Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (18): 3551-3567.doi: 10.3864/j.issn.0578-1752.2024.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Microbial Community Structure Characteristics at the Water-Soil Interface in Rice-Crab Co-Culture System

LI WeiJing(), WANG HongYuan(), XU Yang, LI Hao, ZHAI LiMei, LIU HongBin   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081
  • Received:2024-02-09 Accepted:2024-07-31 Online:2024-09-16 Published:2024-09-29
  • Contact: WANG HongYuan

Abstract:

【Objective】 The rice-crab co-culture is a predominant three-dimensional ecological cultivation model in northern Chinese rice fields. The water-soil interface is a key area for material cycling within this system. In this paper, studying the diversity and structure of microbial communities at this interface aimed to understand its evolution and support research on the ecological health of water and soil in rice-crab co-culture systems. 【Method】 Eight long-term rice monoculture systems and eight long-term rice-crab co-culture systems (>20 years) were selected in a typical rice-crab co-cultivation area in Panjin, Liaoning province. Based on measurements of physicochemical indicators of rice field water and soil, as well as high-throughput sequencing technology of the 16S rRNA gene, the study compared the effects of two rice cultivation systems on the properties and bacterial community structures of the water-soil interface in paddy fields. 【Result】 (1) The introduction of crabs significantly reduced the unique microbial communities at the water-soil interface. Specifically, the number of unique operational taxonomic units (OTUs) in surface water and interfacial soil decreased by 27.0% and 71.2%, respectively. However, the introduction of crabs had no significant effect on alpha diversity in surface water, but it reduced the richness of bacterial communities in interfacial soil. (2) The introduction of crabs significantly altered the structure and composition of the water-soil interface bacterial community. The introduction of crabs significantly increased the relative abundance of Proteobacteria (30.4%) and decreased the relative abundance of Acidobacteria (39.9%) in surface water. Simultaneously, it increased the relative abundance of Planctomycetes (21.1%) and decreased the relative abundance of Ignavibacteriae (15.1%) and Nitrospirae (21.7%) in interfacial soil. (3) Proteobacteria and Bacteroidetes were not only core species at the water-soil interface of rice field systems, but also key species in co-occurrence networks, playing important roles in stabilizing ecological networks. (4) The introduction of crabs into rice fields increased the complexity and stability of the bacterial co-occurrence network in the interface soil, but decreased it in the paddy field water. (5) Linear regression analysis showed that NO3-- N concentration in surface water and interface soil pH were the main driving factors influencing the diversity and stability of their respective bacterial community structures. 【Conclusion】 The introduction of crabs significantly altered the microbial community structure and diversity at the water-soil interface in rice fields. The increase in nutrient salts in the water posed a risk of reducing the stability of the aquatic microbial community. However, the rice-crab co-culture shaped a more stable bacterial community in the interface soil, which facilitated nutrient cycling and enhanced crop nutrient utilization efficiency.

Key words: rice-crab co-culture, surface water bacteria, interface soil bacteria, co-occurrence network, physicochemical properties

Table 1

Experimental plot basic physical and chemical properties"

处理
Treatment
有机碳
Organic carbon (g·kg-1)
pH 全氮
Total N (g·kg-1)
全磷
Total P (g·kg-1)
全钾
Total K (g·kg-1)
RM 12.74±0.50a 8.16±0.03a 1.16±0.05a 0.54±0.07a 21.07±0.30a
RC 13.55±1.12a 8.15±0.05a 1.22±0.09a 0.51±0.06a 21.26±0.55a

Fig. 1

Physicochemical properties of surface water in rice monoculture and rice-crab co-culture systems"

Fig. 2

Soil physicochemical properties at the interface between rice monoculture and rice-crab co-culture systems"

Fig. 3

Venn diagram of bacterial OTUs distribution at water-soil interface of rice monoculture and rice-crab co-culture systems and changes in species composition at the level of bacterial phylum under different treatments"

Fig. 4

Alpha diversity and beta diversity of bacterial communities under different treatments"

Fig. 5

Characteristics of bacterial co-occurrence networks and bacterial community diversity for rice monoculture and rice-crab co-culture systems"

Table 2

Topological properties of bacterial networks in surface water and interface soil of two systems"

