Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (2): 278-294.doi: 10.3864/j.issn.0578-1752.2024.02.005

• PLANT PROTECTION • Previous Articles     Next Articles

Comparative Analysis of Pathogens of Rice Spikelet Rot Disease in Heilongjiang, Sichuan and Hainan Provinces

ZHANG YaLing1(), FU ZhongJu1, LI Xue1, SUN YuJia1, ZHAO YuHan1, GU XinYi1, WANG YanXia1, JIN XueHui1, WU WeiHuai3, HUA LiXia2()   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University/Heilongjiang Plant Resistance Research Center, Daqing 163319, Heilongjiang
    2 Crops Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300
    3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101
  • Received:2023-08-28 Accepted:2023-10-20 Online:2024-01-16 Published:2024-01-19
  • Contact: ZHANG YaLing, HUA LiXia

Abstract:

【Objective】 The objective of this study is to identify the pathogenic species and dominant pathogens of rice spikelet rot disease (RSRD) in Heilongjiang, Sichuan and Hainan provinces of China, and to provide reference for accurate prevention and control of RSRD.【Method】 RSRD samples were collected from 13 major rice production areas in Heilongjiang, Sichuan and Hainan provinces. A total of 568 strains were isolated and purified by tissue separation and single spore separation methods. Morphological identification methods were performed for each strain, combined with rDNA-ITS sequence analysis and Koch’s rule verification and identification of RSRD pathogens in 13 major rice production areas. The dominant strains and pathogenic characteristics were analyzed.【Result】 There were three categories of pathogens of RSRD in Heilongjiang Province, they were Curvularia, Alternaria and Fusarium, and which accounted for 1.10%, 83.43% and 15.47% of the total pathogens, respectively. Alternaria was the dominant strains in Heilongjiang Province. In Hainan Province, there were Curvularia, Fusarium, Nigrospora, Lasiodiplodia and Exserohilum species of RSRD pathogens, which accounted for 1.62%, 89.47%, 0.81%, 1.62% and 6.48% of the total pathogens, respectively, and Fusarium was the dominant strains. There were Curvularia, Alternaria, Fusarium, Nigrospora and Exserohilum species of RSRD pathogens in Sichuan Province, which accounted for 23.57%, 13.47%, 22.86%, 16.43% and 23.57% of the total pathogens, respectively, and no dominant strain. According to the differences of conidia and colony morphology, 23 representative strains were selected, and then rDNA-ITS sequence analysis and Koch’s rule verification were combined. The pathogens of RSRD were identified as C. lunata of the genus Curvularia; A. tenuissima, A. alternata, A. brassicae of the genus Alternaria; F. verticillioides, F. andiyazi, F. equiseti, F. incarnatu, F. chlamydosporum of the genus Fusarium; N. oryzae, N. sphaerica of the genus Nigrospora; L. theobromae of the genus Lasiodiplodia and E. rostratum of the genus Exserohilum. The pathogens of RSRD were inoculated both at booting stage and heading and flowering stage, respectively. It was found that whether japonica or indica rice, the average disease index of pathogen of heading and flowering stage inoculation was higher than that of inoculation at booting stage in Hainan Province; while the pathogens’ average disease index of heading and flowering stage inoculation in Heilongjiang and Sichuan provinces was slightly lower than that at booting stage inoculation.【Conclusion】 The pathogens of spikelet rot disease in Heilongjiang, Sichuan and Hainan provinces of China were diverse. The dominant strain was Alternaria in Heilongjiang Province and Fusarium in Hainan Province. The dominant strain was not obvious in Sichuan Province.

Key words: rice, spikelet rot disease, fungal pathogen, dominant pathogen

Table 1

Rice spikelet rot disease survey criteria"

级别 Rating 发病情况 Incidence
0 无病Disease free
1 感病稻粒数少于5个(感病粒数占总粒数的6%以下)
The number of infected rice grains is less than 5 (The number of infected rice grains is less than 6% of the total number of rice grains)
3 感病稻粒数6—10个(感病粒数占总粒数的7%—13%)
The number of infected rice grains is 6-10 (The number of infected grains accounts for 7%-13% of the total number of grains)
5 感病稻粒数11—30个(感病粒数占总粒数的14%—38%)
The number of infected rice grains is 11—30 (The number of infected grains accounts for 14%-38% of the total number of rice grains)
7 感病稻粒数31—50个(感病粒数占总粒数的39%—63%)
The number of infected rice grains is 31—50 (The number of infected grains accounts for 39%-63% of the total number of grains)
9 感病稻粒数51个以上(感病粒数占总粒数的64%以上)
The number of infected rice grains is more than 51 (The number of infected grains is more than 64% of the total number of rice grains)

