N, WANG Y F, SI T. Effect of different root isolation methods on the photosynthesis characteristics of peanut and cotton leaves. Journal of Peanut Science, 2019, 48(4): 35-42. (in Chinese)
[19]
吴国丽, 魏飞, 刘建国, 王超凡, 马子豪, 马怡茹. 不同种植模式对连作棉花根系生长和生理指标的影响. 中国棉花, 2019, 46(3): 11-15.

doi: 10.11963/1000-632X.wglljg.20190218
WU G L, WEI F, LIU J G, WANG C F, MA Z H, MA Y R. Effects of different planting patterns on root growth and physiological traits in cotton. China Cotton, 2019, 46(3): 11-15. (in Chinese)

doi: 10.11963/1000-632X.wglljg.20190218
[20]
宫慧慧, 张玉娟, 赵军胜, 李振怀, 卢合全, 徐士振, 赵逢涛, 孟庆华, 董合忠. 棉花/芝麻间作模式对作物生长和产量的影响. 棉花学报, 2019, 31(2): 147-155.

doi: 10.11963/1002-7807.ghhdhz.20190315
GONG H H, ZHANG Y J, ZHAO J S, LI Z H, LU H Q, XU S Z, ZHAO F T, MENG Q H, DONG H Z. Effects of cotton/sesame intercropping patterns on crop growth and yield. Cotton Science, 2019, 31(2): 147-155. (in Chinese)
[21]
党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 不同棉花间作模式中作物养分吸收和利用对间作优势的贡献. 中国生态农业学报, 2012, 20(5): 513-519.
DANG X Y, LIU J G, PA N, WANG J L, WEI C Z, LI L. Uptake and conversion efficiencies of NPK and corresponding contribution to yield advantage in cotton-based intercropping systems. Chinese Journal of Eco-Agriculture, 2012, 20(5): 513-519. (in Chinese)
[22]
杨涛, 段志平, 石岩松, 刘天煜, 栾鹏飞, 张永强, 焦超, 朱芸, 李鲁华, 张伟. 新疆枣棉间作下棉花光合特性及产量变化. 干旱地区农业研究, 2019, 37(1): 89-94.
YANG T, DUAN Z P, SHI Y S, LIU T Y, LUAN P F, ZHANG Y Q, JIAO C, ZHU Y, LI L H, ZHANG W. Analysis of photosynthetic characteristics and yield of cotton intercropping with Jujube in Xinjiang. Agricultural Research in the Arid Areas, 2019, 37(1): 89-94. (in Chinese)
[23]
WANG G P, LI Y B, HAN Y C, WANG Z B, YANG B F, LI X F, FENG L. Resource use efficiency in a cotton-wheat double-cropping system in the Yellow River Valley of China. Experimental Agriculture, 2020, 56(3): 422-439.
[24]
王兆祎. 种植行向对花生棉花间作冠层微环境及产量的影响[D]. 泰安: 山东农业大学, 2020.
WANG Z Y. Effects of planting row direction on canopy microenvironment and yield of peanut-cotton intercropping[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[25]
WANG Z S, DONG B, STOMPH T J, EVERS J B, VAN DER PUTTEN P E L, MA H H, MISSALE R, VAN DER WERF W. Temporal complementarity drives species combinability in strip intercropping in the Netherlands. Field Crops Research, 2023, 291: 108757.
[26]
许豆豆, 赵亮, 张宁, 张永莉, 谢章书, 李侃, 杨丹, 覃业玲, 李佳芮, 周成轩, 朱方歌, 刘爱玉, 贺云新, 周仲华. 长江流域棉区带状间作对棉花生长、产量及棉田经济效益的影响. 棉花学报, 2023, 35(2): 146-156.

doi: 10.11963/cs20230002
XU D D, ZHAO L, ZHANG N, ZHANG Y L, XIE Z S, LI K, YANG D, QIN Y L, LI J R, ZHOU C X, ZHU F G, LIU A Y, HE Y X, ZHOU Z H. Effects of strip intercropping on cotton growth, yield and economic benefits of cotton fields in the Yangtze River basin. Cotton Science, 2023, 35(2): 146-156. (in Chinese)
[27]
李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响. 作物学报, 2022, 48(8): 2041-2052.

doi: 10.3724/SP.J.1006.2022.14142
LI X, WANG J, LI Y B, HAN Y C, WANG Z B, FENG L, WANG G P, XIONG S W, LI C D, LI X F. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation. Acta Agronomica Sinica, 2022, 48(8): 2041-2052. (in Chinese)