处理
Treatment
节点数
Node
边数
Link
平均度
Average degree
网络直径
Network diameter
模块化
Modularity
平均聚类系数
Average clustering coefficient
正相关
Positive edges
(%)
负相关
Negative edges (%)
田面水
Surface water
WRM 610 2127 6.898 23 0.672 0.489 90.82 9.18
WRC 74 40 1.143 2 0.970 0.694 76.92 23.08
界面土壤
Interfacial soil
RM 290 221 1.718 11 0.958 0.591 62.43 37.57
RC 699 1053 3.836 23 0.830 0.410 68.02 31.98

Fig. 6

Zi-Pi diagram of bacterial co-occurrence network for rice monoculture and rice-crab co-culture systems"

Fig. 7

Linear regression between Bray-Curtis dissimilarity and co-occurrence networks of bacterial communities and NO3--N and pH, respectively"

[1]
ZHANG Y F, TANG K W, YANG P, YANG H, TONG C, SONG C C, TAN L S, ZHAO G H, ZHOU X D, SUN D Y. Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices. Agriculture, Ecosystems & Environment, 2022, 338: 108110.
[2]
BASHIR M A, WANG H Y, SUN W T, ZHAI L M, ZHANG X S, WANG N, REHIM A, RAZA Q U A, LIU H B. The implementation of rice-crab co-culture system to ensure cleaner rice and farm production. Journal of Cleaner Production, 2021, 316: 128284.
[3]
JI Z J, ZHAO L F, ZHANG T J, DAI R X, TANG J J, HU L L, CHEN X. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem. Journal of Plant Ecology, 2023, 16(6): rtad014.
[4]
全国水产技术推广总站中国水产学会. 中国稻渔综合种养产业发展报告(2024)全文发布. 中国水产, 2024, (08).
The National Aquatic Technology Promotion Center and the Chinese Fisheries Society. The Comprehensive Report on the Development of China's Rice-Fishery Comprehensive Breeding Industry (2024). China Fisheries, 2024, (08). (in Chinese)
[5]
BAO J, JIANG H B, LI X D. Thirty years of rice‐crab coculture in China—Research progress and prospects. Reviews in Aquaculture, 2022, 14(3): 1597-1612.
[6]
韩燕云, 吴永红, 李丹, 俞元春. 微生物介导的稻田水土界面温室气体排放及其农事减排措施研究进展. 环境科学研究, 2023, 36(12): 2369-2381.
HAN Y Y, WU Y H, LI D, YU Y C. Advancements in research on microbe-mediated greenhouse gas emissions at the rice paddy soil-water interface and agricultural mitigation strategies. Research of Environmental Sciences, 2023, 36(12): 2369-2381. (in Chinese)
[7]
王昂, 王武, 马旭洲, 汪清, 于永清, 陈卫新. 养蟹稻田水环境部分因子变化研究. 湖北农业科学, 2011, 50(17): 3514-3519.
WANG A, WANG W, MA X Z, WANG Q, YU Y Q, CHEN W X. Study on the changes of water environmental factors in rice-crab culture system. Hubei Agricultural Sciences, 2011, 50(17): 3514-3519. (in Chinese)
[8]
马亮, 董立强, 张睿, 张悦, 郭晶晶, 商文奇, 李跃东. 稻蟹种养不同模式光合效率及综合效益分析. 东北农业科学, 2021, 46(5): 1-6.
MA L, DONG L Q, ZHANG R, ZHANG Y, GUO J J, SHANG W Q, LI Y D. Analysis on photosynthetic characteristics and economic benefits of rice crab cultivation in different modes. Journal of Northeast Agricultural Sciences, 2021, 46(5): 1-6. (in Chinese)
[9]