Fig. 1

Field symptoms of rice spikelet rot disease (RSRD)"

Fig. 2

The number of strains of RSRD in each province"

Fig. 3

Distribution quantity of RSRD strains in each province"

Fig. 4

Morphological characters of the strains of RSRD in Heilongjiang Province"

Fig. 5

Morphological characters of the strains of RSRD in Hainan Province"

Fig. 6

Morphological characters of the strains of RSRD in Sichuan Province"

Fig. 7

Inoculation methods, moisturizing methods and symptoms of RSRD strains"

Fig. 8

Symptoms on panicle at booting stage for 6 days post inoculation (dpi) with each RSRD strain"

Table 2

Disease severity investigation of japonica and indica rice inoculated with RSRD strains"

省份
Province
菌株
Strain
粳稻 Japonica rice 籼稻 Indica rice
孕穗期
Booting stage
抽穗扬花期
Heading and flowering stage
孕穗期
Booting stage
抽穗扬花期
Heading and flowering stage
病穗率
Disease spike rate (%)
病情指数
DI
病穗率
Disease spike rate (%)
病情指数
DI
病穗率
Disease spike rate (%)
病情指数
DI
病穗率
Disease spike rate (%)
病情指数
DI
黑龙江Heilongjiang A-HLJ1 82.61 84.44 75.68 88.89 72.97 95.56 80.00 90.12
B-HLJ2 76.07 94.44 81.08 95.56 75.00 77.78 55.56 75.00
B-HLJ3 63.64 73.33 75.00 74.07 42.86 74.60 72.00 65.43
B-HLJ4 77.14 84.44 51.35 57.78 56.41 64.44 49.95 57.78
B-HLJ5 64.52 71.11 38.30 53.33 76.19 74.07 94.74 68.25
B-HLJ6 64.81 93.33 61.76 75.56 79.41 77.78 73.08 75.56
B-HLJ7 44.44 55.78 39.47 53.33 66.67 64.44 83.33 65.08
B-HLJ8 54.05 64.44 66.67 57.78 61.11 66.67 61.29 57.78
B-HLJ9 41.67 75.56 64.29 55.66 48.15 94.44 77.78 71.43
C-HLJ10 69.77 82.22 93.55 95.56 58.06 74.07 63.64 87.78
C-HLJ11 73.91 88.89 80.65 91.11 65.38 84.13 61.29 96.30
平均数Average 78.91 72.60 77.09 73.68
海南
Hainan
A-HN1 76.47 97.22 76.47 100.00 51.35 94.44 55.56 88.89
B-HN2 70.00 51.85 59.09 100.00 76.47 77.78 78.57 100.00
B-HN3 64.29 69.44 65.38 100.00 63.64 71.43 68.42 100.00
C-HN4 37.50 40.74 78.26 60.00 40.91 40.74 57.69 58.73
D-HN5 42.86 55.56 34.38 59.26 36.36 38.89 66.67 55.56
E-HN6 72.00 66.67 84.85 75.00 61.90 61.11 61.54 77.78
平均数Average 63.58 82.38 64.07 80.16
四川
Sichuan
A-SC1 86.96 88.89 86.36 66.67 84.00 94.44 83.87 88.89
B-SC2 62.16 80.95 68.42 73.33 61.76 86.67 60.53 74.60
C-SC3 64.29 88.89 58.62 72.22 78.38 88.89 69.70 77.78
C-SC4 59.26 91.11 68.00 85.19 58.62 82.22 64.29 73.33
D-SC5 68.18 77.78 66.67 62.96 65.52 64.44 65.38 55.56
E-SC6 70.00 61.90 75.00 65.08 67.75 77.78 78.13 66.67
平均数Average 81.59 70.91 82.41 72.81

Fig. 9

Phylogenetic tree of Curvularia strains based on ITS sequence"

Fig. 10

Phylogenetic tree of Alternaria strains based on ITS sequence"

Fig. 11

Phylogenetic tree of Fusarium strains based on ITS sequence"

Fig. 12

Phylogenetic tree of Nigrospora strains based on ITS sequence"

Fig. 13

Phylogenetic tree of Lasiodiplodia strains based on ITS sequence"

