Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 227-235.doi: 10.3864/j.issn.0578-1752.2024.02.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

CRISPR/Cas9-Mediated Editing of MODD Enhances Rice Dormancy

GUO NaiHui1,2(), ZHANG WenZhong1(), SHENG ZhongHua2(), HU PeiSong1,2()   

  1. 1 Rice Research Institute, Shenyang Agricultural University, Shenyang 110866
    2 China National Rice Research Institute/China National Rice Improvement Centre, Hangzhou 310006
  • Received:2023-06-13 Accepted:2023-07-24 Online:2024-01-16 Published:2024-01-19

Abstract:

【Objective】 Dormancy is an important agronomic trait of rice. Proper dormancy can inhibit the preharvest sprouting of rice and is a key factor to ensure yield and quality. However, the genes and regulatory networks of rice dormancy regulation still need further study. The MODD encoded a protein with unknown function, and it negatively regulate rice abscisic acid signaling and drought resistance, but its function in regulating rice dormancy is unknown. Studying the function of MODD in regulating rice dormancy will help to improve the rice dormancy regulatory network, and at the same time provide a new theoretical basis and germplasm resources for genetic breeding of preharvest sprouting resistance.【Method】 Based on the gene sequences published in the RGAP database, a CRISPR-Cas9 knockout vector for MODD was constructed, and the calli of Zhonghua 11 was transformed through agrobacterium mediated genetic transformation to obtain transgenic rice plants. The MODD knockout homozygous lines were screened and identified using PCR amplification, sequencing technology, and qRT-PCR technology. The amino acid sequences of the two mutant lines (KO-1 and KO-2) were obtained according to the CDS of the two mutant lines, and then the protein sequences of ZH11 and the two mutant lines (KO-1 and KO-2) were compared by DNAMAN. The homologous genes of MODD in rice were screened using Linux system. Take the seeds 35 days after heading and investigated the germination rate of ZH11 and knockout lines. The yeast hybridization and LUC experiments were used to verify the upstream gene of MODD. 【Result】 Six MODD homologous genes were found in rice, which were LOC_Os07g41160, LOC_Os03g30570, LOC_Os03g53630, LOC_Os04g35430, LOC_Os03g17050, LOC_Os06g01170. The knockout vector was successfully constructed and transferred it into ZH11, two homozygous mutant lines (KO-1 and KO-2) were obtained. The qRT-PCR results showed that the expression level of MODD in the two mutant line (KO-1 and KO-2) was significantly reduced. Protein sequence analysis showed that the frameshift mutations of KO-1 and KO-2 caused the early termination of protein translation. The germination rate of the two mutant lines (KO-1 and KO-2) was significantly lower than that of ZH11 by 15% and 15% respectively on the third day after water absorption; After that, the difference gradually expanded and reached the maximum on the 6th day, which was significantly lower than that of ZH11 by 35% and 35% respectively. The preharvest sprouting of two mutant lines (KO-1 and KO-2) was significantly lower than that of ZH11. The results of Y1H experiment showed that ABI5 could bind to the promoter region of MODD in yeast, and the binding range was further reduced to less than 300bp. LUC results showed that the fluorescence value of ABI5 was 2.6 times that of none alone, indicating that ABI5 could activate the expression of MODD.【Conclusion】 Knocking out MODD could increase seed dormancy, and MODD may regulate seed dormancy through ABA signaling pathway.

Key words: rice, dormancy, ABI5, MODD

Table 1

The primers used in this study"