ZHU X F, LEI C, QI J, ZHEN G Y, LU X Q, XU S Y, ZHANG J, LIU H B, ZHANG X D, WU Z C. The role of microbiome in carbon sequestration and environment security during wastewater treatment. Science of the Total Environment, 2022, 837: 155793.
[10]
GAO J C, SHAO N L, SUN Y, NIE Z J, YANG X W, DAI F, XU G C, XU P. Impact of effective microorganisms and Chlorella vulgaris on Eriocheir sinensis and water microbiota in ponds experiencing cyanobacterial blooms. Sustainability, 2023, 15(9): 7362.
[11]
GEISSELER D, LINQUIST B A, LAZICKI P A. Effect of fertilization on soil microorganisms in paddy rice systems-A meta-analysis. Soil Biology and Biochemistry, 2017, 115: 452-460.
[12]
白震, 何红波, 解宏图, 张明, 张旭东. 施肥与季节更替对黑土微生物群落的影响. 环境科学, 2008, 29(11): 3230-3239.
BAI Z, HE H B, XIE H T, ZHANG M, ZHANG X D. Influences of fertilization and seasonal variation on microbial community in a Chinese mollisol. Environmental Science, 2008, 29(11): 3230-3239. (in Chinese)
[13]
胡锦辉, 薛利红, 钱聪, 薛利祥, 曹帅. 增氧对不同秸秆还田稻田田面水养分动态及温室气体排放的影响. 环境科学, 2023, 44(4): 2348-2355.
HU J H, XUE L H, QIAN C, XUE L X, CAO S. Effects of aeration on surface water nutrient dynamics and greenhouse gas emission in different straw returning paddy fields. Environmental Science, 2023, 44(4): 2348-2355. (in Chinese)
[14]
BANERJEE S, KIRKBY C A, SCHMUTTER D, BISSETT A, KIRKEGAARD J A, RICHARDSON A E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 2016, 97: 188-198.
[15]
佟德利, 许璐, 于鑫, 贺海升, 张颖. 稻蟹生态种养对水稻根际微生物区系的影响. 沈阳师范大学学报(自然科学版), 2019, 37(3): 232-235.
TONG D L, XU L, YU X, HE H S, ZHANG Y. Differences of rhizosphere microflora between rice-planting and crab-raising system and normal rice-planting system. Journal of Shenyang Normal University (Natural Science Edition), 2019, 37(3): 232-235. (in Chinese)
[16]
刘乃更, 廖睿, 杨占全, 梅杰, 李晓东, 胡清彪. 稻蟹共生系统对土壤微生物多样性的影响. 黑龙江水产, 2022, 41(5): 22-28.
LIU N G, LIAO R, YANG Z Q, MEI J, LI X D, HU Q B. Effects of rice-crab symbiosis system on soil microorganism. Northern Chinese Fisheries, 2022. 41(5): 22-28. (in Chinese)
[17]
王昂, 戴丹超, 马旭洲, 牟群, 于永清, 吕为群. 稻蟹共作模式对土壤微生物量氮和酶活性的影响. 江苏农业学报, 2019, 35(1): 76-84.
WANG A, DAI D C, MA X Z, MOU Q, YU Y Q, W Q. Effects of rice-crab culture system on soil microbial biomass nitrogen and soil enzymes activities. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 76-84. (in Chinese)
[18]
应征涛, 詹泸成, 唐洪根, 辛沛. 螃蟹扰动作用对滨海湿地水盐交换的影响. 水资源保护, 2021, 37(3):152-157.
YING Z T, ZHAN L C, TANG H G, XIN P. Effects of crab disturbance on water and salt exchange in coastal wetlands. Water Resources Protection, 2021, 37(3):152-157. (in Chinese)
[19]
BARBERÁN A, BATES S T, CASAMAYOR E O, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 2012, 6(2): 343-351.
[20]
LENTENDU G, WUBET T, CHATZINOTAS A, WILHELM C, BUSCOT F, SCHLEGEL M. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Molecular Ecology, 2014, 23(13): 3341-3355.