doi: 10.3724/SP.J.1006.2022.14142
[28]
党小燕, 刘建国, 帕尼古丽, 王江丽, 危常州, 李隆. 棉花间作模式中作物养分竞争吸收和积累动态的研究. 植物营养与肥料学报, 2013, 19(1): 166-173.
DANG X Y, LIU J G, PA N, WANG J L, WEI C Z, LI L. Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems in Xinjiang, China. Plant Nutrition and Fertilizer Science, 2013, 19(1): 166-173. (in Chinese)
[29]
LIANG J P, HE Z J, SHI W J. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agricultural Water Management, 2020, 240: 106277.
[30]
杨德峰, 王德明. 夏津县棉花西瓜间作高产高效优质栽培技术集成与创新. 现代园艺, 2017(7): 79-80.
YANG D F, WANG D M. Integration and innovation of high yield, high efficiency and high quality cultivation technology of cotton watermelon intercropping in Xiajin County. Modern Horticulture, 2017(7): 79-80. (in Chinese)
[31]
蔡倩, 孙占祥, 郑家明, 王文斌, 白伟, 冯良山, 杨宁, 向午燕, 张哲, 冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54(5): 909-920. doi: 10.3864/j.issn.0578-1752.2021.05.004.
CAI Q, SUN Z X, ZHENG J M, WANG W B, BAI W, FENG L S, YANG N, XIANG W Y, ZHANG Z, FENG C. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning Province. Scientia Agricultura Sinica, 2021, 54(5): 909-920. doi: 10.3864/j.issn.0578-1752.2021.05.004. (in Chinese)
[32]
王璐, 刘浩, 高福奎, 宁慧峰, 韩其晟, 徐雪雯, 王兴鹏, 李小刚. 不同种植模式和灌水定额对棉花生长和产量的影响. 灌溉排水学报, 2023, 42(5): 16-23.
WANG L, LIU H, GAO F K, NING H F, HAN Q S, XU X W, WANG X P, LI X G. Effects of Different Planting Patterns and Irrigation Quota on Cotton Growth and Yield. Journal of Irrigation and Drainage, 2023, 42(5): 16-23. (in Chinese)
[33]
王沛娟, 樊文霞, 李燕芳, 李田甜, 吴全忠, 翟云龙, 万素梅, 陈国栋. 枣棉间作复合系统种植模式对棉花光合特性及产量的影响. 核农学报, 2022, 36(10): 2035-2045.

doi: 10.11869/j.issn.100-8551.2022.10.2035
WANG P J, FAN W X, LI Y F, LI T T, WU Q Z, ZHAI Y L, WAN S M, CHEN G D. Effects of planting patterns of jujube-cotton intercropping system on photosynthetic characteristics and yield of cotton. Journal of Nuclear Agricultural Sciences, 2022, 36(10): 2035-2045. (in Chinese)

doi: 10.11869/j.issn.100-8551.2022.10.2035
[34]
WANG X Y, YANG T, SHEN L, ZHANG W L, WAN S M, ZHANG W, LI L H. Formation of factors influencing cotton yield in jujube-cotton intercropping systems in Xinjiang, China. Agroforestry Systems, 2021, 95(1): 177-189.
[35]
焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013, 37(11): 1010-1017.

doi: 10.3724/SP.J.1258.2013.00104
JIAO N Y, YANG M K, NING T Y, YIN F, XU G W, FU G Z, LI Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017. (in Chinese)
[36]
朱文旭, 张会慧, 许楠, 王鹏, 王师丹, 牟世南, 梁明, 孙广玉. 间作对桑树和谷子生长和光合日变化的影响. 应用生态学报, 2012, 23(7): 1817-1824.
ZHU W X, ZHANG H H, XU N, WANG P, WANG S D, MU S N, LIANG M, SUN G Y. Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis. Chinese Journal of Applied Ecology, 2012, 23(7): 1817-1824. (in Chinese)
[37]
艾鹏睿, 马英杰. 间作模式农田小气候效应对棉花生理生态指标的影响. 新疆农业科学, 2021, 58(9): 1594-1602.