引物名称Primer name 引物序列Primer sequence (5′-3′) 用途Usage
MODD-CRISPR-F TGTGTGGGATGAATGGAGGAAGCGAA CRISPR/Cas9载体构建
CRISPR/Cas9 vector construction
MODD-CRISPR-R AAACTTCGCTTCCTCCATTCATCCCA
CX-F TCCCAGTCACGTTGTAA 筛选阳性克隆Screening for positive clones
pLACZ-MODD-F ATCTGTCGACCTCGAGACTCAAACGGACGAAATATGTGG 酵母单杂Y1H
pLACZ-MODD-R GAGCACATGCCTCGAGTCCGGCAAGCTAGCTAGCCA
PB42AD-ABI5-F TGCCTCTCCCGAATTCATGGCATCGGAGATGAGCAA
PB42AD-ABI5-R CGAGTCGGCCGAATTCTCACCACATGCAGCTGCCGC
pLACZ-MODD-1-F ATCTGTCGACCTCGAGACTCAAACGGACGAAATATGTGG
pLACZ-MODD-1-R GAGCACATGCCTCGAGGGCCGCTGCGACGAG
pLACZ-MODD-2-F ATCTGTCGACCTCGAGGTACGGCCCGGCCC
pLACZ-MODD-2-R GAGCACATGCCTCGAGTTCTCACCCGATCCACACC
pLACZ-MODD-3-F ATCTGTCGACCTCGAGACGTGTCGGTGTGGAGGG
pLACZ-MODD-3-R GAGCACATGCCTCGAGGAGCCGAAGCCGACCAG
pLACZ-MODD-4-F ATCTGTCGACCTCGAGCTACGGCGATGGTCGGCTTGA
pLACZ-MODD-4-R GAGCACATGCCTCGAGTCCGGCAAGCTAGCTAGCCA
p190Luc-MODD-F GGCCAGTGCCAAGCTTACTCAAACGGACGAAATATGTGG LUC活性检测 LUC activity test
p190Luc-MODD-R AGGGTCTTGCAGATCTTCCGGCAAGCTAGCTAGCCA
NONE-ABI5-F TAGAACTAGTGGATCCATGGCATCGGAGATGAGCA
NONE-ABI5-R GCTTGATATCGAATTCTCACCACATGCAGCTGCC
OsActin-qF GTCCTCTTCCAGCCTTCCTT 实时荧光定量分析 qRT-PCR
OsActin-qR CTCATCCTGTCAGCAATGCC
MODD-qF GCAAGAGGGTTGAAGGCTTC
MODD-qR GGGATAGGGTTGACGACGAT

Fig. 1

Homology analysis of MODD gene The red line represented the gene registration number of MODD"

Fig. 2

Schematic diagram of MODD target site and BGK03 vector A: Schematic diagram of MODD target site, the red triangle represented the target position; B: Schematic diagram of BGK03 vector, the red arrow represented the insertion position of gRNA"

Fig. 3

Identification of modd mutant line A: Base types of the two mutant lines, the protospacer adjacent motif (PAM) site is depicted as underline and blue, deleted nucleotides are depicted as dashes, and inserted nucleotides are shown in red; B: Sequencing results of two mutant lines; C: MODD gene expression of the two mutant lines, **: P<0.01, the same as below; D: Amino acid types of two mutant lines, the dark background represented the same amino acids as the wild-type and mutant lines. KO-1 and KO-2: MODD mutant lines"

Fig. 4

Germination phenotype of modd mutant A: Pre-harvest sprouting phenotype of modd mutant and ZH11 on the sixth day of germination; B: Germination rate of modd mutant and ZH11; C: Germination rate of modd mutant and ZH11 after breaking dormancy"

Fig. 5

The expression of MODD was activated by ABI5 A: ABI5 combined with the promoter of MODD was verified by Y1H; B: Reduce the promoter region of MODD where ABI5 binding, the red font represented the region where ABI5 binds to the MODD promoter; C: LUC verification of ABI5 activating the expression of MODD"

[1]
CHENG S H, CAO L Y, ZHUANG J Y, CHEN S G, ZHAN X D, FAN Y Y, ZHU D F, MIN S K. Super hybrid rice breeding in China: Achievements and prospects. Journal of Integrative Plant Biology, 2007, 49(6): 805-810.