doi: 10.1111/mec.12819 pmid: 24888892
[21]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[22]
HERNANDEZ D J, DAVID A S, MENGES E S, SEARCY C A, AFKHAMI M E. Environmental stress destabilizes microbial networks. The ISME Journal, 2021, 15(6): 1722-1734.
[23]
LI W J, ZHANG Y B, WANG H Y, FAN B Q, BASHIR M A, JIN K, LIU H B. Legacy effect of long-term rice-crab co-culture on N2O emissions in paddy soils. Applied Soil Ecology, 2024, 196: 105251.
[24]
徐敏, 王武, 马旭洲. 稻蟹共生系统不同水稻栽培模式土壤理化性状和有效养分的变化规律. 广东农业科学, 2013, 40(9): 53-57.
XU M, WANG W, MA X Z. Regularity of different cultivation patterns on the soil physical and chemical properties, nutrition changes in rice-carb culture system. Guangdong Agricultural Sciences, 2013, 40(9): 53-57. (in Chinese)
[25]
汪清, 王武, 马旭洲, 陈再忠, 于永清. 稻蟹共作对土壤理化性质的影响. 湖北农业科学, 2011, 50(19): 3948-3952.
WANG Q, WANG W, MA X Z, CHEN Z Z, YU Y Q. The effects of integrated rice-crab production on soil physical and chemical properties. Hubei Agricultural Sciences, 2011, 50(19): 3948-3952. (in Chinese)
[26]
韦菊娴, 王聪, 何斌, 尤业明, 黄雪蔓. 世界桉树林土壤微生物研究综述. 浙江农林大学学报, 2022, 39(5): 1144-1154.
WEI J X, WANG C, HE B, YOU Y M, HUANG X M. Research progress on soil microorganisms in eucalypt forests. Journal of Zhejiang A&F University, 2022, 39(5): 1144-1154. (in Chinese)
[27]
宋宇, 王鹏, 韦月平. 不同稻田栽培模式下土壤细菌群落多样性分析. 西南农业学报, 2020, 33(2): 263-267.
SONG Y, WANG P, WEI Y P. Analysis on diversity of soil bacterial community under different paddy field cultivation patterns. Southwest China Journal of Agricultural Sciences, 2020, 33(2): 263-267. (in Chinese)
[28]
肖力婷, 杨慧林, 赖政, 赖胜, 倪才英, 陈晓玲, 简敏菲. 稻田土壤微生物群落对稻鳖共作模式的响应特征. 农业工程学报, 2022, 38(24): 102-109.
XIAO L T, YANG H L, LAI Z, LAI S, NI C Y, CHEN X L, JIAN M F. Response characteristics of soil microbial communities in paddy fields to rice-turtle integrated system. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(24): 102-109. (in Chinese)
[29]
赖政, 肖力婷, 赖胜, 杨慧林, 倪才英, 阳文静, 简敏菲. 稻虾种养新模式对稻田土壤肥力和微生物群落结构的影响. 土壤学报, 2022, 60(6): 1790-1800.
LAI Z, XIAO L T, LAI S, YANG H L, NI C Y, YANG W J, JIAN M F. Effects of a new rice-shrimp farming model on soil fertility and microbial community structure in paddy field. Acta Pedologica Sinica, 2022, 60(6): 1790-1800. (in Chinese)
[30]
陈重军, 凌学林, 邢龙, 冯健, 吴羽希, 范静, 孙远博, 廖方新. 减肥条件下生物质炭施用对水稻田土壤细菌多样性的影响. 农业资源与环境学报, 2021, 38(3):385-392.
CHEN C J, LING X L, XING L, FENG J, WU Y X, FAN J, SUN Y B, LIAO F X. Effects of biochar addition on the microbial diversity of paddy soils under fertilizer reduction. Journal of Agricultural Resources and Environment, 2021, 38(3): 385-392. (in Chinese)
[31]
邹雪峰, 何翔, 李铭刚, 包玲凤, 王雪丽, 张庆, 施竹凤, 倪明, 杨济达, 杨明英, 朱红业, 杨佩文. 稻油轮作农田土壤碳氮微生物群落多样性特征. 环境科学与技术, 2021, 44(10): 27-35.
ZOU X F, HE X, LI M G, BAO L F, WANG X L, ZHANG Q, SHI Z F, NI M, YANG J D, YANG M Y, ZHU H Y, YANG P W. Diversity of carbon and nitrogen microbial communities in soil of rice-rape rotation farmland. Environmental Science & Technology, 2021, 44(10): 27-35. (in Chinese)
[32]
ZHU X Y, LI Y, XUE C X, LIDBURY I D E A, TODD J D, LEA-SMITH D J, TIAN J W, ZHANG X H, LIU J W. Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. Microbiome, 2023, 11(1):175.
[33]
DÍEZ-VIVES C, GASOL J M, ACINAS S G. Spatial and temporal variability among marine Bacteroidetes populations in the NW Mediterranean Sea. Systematic and Applied Microbiology, 2014, 37(1): 68-78.
[34]
CRUMP B C, HOPKINSON C S, SOGIN M L, HOBBIE J E. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology, 2004, 70(3): 1494-1505.