doi: 10.6048/j.issn.1001-4330.2021.09.004
AI P R, MA Y J. Effects of field microclimate on physiological and ecological indexes of cotton under intercropping mode. Xinjiang Agricultural Sciences, 2021, 58(9): 1594-1602. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2021.09.004
[38]
WANG Z X, ZHU J M, WANG J, WANG Y, LU Y X, ZHENG Q R. The response of photosynthetic characters and biomass allocation ofP.bourneiyoung trees to different light regimes. Acta Ecologica Sinica, 2012, 32(12): 3841-3848.
[39]
张亦涛, 任天志, 刘宏斌, 雷秋良, 翟丽梅, 王洪媛, 刘申, 尹昌斌, 张继宗. 玉米大豆间作降低小麦玉米轮作体系土壤氮残留的效应与机制. 中国农业科学, 2015, 48(13): 2580-2590. doi:10.3864/j.issn.0578-1752.2015.13.010.
ZHANG Y T, REN T Z, LIU H B, LEI Q L, ZHAI L M, WANG H Y, LIU S, YIN C B, ZHANG J Z. Effect and mechanism of maize intercropping with soybean on reducing soil nitrogen residue in wheat-maize rotation. Scientia Agricultura Sinica, 2015, 48(13): 2580-2590. doi:10.3864/j.issn.0578-1752.2015.13.010. (in Chinese)
[40]
SHAH S H. Effects of nitrogen fertilisation on nitrate reductase activity, protein, and oil yields of Nigella sativa L. as affected by foliar GA3 application. Turkish Journal of Botany, 2008, 32(2): 165-170.
[41]
宋亚娜, MARSCHNER P, 张福锁, 包兴国, 李隆. 小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006 (7): 2268-2274.
SONG Y N, MARSCHNER P, ZHANG F S, BAO X G, LI L. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecologica Sinica, 2006 (7): 2268-2274. (in Chinese)
[42]
XIE W, ZHANG K, WANG X Y, ZOU X X, ZHANG X J, YU X N, WANG Y F, SI T. Peanut and cotton intercropping increases productivity and economic returns through regulating plant nutrient accumulation and soil microbial communities. BMC Plant Biology, 2022, 22(1): 121.
[43]
姜琴芳, 伏云珍, 李倩, 马琨. 间作作物种间相互作用对土壤细菌群落的影响. 西北农业学报, 2024, 33(3): 542-551.
JIANG Q F, FU Y Z, LI Q, MA K. Effects of intercropping crop interactions on soil bacterial community structure and function. Acta Agriculturae Boreali-occidentalis Sinica, 2024, 33(3): 542-551. (in Chinese)
[44]
李海强, 张建萍, 陆宴辉. 果棉间作对棉田节肢动物群落结构的影响. 植物保护, 2021, 47(2): 233-238.
LI H Q, ZHANG J P, LU Y H. Effects of fruit trees-cotton intercropping on arthropod community structure in cotton fields. Plant Protection, 2021, 47(2): 233-238. (in Chinese)
[45]
XING Y, YU R P, AN R, YANG N, WU J P, MA H Y, ZHANG J D, BAO X G, LAMBERS H, LI L. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long-term intercropping. Field Crops Research, 2023, 293: 108854.
[46]
LU J H, LIU Y X, ZOU X X, ZHANG X J, YU X N, WANG Y F, SI T. Rotational strip peanut/cotton intercropping improves agricultural production through modulating plant growth, root exudates, and soil microbial communities. Agriculture, Ecosystems & Environment, 2024, 359: 108767.
[1] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[2] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[3] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[4] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[5] WU YuZhen, HUANG LongYu, ZHOU DaYun, HUANG YiWen, FU ShouYang, PENG Jun, KUANG Meng. Construction of SSR Fingerprint Library and Comprehensive Evaluation for Approved Cotton Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(8): 1430-1443.
[6] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
[7] REN Qiang, XU Ke, FAN ZhiLong, YIN Wen, FAN Hong, HE Wei, HU FaLong, CHAI Qiang. Nitrogen Fertilizer Postponing Application Benefits Wheat-Maize Intercropping by Reducing Soil Evaporation and Improving Water Use Efficiency [J]. Scientia Agricultura Sinica, 2024, 57(7): 1295-1307.
[8] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[9] LEI JianFeng, YOU YangZi, ZHANG JinEn, DAI PeiHong, YU Li, DU ZhengYang, LI Yue, LIU XiaoDong. Screening of High-Efficient sgRNA for Targeted Knockout of GhAGL16 Gene in Cotton [J]. Scientia Agricultura Sinica, 2024, 57(6): 1023-1033.
[10] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[11] ZHAO KaiNan, DING Hao, LIU AKang, JIANG ZongHao, CHEN GuangZhou, FENG Bo, WANG ZongShuai, LI HuaWei, SI JiSheng, ZHANG Bin, BI XiangJun, LI Yong, LI ShengDong, WANG FaHong. Nitrogen Fertilizer Reduction and Postponing for Improving Plant Photosynthetic Physiological Characteristics to Increase Wheat- Maize and Annual Yield and Economic Return [J]. Scientia Agricultura Sinica, 2024, 57(5): 868-884.
[12] ZHOU HaoLu, SHEN ZhaoYang, LUO XinYu, HUANG YingHui, WANG KeXin, WANG YunHao, GAO XiaoLi. The Effect of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Foxtail Millet in Ridge-Furrow Rainwater Harvesting Planting Model [J]. Scientia Agricultura Sinica, 2024, 57(5): 885-899.
[13] LI KaiLi, WEI YunXiao, CHONG ZhiLi, MENG ZhiGang, WANG Yuan, LIANG ChengZhen, CHEN QuanJia, ZHANG Rui. Red and Blue Light Promotes Cotton Callus Induction and Proliferation [J]. Scientia Agricultura Sinica, 2024, 57(4): 638-649.
[14] LI QianChuan, XU ShiWei, ZHANG YongEn, ZHUANG JiaYu, LI DengHua, LIU BaoHua, ZHU ZhiXun, LIU Hao. Stacking Ensemble Learning Modeling and Forecasting of Maize Yield Based on Meteorological Factors [J]. Scientia Agricultura Sinica, 2024, 57(4): 679-697.
[15] MA BiJiao, CHEN GuiPing, GOU ZhiWen, YIN Wen, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Water Utilization and Economic Benefit of Wheat Multiple Cropping with Green Manure Under Nitrogen Reduction in Hexi Irrigation Area of Northwest China [J]. Scientia Agricultura Sinica, 2024, 57(4): 740-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!