Fig. 14

Phylogenetic tree of Exserohilum strains based on ITS sequence"

[1]
王瑞峰, 李爽, 孔凡娜. 粮食安全保障能力: 内涵特征、指标测度与提升路径. 四川农业大学学报, 2022, 40(3): 301-311.
WANG R F, LI S, KONG F N. Food security capacity: Connotation characteristics, index measurement and promotion path. Journal of Sichuan Agricultural University, 2022, 40(3): 301-311. (in Chinese)
[2]
刘瑞, 赵羽涵, 顾欣怡, 王艳霞, 靳学慧, 吴伟怀, 张亚玲. 黑龙江省和海南省稻瘟病菌中AVR-Pita家族的分布及变异分析. 中国农业科学, 2023, 56(3): 466-480. doi: 10.3864/j.issn.0578-1752.2023.03.006.
LIU R, ZHAO Y H, GU X Y, WANG Y X, JIN X H, WU W H, ZHANG Y L. Distribution and variation analysis of AVR-Pita family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province. Scientia Agricultura Sinica, 2023, 56(3): 466-480. doi: 10.3864/j.issn.0578-1752.2023.03.006. (in Chinese)
[3]
李霞, 李军. 凉山州粳稻产业发展现状与对策. 四川农业科技, 2012(5): 50-51.
LI X, LI J. Current situation and countermeasures of japonica rice industry development in Liangshan Prefecture. Sichuan Agricultural Science and Technology, 2012(5): 50-51. (in Chinese)
[4]
HE K, ZHAO C Y, ZHANG M M, LI J S, ZHANG Q, WU X, WEI S, WANG Y, CHEN X J, LI C. The chromosome-scale genomes of Exserohilum rostratum and Bipolaris zeicola pathogenic fungi causing rice spikelet rot disease. Journal of Fungi, 2023, 9(2): 177.

doi: 10.3390/jof9020177
[5]
李路, 刘连盟, 王国荣, 汪爱娟, 王玲, 孙磊, 黎起秦, 黄世文. 水稻穗腐病和穗枯病的研究进展. 中国水稻科学, 2015, 29(2): 215-222.

doi: 10.3969/j.issn.1001-7216.2015.02.014
LI L, LIU L M, WANG G R, WANG A J, WANG L, SUN L, LI Q Q, HUANG S W. Research progress of spikelet rot disease and bacterial panicle blight of rice. Chinese Journal of Rice Science, 2015, 29(2): 215-222. (in Chinese)

doi: 10.3969/j.issn.1001-7216.2015.02.014
[6]
谭海文, 陈永珍, 秦健, 林纬, 袁高庆, 黎起秦. 广西部分稻区稻穗腐病发生情况的初步调查. 广西植保, 2011, 24(4): 5-6.
TAN H W, CHEN Y Z, QIN J, LIN W, YUAN G Q, LI Q Q. A preliminary investigation on the occurrence of rice ear rot in some rice areas of Guangxi. Guangxi Plant Protection, 2011, 24(4): 5-6. (in Chinese)
[7]
张云江, 赵镛洛, 王继馨, 马文东, 张海军, 乔丽英. 水稻颖壳褐变现象研究概况. 黑龙江农业科学, 2005(5): 60-61.
ZHANG Y J, ZHAO Y L, WANG J X, MA W D, ZHANG H J, QIAO L Y. Preliminary research on the appearance of rice grain husk brown rot. Heilongjiang Agricultural Sciences, 2005(5): 60-61. (in Chinese)
[8]
SUN L, WANG L, LIU L M, HOU Y X, XU Y H, LIANG M Q, GAO J, LI Q Q, HUANG S W. Infection and colonization of pathogenic fungus Fusarium proliferatum in rice spikelet rot disease. Rice Science, 2019, 26(1): 60-68.