doi: 10.1128/AEM.70.3.1494-1505.2004 pmid: 15006771
[35]
JIANG H C, DONG H L, ZHANG G X, YU B S, CHAPMAN L R, FIELDS M W. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Applied and Environmental Microbiology, 2006, 72(6): 3832-3845.

pmid: 16751487
[36]
RAMPADARATH S, BANDHOA K, PUCHOOA D, JEEWON R, BAL S. Metatranscriptomics analysis of mangroves habitats around Mauritius. World Journal of Microbiology & Biotechnology, 2018, 34(4): 59.
[37]
YAO Q, LIU J J, YU Z H, LI Y S, JIN J, LIU X B, WANG G H. Changes of bacterial community compositions after three years of biochar application in a black soil of Northeast China. Applied Soil Ecology, 2017, 113: 11-21.
[38]
陈玲, 万韦韬, 刘兵, 徐文静, 顾泽茂. 稻虾共作对稻田水体微生物多样性和群落结构的影响. 华中农业大学学报, 2022, 41(1): 141-151.
CHEN L, WAN W T, LIU B, XU W J, GU Z M. Effects of rice-crayfish integrated system on microbial diversity and community structure in paddy water. Journal of Huazhong Agricultural University, 2022, 41(1):141-151. (in Chinese)
[39]
贾丽娟, 王广军, 夏耘, 张凯, 谢骏, 郁二蒙, 李志斐, 龚望宝, 田晶晶. 不同地区稻虾综合种养系统的微生物群落结构分析. 水产学报, 2023, 47(6): 73-84.
JIA L J, WANG G J, XIA Y, ZHANG K, XIE J, YU E M, LI Z F, GONG W B, TIAN J J. Analysis of microbial community structure in rice-shrimp integrated culture system of three different areas. Journal of Fisheries of China, 2023, 47(6): 73-84. (in Chinese)
[40]
PICCARDI P, VESSMAN B, MITRI S. Toxicity drives facilitation between 4 bacterial species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 15979-15984.
[41]
彭姣. 养殖水环境对中华绒螯蟹幼蟹和成蟹生存与生长的影响[D]. 长沙: 湖南农业大学, 2017.
PENG J. Effects of aquaculture water environment on survival and growth of young and adult Eriocheir sinensis[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[42]
李会峰. 水飞蓟素、菊粉和β-葡聚糖对缓解凡纳滨对虾低盐应激的效应研究[D]. 武汉: 华东师范大学, 2019.
LI H F. Benificial effects of silymarin, inulin and β-glucan in relieving low-salinity caused stress in Litopenaeus vannamei[D]. Wuhan: East China Normal University, 2019. (in Chinese)
[43]
LI C C, JIN L, ZHANG C, LI S Z, ZHOU T, HUA Z Y, WANG L F, JI S P, WANG Y F, GAN Y D, LIU J. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress. iMeta, 2023, 2(1): e79.
[44]
国春菲. 土壤盐分和pH对滨海盐土土壤微生物多样性的影响[D]. 杭州: 浙江农林大学, 2013.
GUO C F. Effects of salinity and pH on soil microbial diversity in coastal saline soil[D]. Hangzhou: Zhejiang A&F University, 2013. (in Chinese)
[45]
卫雨西, 陈丽娟, 冯起, 席海洋, 郭瑞, 张成琦. 干旱区盐碱土微生物特征及其影响因素研究进展. 中国沙漠, 2024, 44(3): 18-30.

