Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4428-4440.doi: 10.3864/j.issn.0578-1752.2023.22.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Potato Tuber Skin Roughness Classification Analysis Based on Image Characteristics Recognition

TANG ZhenSan1(), YUAN JianLong1, KANG LiangHe2, CHENG LiXiang1, LÜ Tai3, YANG Chen3, ZHANG Feng1()   

  1. 1 College of Agriculture, Gansu Agricultural University/State Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070
    2 College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070
    3 Tianshui Institute of Agricultural Sciences, Tianshui 741000, Gansu
  • Received:2023-03-17 Accepted:2023-07-24 Online:2023-11-16 Published:2023-11-17
  • Contact: ZHANG Feng

Abstract:

【Objective】The classification analysis of potato tuber skin roughness could provide the non-destructive testing methods for tuber appearance quality traits, which would establish the theoretical and practical base for the objective evaluation of tuber quality and high-throughput screening varieties.【Method】Seventy-nine potato varieties (lines) were selected as materials, and the images of tuber skin with and without bud-eyes were taken by camera. The tuber skin images were preprocessed using MATLAB R2016a software. Eight materials were randomly selected to compare the effect of image graying, enhancement and denoising using the correlation function indicators. The image characteristic parameters, angular second moment (ASM), entropy (ENT), contrast (CON) and correlation (COR) were extracted using the gray level co-occurrence matrix (GLCM), and the suitable distance (d) of GLCM were determined. The differences in two types of tuber skin image feature parameters were compared, and the set of tuber skin image features with less difference was selected for statistical analysis and classification recognition. The support vector machine (SVM) and backpropagation neural network (BPNN) models were constructed for tuber skin roughness classification, and the evaluation indexes of model grading accuracy were accuracy, precision, recall and harmonic mean, respectively. 【Result】The texture structure of tuber skin image after grayscale processing using the weighted average method was clear, and the evaluation value of image clarity was 2.5698±0.5959, which was significantly higher than that of the mean method (1.8035±0.4856) and the maximum method (1.0535±0.4088). The gray scale range of tuber skin image after histogram equalization enhancement was expanded from 100-200 to 0-200, which made the gray distribution wider. The salt noise denoising effect of tuber skin images using the median filter under 3×3 sliding windows was obvious, and the peak signal-to-noise ratio (PSNR) was maximum (28.6250±3.9784 Bp), which was significantly higher than that under 3×3 and 5×5 windows. Two types of tuber skin image feature parameters extracted by GLCM (d=4) were significantly different, and the set of tuber skin image features (without bud-eyes) with less difference was selected for statistical analysis and classification recognition. The results indicated that the variation coefficient of these parameters was varied significantly. The variation coefficient of contrast was the largest (0.40), followed by the angular second moment (0.24) and correlation (0.23), and the variation coefficient of entropy was the smallest (0.18). Using the feature set as the input variable of tuber skin classification model, the overall classification performance of SVM was higher than BP neural network, and the accuracy reached 87.5%. Especially, the prediction accuracy and recognizability of SVM for smooth and heavy hemp skins was the highest. The accuracy reached 100%, the recall reached 85.7% and 100%, and the harmonic mean reached 100% and 92.3%, respectively. 【Conclusion】The combination of the image processing techniques presented in this study and the GLCM extracted texture feature parameters could effectively characterize potato tuber skin roughness variations. The tuber skin roughness grading based on machine vision could be achieved by constructing SVM classification model, and the accuracy reached 87.5%.

Key words: Solanum tuberosum, tuber skin roughness, image characteristic, machine vision, support vector machine

Table 1

79 test material codes"

品系编号
Variety code
CIP编号
CIP entry
品系编号
Variety code
CIP编号
CIP entry
品系编号
Variety code
CIP编号
CIP entry
G4 CIP 392617.54 G72 CIP 395436.8 Innovator
G8 CIP 393227.66 G74 CIP 396311.1 1412-1
G9 CIP 393228.67 G82 CIP 397044.25 1428-1-35
G12 CIP 392657.171 G84 CIP 397065.2 2137
G13 CIP 393280.64 G89 CIP 397079.26 1867
G14 CIP 391047.34 G96 CIP 397197.9 215
G16 CIP 393085.5 G97 CIP 398014.2 Lucinda
G17 CIP 398192.213 G99 CIP 388615.22 0933-5
G18 CIP 398098.119 G101 CIP 390637.1 0933-1
G19 CIP 398098.203 G102 CIP 391180.6 1416-5
G27 CIP 398208.33 G104 CIP 391724.1 0730-185
G31 CIP 301029.18 G106 CIP 392740.4 1425-1-13
G32 CIP 301040.63 G108 CIP 392759.1 0938-2-7
G33 CIP 300046.22 G113 CIP 397035.26 0730-180
G35 CIP 300054.29 G115 CIP 302476.108 0730-156
G36 CIP 300056.33 G118 CIP 304350.100 1425-1-27
G42 CIP 300101.11 G121 CIP 304371.67 0730-211
G44 CIP 385499.11 G122 CIP 304383.41 0916-1
G47 CIP 388972.22 G133 CIP 394904.20 0902-1-9
G51 CIP 392781.1 希森6号Xisen no.6 0938-2-18
G52 CIP 392797.22 大西洋Atlantic 0941-1-17
G57 CIP 394034.7 早大白 Zaodabai 0941-1-1
G62 CIP 394613.32 Memphis 0902-4
G63 CIP 394614.117 费乌瑞它Favorita
G65 CIP 395186.6 布尔班克 Burbank
G67 CIP 395195.7 陇薯10号 Longshu no.10
G68 CIP 395196.4 荷兰15号 Helan no.15
G70 CIP 395432.51 夏波蒂Shepody