doi: 10.1016/j.rsci.2018.08.005
[9]
穆娟微, 李鹏, 李德萍. 水稻新病害——水稻褐变穗. 现代化农业, 2005(10): 1-2.
MU J W, LI P, LI D P. A new rice disease——Brown spike of rice. Modernizing Agriculture, 2005(10): 1-2. (in Chinese)
[10]
侯恩庆, 张佩胜, 王玲, 刘恩勇, 刘连盟, 黄世文. 水稻穗腐病病菌致病性、发生规律及防控技术研究. 植物保护, 2013, 39(1): 121-127, 120.
HOU E Q, ZHANG P S, WANG L, LIU E Y, LIU L M, HUANG S W. Occurrence, epidemical regularity and controlling of rice spikelet rot disease (RSRD) and pathogenicity of its pathogens. Plant Protection, 2013, 39(1): 121-127, 120. (in Chinese)
[11]
黄世文, 王玲, 刘连盟, 刘恩勇, 侯恩庆, 肖丹凤, 范锃岚. 水稻穗腐病病原分离、鉴定及生物学特性. 中国水稻科学, 2012, 26(3): 341-350.
HUANG S W, WANG L, LIU L M, LIU E Y, HOU E Q, XIAO D F, FAN Z L. Isolation, identification and biological characters of pathogens of rice spikelet rot disease. Chinese Journal of Rice Science, 2012, 26(3): 341-350. (in Chinese)
[12]
费丹. 安徽省水稻穗腐病病原生物学特性及防治技术研究[D]. 合肥: 安徽农业大学, 2015.
FEI D. Biological characterization of pathogens causing rice spikelet rot disease and the technology of disease control in Anhui Province of China[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese)
[13]
余建. 江西水稻穗腐病病原鉴定及30个抗瘟单基因系对稻瘟病的抗性评价[D]. 南昌: 江西农业大学, 2018.
YU J. Identification of pathogens of rice spikelet rot disease and evaluation of resistance of rice 30 Pi genes to the Magnaporthe oryaze in Jiangxi Province[D]. Nanchang: Jiangxi Agricultural University, 2018. (in Chinese)
[14]
乔金玲, 台莲梅, 王平, 张景龙, 马跃. 水稻褐变穗病原菌生物学特性的研究. 现代化农业, 2010(4): 9-10.
QIAO J L, TAI L M, WANG P, ZHANG J L, MA Y. Study on the biological characteristics of pathogenic fungi causing brown panicles in rice. Modernizing Agriculture, 2010(4): 9-10. (in Chinese)
[15]
姚玉荣, 霍建飞, 贲海燕, 郝永娟, 杨秀荣, 孙淑琴, 王万立. 天津水稻穗腐病病原菌鉴定及室内毒力测定. 山东农业科学, 2023, 55(3): 148-152.
YAO Y R, HUO J F, BEN H Y, HAO Y J, YANG X R, SUN S Q, WANG W L. Pathogen identification of rice spike rot disease in Tianjin and indoor virulence determination. Shandong Agricultural Sciences, 2023, 55(3): 148-152. (in Chinese)
[16]
杨小林, 韩烨, 殷得所, 张瑞洋, 张佑宏, 张舒. 湖北稻区穗腐病病原ITS鉴定及其生物学特性分析. 河南农业科学, 2019, 48(4): 82-87.
YANG X L, HAN Y, YIN D S, ZHANG R Y, ZHANG Y H, ZHANG S. ITS identification and biological characterization of the pathogens of rice spikelet rot disease in Hubei rice region. Journal of Henan Agricultural Sciences, 2019, 48(4): 82-87. (in Chinese)
[17]
张俊华, 李云鹏, 韩雨桐, 杨明秀, 宋爽, 钟庆艳, 范琳. 黑龙江省水稻褐变穗病病原鉴定及生物学特性研究. 东北农业大学学报, 2018, 49(1): 27-38, 46.
ZHANG J H, LI Y P, HAN Y T, YANG M X, SONG S, ZHONG Q Y, FAN L. Study on pathogen identification and biological characteristics of rice brown panicle disease in Heilongjiang Province. Journal of Northeast Agricultural University, 2018, 49(1): 27-38, 46. (in Chinese)
[18]
LEE F N, TUGWELL N P, FANNAH S J, WEIDEMANN G J. Role of fungi vectored by rice stink bug (Heteroptera: Pentatomidae) in discoloration of rice kernels. Journal of Economic Entomology, 1993, 86(2): 549-556.

doi: 10.1093/jee/86.2.549
[19]
TULLIS B C. Fungi isolated from discolored rice kernels. USDA Technical Bulletin, 1936(540): 11.
[20]
MARCHETTI M A, PETERSON H D. The role of Bipolaris oryzae in floral abortion and kernel discoloration in rice. Plant Disease, 1984, 68(4): 288-291.