doi: 10.1111/jipb.2007.49.issue-6
[2]
WANG H, LEE A R, PARK S Y, JIN S H, LEE J, HAM T H, PARK Y, ZHAO W G, KWON S W. Genome-wide association study reveals candidate genes related to low temperature tolerance in rice (Oryza sativa) during germination. 3Biotech, 2018, 8(5): 235.
[3]
胡伟民, 马华升, 樊龙江, 阮松林. 杂交水稻制种不育系穗上发芽特性. 作物学报, 2003, 29(3): 441-446.
HU W M, MA H S, FAN L J, RUAN S L. Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta Agronomica Sinica, 2003, 29(3): 441-446. (in Chinese)
[4]
马良勇, 杨长登, 李西明, 庄杰云. 早稻穗发芽对水稻产量和米质的影响. 中国稻米, 2004, 10(1): 15-16.
MA L Y, YANG C D, LI X M, ZHUANG J Y. Effect of ear germination on rice yield and quality. China Rice, 2004, 10(1): 15-16. (in Chinese)
[5]
钱松, 王春歌, 杨亚东, 王春松, 黄欢. 穗发芽对南粳9108稻米品质的影响. 农业工程技术, 2021, 41(32): 18-19.
QIAN S, WANG C G, YANG Y D, WANG C S, HUANG H. Effect preharvest germination on rice quality of Nanjing 9108. Agricultural Engineering Technology, 2021, 41(32): 18-19. (in Chinese)
[6]
彭智群, 王道泽, 王宏. 种子休眠及其解除方法. 上海蔬菜, 2009(4): 80-81.
PENG Z Q, WANG D Z, WANG H. Seed dormancy and its release method. Shanghai Vegetables, 2009(4): 80-81. (in Chinese)
[7]
CAI H W, MORISHIMA H. Genomic regions affecting seed shattering and seed dormancy in rice. Theoretical and Applied Genetics, 2000, 100(6): 840-846.

doi: 10.1007/s001220051360
[8]
THOMSON M J, TAI T H, MCCLUNG A M, LAI X H, HINGA M E, LOBOS K B, XU Y, MARTINEZ C P, MCCOUCH S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics, 2003, 107(3): 479-493.

doi: 10.1007/s00122-003-1270-8
[9]
LEE S J, OH C S, SUH J P, MCCOUCH S R, AHN S N. Identification of QTLs for domestication‐related and agronomic traits in an Oryza sativa×O. rufipogon BC1F7 population. Plant Breeding, 2005, 124(3): 209-219.

doi: 10.1111/pbr.2005.124.issue-3
[10]
LI C B, ZHOU A L, SANG T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. The New Phytologist, 2006, 170(1): 185-193.

doi: 10.1111/nph.2006.170.issue-1
[11]
GU X Y, KIANIAN S F, FOLEY M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics, 2004, 166(3): 1503-1516.

doi: 10.1534/genetics.166.3.1503
[12]
GU X Y, KIANIAN S F, FOLEY M E. Isolation of three dormancy QTLs as Mendelian factors in rice. Heredity, 2006, 96(1): 93-99.

doi: 10.1038/sj.hdy.6800757 pmid: 16189540
[13]
GU X Y, KIANIAN S F, HARELAND G A, HOFFER B L, FOLEY M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theoretical and Applied Genetics, 2005, 110(6): 1108-1118.

doi: 10.1007/s00122-005-1939-2
[14]
GU X Y, LIU T L, FENG J H, SUTTLE J C, GIBBONS J. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Molecular Biology, 2010, 73(1): 97-104.

doi: 10.1007/s11103-009-9555-1
[15]
LIN S Y, SASAKI T, YANO M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L. using backcross inbred lines.. Theoretical and Applied Genetics, 1998, 96(8): 997-1003.

doi: 10.1007/s001220050831
[16]
DONG Y J, TSUZUKI E, KAMIUNTEN H, TERAO H, LIN D Z, MATSUO M, ZHENG Y F. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Research, 2003, 81(2/3): 133-139.

doi: 10.1016/S0378-4290(02)00217-4
[17]
GUO L B, ZHU L H, XU Y B, ZENG D L, WU P, QIAN Q. QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica, 2004, 140(3): 155-162.

doi: 10.1007/s10681-004-2293-1
[18]
WAN J M, CAO Y J, WANG C M, IKEHASHI H. Quantitative trait loci associated with seed dormancy in rice. Crop Science, 2005, 45(2): 712-716.