doi: 10.7522/j.issn.1000-694X.2023.000126
WEI Y X, CHEN L J, FENG Q, XI H Y, GUO R, ZHANG C Q. Progress on microbial characteristics in arid salt-affected soils and related factors. Journal of Desert Research, 2024, 44(3): 18-30. (in Chinese)

doi: 10.7522/j.issn.1000-694X.2023.000126
[46]
PODOSOKORSKAYA O A, KADNIKOV V V, GAVRILOV S N, MARDANOV A V, MERKEL A Y, KARNACHUK O V, RAVIN N V, BONCH-OSMOLOVSKAYA E A, KUBLANOV I V. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial Phylum Ignavibacteriae. Environmental Microbiology, 2013, 15(6): 1759-1771.
[47]
LÜCKER S, WAGNER M, MAIXNER F, PELLETIER E, KOCH H, VACHERIE B, RATTEI T, DAMSTÉ J S S, SPIECK E, LE PASLIER D, DAIMS H. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30): 13479-13484.
[55]
LI X, LI Y Y, WU J S. Bacterial community response to different nitrogen gradients of swine wastewater in surface flow constructed wetlands. Chemosphere, 2021, 265:129106.
[56]
IBEKWE A M, MA J, MURINDA S, REDDY G B. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste. The Science of the Total Environment, 2016, 544: 68-76.

doi: 10.1016/j.scitotenv.2015.11.139 pmid: 26657250
[57]
CHEN Y N, LI Y, QIU T Y, HE H R, LIU J, DUAN C J, CUI Y X, HUANG M, WU C Y, FANG L C. High nitrogen fertilizer input enhanced the microbial network complexity in the paddy soil. Soil Ecology Letters, 2023, 6(2): 230205.
[58]
BÅÅTH E, KRITZBERG E. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation. Applied and Environmental Microbiology, 2015, 81(21): 7411-7419.

doi: 10.1128/AEM.02236-15 pmid: 26276108
[59]
SHI W J, LI Y, GAO X L, FU R Y. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH. Biotechnology Letters, 2016, 38(3): 495-501.
[60]
FAGERIA N K, BARBOSA FILHO M P. Influence of pH on productivity, nutrient use efficiency by dry bean, and soil phosphorus availability in a No-tillage system. Communications in Soil Science and Plant Analysis, 2008, 39(7-8): 1016-1025.
[61]
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, AHMED B, ALLISON S D, CRENSHAW C, CONTOSTA A R, CUSACK D, FREY S, GALLO M E, GARTNER T B, HOBBIE S E, HOLLAND K, KEELER B L, POWERS J S, STURSOVA M, TAKACS- VESBACH C, WALDROP M P, WALLENSTEIN M D, ZAK D R, ZEGLIN L H. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264.

doi: 10.1111/j.1461-0248.2008.01245.x pmid: 18823393
[62]
ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 2009, 75(6): 1589-1596.

doi: 10.1128/AEM.02775-08 pmid: 19151179
[63]
KERFAHI D, GUO Y P, DONG K, WANG Q K, ADAMS J M. pH is the major predictor of soil microbial network complexity in Chinese forests along a latitudinal gradient. CATENA, 2024, 234: 107595.
[64]
张灵菲, 马垒, 李玉东, 郑福丽, 魏建林, 谭德水, 崔秀敏, 李燕. 有机物料与化肥长期配施对小麦玉米轮作潮土细菌群落和酶活性的影响. 中国农业科学, 2023, 56(19): 3843-3855. doi: 10.3864/j.issn.0578-1752.2023.19.011.
ZHANG L F, MA L, LI Y D, ZHENG F L, WEI J L, TAN D S, CUI X M, LI Y. Effects of long-term synergistic application of organic materials and chemical fertilizers on bacterial community and enzyme activity in wheat-maize rotation fluvo-aquic soil. Scientia Agricultura Sinica, 2023, 56(19): 3843-3855. doi: 10.3864/j.issn.0578-1752.2023.19.011. (in Chinese)
[54]
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276.

doi: 10.1038/nrmicro.2018.9 pmid: 29398704
[53]
JASPER WUBS E R, MELCHERS P D, BEZEMER T M. Potential for synergy in soil inoculation for nature restoration by mixing inocula from different successional stages. Plant and Soil, 2018, 433(1): 147-156.

doi: 10.1007/s11104-018-3825-0 pmid: 30930494
[52]
MENG L X, JIA C L, XU C X, ZHANG X W, HU H. Response of soil bacterial community diversity and co-occurrence network to foraging intensity of yaks in alpine meadow. Acta Agrestia Sinica, 2023, 31(1): 9-18. (in Chinese)
孟令旭, 贾彩玲, 许春雪, 张潇文, 呼和. 高寒草甸土壤细菌群落多样性和共现性网络对牦牛觅食强度的响应. 草地学报, 2023, 31(1): 9-18.