doi: 10.1094/PD-69-288
[21]
齐丽. 水稻产生“褐穗”原因及防控措施. 北京农业, 2014(33): 134.
QI L. The causes and control measures of brown panicles in rice. Beijing Agriculture, 2014(33): 134. (in Chinese)
[22]
金敏忠, 柴荣耀, 张庆生, 林文彩. 水稻黑粒米症状与病原研究初报. 植物保护, 1994, 20(2): 7-8.
JIN M Z, CHAI R Y, ZHANG Q S, LIN W C. Preliminary report on the symptoms and pathogens of black grain rice. Plant Protection, 1994, 20(2): 7-8. (in Chinese)
[23]
金敏忠. 弯孢菌引起的变色米初步研究. 植物病理学报, 1989, 19(1): 21-26.
JIN M Z. A preliminary study on discolored rice grains caused by Curvularia. Acta Phytopathologica Sinica, 1989, 19(1): 21-26. (in Chinese)
[24]
龚国淑, 徐琴, 张敏, 杨继芝, 陈华保, 申世安, 唐太飞. 一种简便的病原真菌单孢分离方法研究. 玉米科学, 2010, 18(1): 126-127, 134.
GONG G S, XU Q, ZHANG M, YANG J Z, CHEN H B, SHEN S A, TANG T F. A simple method for single fungal spore isolation. Journal of Maize Sciences, 2010, 18(1): 126-127, 134. (in Chinese)
[25]
尹良芬. 滤纸片低温干燥法保存丝状真菌. 安徽农业科学, 2022, 50(12): 5-10.
YIN L F. Drying filter paper at low temperature to preserve filamentous fungi. Journal of Anhui Agricultural Sciences, 2022, 50(12): 5-10. (in Chinese)
[26]
孙磊, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文. 水稻穗腐病菌强致病力且高产伏马菌素菌株筛选. 中国水稻科学, 2018, 32(6): 610-616.

doi: 10.16819/j.1001-7216.2018.8045
SUN L, WANG L, LIU L M, HOU Y X, LI Q Q, HUANG S W. Screening for strains of rice spikelet rot disease pathogenic fungus with high fumonisin production and strong pathogenicity. Chinese Journal of Rice Science, 2018, 32(6): 610-616. (in Chinese)

doi: 10.16819/j.1001-7216.2018.8045
[27]
陈利军, 王春生, 田雪亮, 智亚楠, 刘焱琨, 卫云飞. 一种水稻穗腐病新病原的鉴定. 河南农业科学, 2019, 48(10): 93-98.
CHEN L J, WANG C S, TIAN X L, ZHI Y N, LIU Y K, WEI Y F. Identification of a new pathogen causing rice spikelet rot disease. Journal of Henan Agricultural Sciences, 2019, 48(10): 93-98. (in Chinese)
[28]
张景龙, 乔金玲. 黑龙江省佳木斯地区水稻褐变穗田间药剂防治试验. 北方水稻, 2019, 49(3): 20-22.
ZHANG J L, QIAO J L. Field control experiment of rice browning ear in Jiamusi of Heilongjiang Province. North Rice, 2019, 49(3): 20-22. (in Chinese)
[29]
EDWARDS K, JOHNSTONE C, THOMPSON C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349.