doi: 10.2135/cropsci2005.0712
[19]
WAN J M, JIANG L, TANG J Y, WANG C M, HOU M Y, JING W, ZHANG L X. Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Science, 2006, 170(4): 786-792.

doi: 10.1016/j.plantsci.2005.11.011
[20]
WANG L, CHENG J P, LAI Y Y, DU W L, HUANG X, WANG Z F, ZHANG H S. Identification of QTLs with additive, epistatic and QTL×development interaction effects for seed dormancy in rice. Planta, 2014, 239(2): 411-420.

doi: 10.1007/s00425-013-1991-0
[21]
XU F, TANG J Y, WANG S X, CHENG X, WANG H R, OU S J, GAO S P, LI B S, QIAN Y W, GAO C X, CHU C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nature Genetics, 2022, 54(12): 1972-1982.

doi: 10.1038/s41588-022-01240-7 pmid: 36471073
[22]
SUGIMOTO K, TAKEUCHI Y, EBANA K, MIYAO A, HIROCHIKA H, HARA N, ISHIYAMA K, KOBAYASHI M, BAN Y, HATTORI T, YANO M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797.
[23]
CHEN W Q, WANG W, LYU Y S, WU Y W, HUANG P L, HU S K, WEI X J, JIAO G A, SHENG Z H, TANG S Q, SHAO G N, LUO J. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. The Crop Journal, 2021, 9(1): 68-78.

doi: 10.1016/j.cj.2020.06.005
[24]
YE H, FENG J H, ZHANG L H, ZHANG J F, MISPAN M S, CAO Z Q, BEIGHLEY D H, YANG J C, GU X Y. Map-based cloning of seed Dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiology, 2015, 169(3): 2152-2165.

doi: 10.1104/pp.15.01202 pmid: 26373662
[25]
XIE K, JIANG L, LU B Y, YANG C Y, LI L F, LIU X, ZHANG L, ZHAO Z G, WAN J M. Identification of QTLs for seed dormancy in rice (Oryza sativa L.). Plant Breeding, 2011, 130(3): 328-332.

doi: 10.1111/pbr.2011.130.issue-3
[26]
WANG Q, LIN Q B, WU T, DUAN E C, HUANG Y S, YANG C Y, MOU C L, LAN J, ZHOU C L, XIE K, LIU X, ZHANG X, GUO X P, WANG J, JIANG L, WAN J M. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Science, 2020, 298: 110570.

doi: 10.1016/j.plantsci.2020.110570
[27]
GU X Y, FOLEY M E, HORVATH D P, ANDERSON J V, FENG J H, ZHANG L H, MOWRY C R, YE H, SUTTLE J C, KADOWAKI K I, CHEN Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011, 189(4): 1515-1524.

doi: 10.1534/genetics.111.131169
[28]
WANG J, DENG Q W, LI Y H, YU Y, LIU X, HAN Y F, LUO X D, WU X J, JU L, SUN J Q, LIU A H, FANG J. Transcription factors Rc and OsVP1 coordinately regulate preharvest sprouting tolerance in red pericarp rice. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14748-14757.

doi: 10.1021/acs.jafc.0c04748
[29]
WANG M, LI W Z, FANG C, XU F, LIU Y C, WANG Z, YANG R, ZHANG M, LIU S L, LU S J, LIN T, TANG J Y, WANG Y Q, WANG H R, LIN H, ZHU B G, CHEN M S, KONG F J, LIU B H, ZENG D L, JACKSON S A, CHU C C, TIAN Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018, 50(10): 1435-1441.

doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[30]
CHEN Y, XIANG Z P, LIU M, WANG S Y, ZHANG L, CAI D, HUANG Y, MAO D D, FU J, CHEN L B. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice. Plant, Cell & Environment, 2023, 46(4): 1384-1401.
[31]
LI M R, LI X X, ZHOU Z J, WU P Z, FANG M C, PAN X P, LIN Q P, LUO W B, WU G J, LI H Q. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 2016, 7: 377.
[32]
GUO N H, TANG S J, WANG J Y, HU S K, TANG S Q, WEI X J, SHAO G N, JIAO G A, SHENG Z H, HU P S. Transcriptome and proteome analysis revealed that hormone and reactive oxygen species synergetically regulate dormancy of introgression line in rice (Oryza sativa L.). International Journal of Molecular Sciences, 2023, 24(7): 6088.