doi: 10.11733/j.issn.1007-0435.2023.01.002
[51]
LI W J, WANG H Y, ZHANG Y B, XU Y, LI H, LIU H B. Effect of rice-crab symbiosis on disease and weeds in paddy field and rice yield. Hubei Agricultural Sciences, 2023, 62(9): 64-69. (in Chinese)
李伟晶, 王洪媛, 张怡彬, 徐洋, 李浩, 刘宏斌. 稻蟹共生对稻田病草害和水稻产量的影响. 湖北农业科学, 2023, 62(9): 64-69.
[50]
LI T F, ZHOU L, WU Y H, HAN L F. The role of periphyton in the migration and transformation of carbon, nitrogen, and phosphorus elements at the soil-water interface. Journal of Hydroecology, 2024, 45(4): 28-39. (in Chinese)
李庭芳, 周蕾, 吴永红, 韩龙飞. 周丛生物在土水界面碳氮磷元素迁移转化中的作用. 水生态学杂志, 2024, 45(4): 28-39.
[49]
WANG H Y, YU J L, LI Q X, MA Q L, TE R G L, WEI Y R, XIA J J, H, ZHAO J, XI N N G. Spatial distribution characteristics of soil microbial communities from Chlorobi phylum in different vegetation zones from Xilin River Basin. Acta Microbiologica Sinica, 2021, 61(6): 1698-1714. (in Chinese)
王红越, 于景丽, 李千雪, 马巧丽, 特日格乐, 魏亚茹, 夏晶晶, 吕赫, 赵吉, 希尼尼根. 锡林河流域不同植被带土壤绿菌门微生物群落的空间分布特征. 微生物学报, 2021, 61(6): 1698-1714.
[48]
STROUS M, PELLETIER E, MANGENOT S, RATTEI T, LEHNER A, TAYLOR M W, HORN M, DAIMS H, BARTOL-MAVEL D, WINCKER P, BARBE V, FONKNECHTEN N, VALLENET D, SEGURENS B, SCHENOWITZ-TRUONG C, MÉDIGUE C, COLLINGRO A, SNEL B, DUTILH B E, OP DEN CAMP H J M, VAN DER DRIFT C, CIRPUS I, VAN DE PAS-SCHOONEN K T, HARHANGI H R, VAN NIFTRIK L, SCHMID M, KELTJENS J, VAN DE VOSSENBERG J, KARTAL B, MEIER H, FRISHMAN D, HUYNEN M A, MEWES H W, WEISSENBACH J, JETTEN M S M, WAGNER M, LE PASLIER D. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440(7085): 790-794.
[1] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[2] LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides [J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642.
[3] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[4] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
[5] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[6] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[7] LIU XiWei, ZHANG Min, ZHANG YuChun, YANG Min, SONG XiaoJun, CAI RuiGuo. Effects of Shading at Grain Filling Stages on Starch Components and Physicochemical Properties of the Waxy Wheat and Non-Waxy Wheat [J]. Scientia Agricultura Sinica, 2017, 50(9): 1582-1593.
[8] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
[9] GENG Yi-wen, HA Yi-ming, JIN Jing, LI Qing-peng. Apple Pomace Dietary Fibre Modification by Hydrogen Peroxide [J]. Scientia Agricultura Sinica, 2015, 48(19): 3979-3988.
[10] SU Dong-Xiao, LIAO Sen-Tai, ZHANG Ming-Wei, HOU Fang-Li, TANG Xiao-Jun, WEI Zhen-Cheng, ZHANG Rui-Fen, CHI Jian-Wei, ZHANG Yan, DENG Yuan-Yuan. Effect of Spray Drying Processing on the Physicochemical Properties of Instant Longan Powder [J]. Scientia Agricultura Sinica, 2011, 44(18): 3830-3839.
[11] ,,. Formation and Physicochemical Properties of Pressure-Induced Gels [J]. Scientia Agricultura Sinica, 2005, 38(08): 1652-1657 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!