doi: 10.1093/nar/19.6.1349 pmid: 2030957
[30]
WHITE T J, BRUNS T, LEE S, TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//PCR Protocols:A Guide to Methods and Applications. Academic Press, 1990, 38: 315-322.
[31]
陆家云. 植物病原真菌学. 北京: 中国农业出版社, 2001.
LU J Y. Plant Pathogenic Mycology. Beijing: China Agriculture Press, 2001. (in Chinese)
[32]
吕闯. 广东省葫芦科蔬菜真菌性叶斑病病原鉴定[D]. 武汉: 华中农业大学, 2022.
C. Identification of pathogenic fungi causing Cucurbitaceae vegetables leaf spot diseases in Guangdong Province[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
[33]
吴如慧, 李增平, 张宇, 施泽坤. 橡胶树毛色二孢叶斑病病原菌的鉴定及其生物学特性研究. 热带作物学报, 2019, 40(1): 107-114.
WU R H, LI Z P, ZHANG Y, SHI Z K. Identification and biological characteristics of the pathogen causing Lasiodiplodia leaf spot of rubber tree. Chinese Journal of Tropical Crops, 2019, 40(1): 107-114. (in Chinese)
[34]
刘承龙. 复叶槭枯梢病病原鉴定及室内药剂筛选[D]. 南京: 南京林业大学, 2022.
LIU C L. Identification and screening of fungicides for the pathogen of box elder (Acer negundo) dieback[D]. Nanjing: Nanjing Forestry University, 2022. (in Chinese)
[35]
韩雨桐. 黑龙江省水稻褐变穗病原鉴定、抗源及药剂筛选研究[D]. 哈尔滨: 东北农业大学, 2016.
HAN Y T. Pathogen identification, resistant materials and fungicides screening of rice brown panicle disease in Heilongjiang Province[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese)
[36]
胡颂平, 余建, 魏开发, 兰波, 李美琪, 谢碧玉, 朱雨辰, 杨堉楠, 祝锦敏, 张琳, 李湘民. 江西水稻穗腐病病原菌鉴定及生物学特性研究. 江西农业大学学报, 2019, 41(2): 234-242.
HU S P, YU J, WEI K F, LAN B, LI M Q, XIE B Y, ZHU Y C, YANG Y N, ZHU J M, ZHANG L, LI X M. Studies on the biological characteristics and pathogenic identification of rice spikelet rot disease in Jiangxi Province. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(2): 234-242. (in Chinese)
[37]
费丹, 檀根甲, 罗道宏. 安徽省水稻穗腐病病原鉴定及生物学特性研究. 安徽农业大学学报, 2014, 41(5): 777-782.
FEI D, TAN G J, LUO D H. Identification and characterization of rice spikelet rot disease pathogens in Anhui Province. Journal of Anhui Agricultural University, 2014, 41(5): 777-782. (in Chinese)
[38]
台莲梅, 姜小玉, 靳学慧, 张亚玲. 黑龙江省水稻穗褐变病病原菌的分离与鉴定. 微生物学通报, 2020, 47(6): 1776-1786.
TAI L M, JIANG X Y, JIN X H, ZHANG Y L. Isolation and identification of pathogen causing rice panicle browning in Heilongjiang Province. Microbiology China, 2020, 47(6): 1776-1786. (in Chinese)
[39]
俞雯雯, 袁炳钦, 冯汝晴, 郑镇桂, 刘灵锐, 陈勇. 嘴突凸脐蠕孢菌作为微生物除草剂的潜力研究. 南京农业大学学报, 2020, 43(4) : 613-620.
YU W W, YUAN B Q, FENG R Q, ZHENG Z G, LIU L R, CHEN Y. Study on the potential of Exserohilum rostratum as a microbial herbicide. Journal of Nanjing Agricultural University, 2020, 43(4): 613-620. (in Chinese)
[40]
CARDONA R, GONZALEZ M S. First report of Exserohilum rostratum associated with rice seed in Venezuela. Plant Disease, 2007, 91(2): 226.
[41]
赵晨宇, 刘伟, 郭泽建, 陈旭君. 引起水稻颖壳褐斑病的两种蠕孢菌分离鉴定. 植物病理学报, 2022, 52(6): 999-1002.
ZHAO C Y, LIU W, GUO Z J, CHEN X J. Identification of pathogens causing brown spot disease on rice glume. Acta Phytopathologica Sinica, 2022, 52(6): 999-1002. (in Chinese)
[42]
谢红辉, 王丽萍, 吴耿寰. 可可毛色二孢相关病害的发生规律及防治概况. 农业研究与应用, 2019, 32(3): 34-39.
XIE H H, WANG L P, WU G H. Occurrence regularity and control situation of diseases caused by Lasiodiplodia theobromae. Agricultural Research and Application, 2019, 32(3): 34-39. (in Chinese)
[43]
CROUS P W, PALM M E. Reassessment of the anamorph genera Botryodiplodia, Dothiorella and Fusicoccum. Sydowia, 1999, 51(2): 167-175.
[44]
黄艳花, 黄远光, 崔忠吉, 蒙成, 欧善生, 宁平. 百香果茎基腐病防治药剂筛选及田间盆栽防治效果试验. 广西农学报, 2023, 38(3): 28-34.
HUANG Y H, HUANG Y G, CUI Z J, MENG C, OU S S, NING P. Screening of fungicides for controlling stem base rot of passion fruit and experiment on efficacy of pot control in field. Journal of Guangxi Agriculture, 2023, 38(3): 28-34. (in Chinese)
[45]
关天博, 崔晓东, 陈恺宏, 刘琼光. 剑麻可可毛色二孢叶斑病菌的鉴定及其室内药剂筛选试验. 广东农业科学, 2022, 49(2): 93-100.
GUAN T B, CUI X D, CHEN K H, LIU Q G. Identification and fungicides screening of Lasiodiplodia theobromae causing leaf spot of Agave sisalana. Guangdong Agricultural Sciences, 2022, 49(2): 93-100. (in Chinese)
[46]
吕佳, 罗碧, 钱家萍, 张嘉雯, 高育婷, 杨全. 广东肉桂内生真菌多样性及其抗肉桂枝枯病菌初步研究. 菌物学报, 2022, 41(3): 435-449.