doi: 10.3390/ijms24076088
[33]
TANG N, MA S Q, ZONG W, YANG N, Y, YAN C, GUO Z L, LI J, LI X, XIANG Y, SONG H Z, XIAO J H, LI X H, XIONG L Z. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. The Plant Cell, 2016, 28(9): 2161-2177.

doi: 10.1105/tpc.16.00171 pmid: 27468891
[34]
HEIGWER F, KERR G, BOUTROS M. E-CRISP: Fast CRISPR target site identification. Nature Methods, 2014, 11(2): 122-123.

doi: 10.1038/nmeth.2812 pmid: 24481216
[35]
VAISTIJ F E, GAN Y B, PENFIELD S, GILDAY A D, DAVE A, HE Z S, JOSSE E M, CHOI G, HALLIDAY K J, GRAHAM I A. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871.
[36]
NONOGAKI M, SALL K, NAMBARA E, NONOGAKI H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. The Plant Journal, 2014, 78(3): 527-539.

doi: 10.1111/tpj.12472 pmid: 24520869
[37]
MATAKIADIS T, ALBORESI A, JIKUMARU Y, TATEMATSU K, PICHON O, RENOU J P, KAMIYA Y, NAMBARA E, TRUONG H N. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology, 2009, 149(2): 949-960.

doi: 10.1104/pp.108.126938
[38]
SHU K, ZHANG H W, WANG S F, CHEN M L, WU Y R, TANG S Y, LIU C Y, FENG Y Q, CAO X F, XIE Q. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics, 2013, 9(6): e1003577.

doi: 10.1371/journal.pgen.1003577
[39]
DING Z J, YAN J Y, LI G X, WU Z C, ZHANG S Q, ZHENG S J. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. The Plant Journal, 2014, 79(5): 810-823.

doi: 10.1111/tpj.2014.79.issue-5
[40]
KANAI M, NISHIMURA M, HAYASHI M. A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. The Plant Journal, 2010, 62(6): 936-947.
[41]
SUN X M, XIONG H Y, JIANG C H, ZHANG D M, YANG Z L, HUANG Y P, ZHU W B, MA S S, DUAN J Z, WANG X, LIU W, GUO H F, LI G L, QI J W, LIANG C B, ZHANG Z Y, LI J J, ZHANG H L, HAN L J, ZHOU Y H, PENG Y L, LI Z C. Natural variation of DROT1 confers drought adaptation in upland rice. Nature Communications, 2022, 13: 4265.

doi: 10.1038/s41467-022-31844-w
[1] ZHANG YaLing, FU ZhongJu, LI Xue, SUN YuJia, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, HUA LiXia. Comparative Analysis of Pathogens of Rice Spikelet Rot Disease in Heilongjiang, Sichuan and Hainan Provinces [J]. Scientia Agricultura Sinica, 2024, 57(2): 278-294.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[4] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[5] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[6] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[7] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[8] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[9] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[10] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[11] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[12] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[13] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[14] JING LiQuan, LI Fan, ZHAO YiHan, WANG XunKang, ZHAO FuCheng, LAI ShangKun, SUN XiaoLin, WANG YunXia, YANG LianXin. Research Progress on the Carbon and Nitrogen Sink of Duckweed Growing in Paddy and Its Effects on Rice Yield [J]. Scientia Agricultura Sinica, 2023, 56(23): 4717-4728.
[15] XU HAI, LI XIUKUN, LU JIAHAO, JIANG KAI, MA YUE, XU ZHENGJIN, XU QUAN. The Effect of indica/Xian Pedigree Introgression in japonica/Geng Rice Breeding in China [J]. Scientia Agricultura Sinica, 2023, 56(22): 4359-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!