doi: 10.13346/j.mycosystema.210368
J, LUO B, QIAN J P, ZHANG J W, GAO Y T, YANG Q. Diversity of endophytic fungi from Cinnamomum cassia and their antagonism to the pathogen of C. cassia branch blight in Guangdong, South China. Mycosystema, 2022, 41(3): 435-449. (in Chinese)
[47]
杨德洁, 余凤玉, 牛晓庆, 宋薇薇, 唐庆华, 覃伟权. 一种新的槟榔根腐病病原菌鉴定. 中国南方果树, 2021, 50(6): 84-87, 91.
YANG D J, YU F Y, NIU X Q, SONG W W, TANG Q H, QIN W Q. Identification of a new pathogen of areca root rot. South China Fruits, 2021, 50(6): 84-87, 91. (in Chinese)
[48]
汪爽, 赫丹, 韩君, 徐剑宏, 史建荣, 祭芳, 刘馨, LEE Y W. 粮食中新兴真菌毒素的污染现状及毒理学研究进展. 中国粮油学报, doi: 10.20048/j.cnki.issn.1003-0174.000101.
WANG S, HE D, HAN J, XU J H, SHI J R, JI F, LIU X, LEE Y W. Updates of natural occurrence and toxicology studies of emerging toxins in grains. Journal of the Chinese Cereals and Oils Association, doi: 10.20048/j.cnki.issn.1003-0174.000101. (in Chinese)
[49]
QIU J B, XU J H, SHI J R. Fusarium toxins in Chinese wheat since the 1980s. Toxins, 2019, 11(5): 248.

doi: 10.3390/toxins11050248
[50]
张洁, 王谢, 马青青, 张欣烨, 翟志雷, 张榕杰, 苏永恒, 袁鹏. 谷物中4种交链孢毒素污染情况及检验方法探讨. 江苏预防医学, 2021, 32(2): 143-144, 152.
ZHANG J, WANG X, MA Q Q, ZHANG X Y, ZHAI Z L, ZHANG R J, SU Y H, YUAN P. Contamination status and discussion of detection methods of 4 kinds of Alternaria toxins in cereals. Jiangsu Journal of Preventive Medicine, 2021, 32(2): 143-144, 152. (in Chinese)
[51]
苏爽, 张二鹏, 韩月哲, 张榕杰, 韩华云, 贺静. 玉米中4种交链孢霉毒素的测定方法研究. 河南工业大学学报(自然科学版), 2020, 41(3): 72-77.
SU S, ZHANG E P, HAN Y Z, ZHANG R J, HAN H Y, HE J. Study on the determination methods of four Alternaria mycotoxins in maize. Journal of Henan University of Technology (Natural Science Edition), 2020, 41(3): 72-77. (in Chinese)
[1] GUO NaiHui, ZHANG WenZhong, SHENG ZhongHua, HU PeiSong. CRISPR/Cas9-Mediated Editing of MODD Enhances Rice Dormancy [J]. Scientia Agricultura Sinica, 2024, 57(2): 227-235.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[4] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[5] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[6] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[7] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[8] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[9] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[10] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[11] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[12] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[13] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[14] JING LiQuan, LI Fan, ZHAO YiHan, WANG XunKang, ZHAO FuCheng, LAI ShangKun, SUN XiaoLin, WANG YunXia, YANG LianXin. Research Progress on the Carbon and Nitrogen Sink of Duckweed Growing in Paddy and Its Effects on Rice Yield [J]. Scientia Agricultura Sinica, 2023, 56(23): 4717-4728.
[15] XU HAI, LI XIUKUN, LU JIAHAO, JIANG KAI, MA YUE, XU ZHENGJIN, XU QUAN. The Effect of indica/Xian Pedigree Introgression in japonica/Geng Rice Breeding in China [J]. Scientia Agricultura Sinica, 2023, 56(22): 4359-4370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!