Fig. 1

Technical flowchart"

Table 2

Potato tuber skin images"

类别Category 薯皮图像 Potato tuber skin images
A
B
C
D

Table 3

Comparison of the results of potato tuber skin images processed by gray scale methods"

类别Category A B C D
重麻皮
Heavy hemp skin
麻皮
Hemp skin
略麻皮
Slightly hemp skin
光滑皮
Smooth skin

Table 4

Comparison of gray scale images sharpness differences"

类别
Category
样本数
Number of samples
类平均标准差
Class mean standard deviation
均值差
Mean difference
A 8 1.8035±0.4856c C-A 0.7663
B 8 1.0535±0.4088b C-B 1.5163
C 8 2.5698±0.5959a C-C 0

Table 5

Images enhancement before and after comparison"

类别 Category A B C D
重麻皮
Heavy hemp skin
麻皮
Hemp skin
略麻皮
Slightly hemp skin
光滑皮
Smooth skin

Table 6

Comparison of images obtained by denoising processing"

类别
Category
原始图像
Original images
3×3窗口 3×3 Window 5×5窗口 5×5 Window
高斯噪声
Gaussian noise
椒盐噪声
Salt and pepper noise
高斯噪声
Gaussian noise
椒盐噪声
Salt and pepper noise
A
B
C
D

Table 7

Comparison of peak signal-to-noise ratio (PSNR) differences in denoised images"

类别
Category
样本数
Number of samples
类平均标准差
Class mean standard deviation
均值差
Mean difference
A 8 28.6250±3.9784a A-A 0
B 8 23.5650±2.1651a A-B 5.0600
C 8 26.7350±2.1425b A-C 1.8900
D 8 21.5675±1.6186b A-D 7.0575

Fig. 2

Characteristic parameters of gray level co-occurrence matrix of potato skin texture images changing with distance A: G16; B: Atlantic; C: Burbank; D: G67; E: Shepody; F: G121; G: Longshu no.10; H: G33"

Fig. 3

Comparison of differences in image feature parameters of potato tuber skins with and without bud eyes A: Angular second moment; B: Contrast; C: Entropy; D: Correlation. ns: No significance; **: Extremely significant difference (P<0.01)"

Table 8

Gray level co-occurrence matrix extraction of tuber skin characteristic parameters and coefficient of variation"

类别
Category
平均值
Average
标准差
Standard deviation
最小值
Min value
最大值
Max value
变异系数
Coefficient of variation
角二阶矩 ASM 0.33 0.08 0.17 0.51 0.24
熵 ENT 1.55 0.22 1.03 2.29 0.18
对比度 CON 0.18 0.07 0.06 0.39 0.40
相关度 COR 1.65 0.38 0.76 2.41 0.23

Table 9

Classification accuracy results analysis"

类别
Category
测试集
Test set
支持向量机Support vector machine BP神经网络 BP neural network
准确率
Accuracy
(%)
精准率
Precision
(%)
召回率
Recall
(%)
F1
(%)
准确率
Accuracy
(%)
精准率
Precision
(%)
召回率
Recall
(%)
F1
(%)
重麻皮 Heavy hemp skin 24 87.5 100 100 100 58.3 - - -
麻皮 Hemp skin 24 100 77.8 87.6 50 57.2 53.4
略麻皮 Slightly hemp skin 24 70 100 82.4 60 66.6 63.3
光滑皮 Smooth skin 24 100 85.7 92.3 67.7 57.1 62.4
[1]
国家市场监督管理总局, 中国国家标准化管理委员会. 植物品种特异性、一致性和稳定性测试指南马铃薯:GB/T 19557.28—2018. 北京: 中国标准出版社, 2018.
State Administration for Market Regulation; Standardization Administration of the People's Republic of China. Guidelines for the conduct of tests for distinctness, uniformity and stability-Potato (Solanum tuberosum L.): GB/T 19557.28-2018. Beijing: Standard Press of China, 2018. (in Chinese)
[2]
韩仲志, 赵友刚. 利用花生荚果图像特征识别品种与检验种子. 作物学报, 2012, 38(3): 535-540.
HAN Z Z, ZHAO Y G. Variety identification and seed test by peanut pod image characteristics. Acta Agronomica Sinica, 2012, 38(3): 535-540. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00535
[3]
王红军, 熊俊涛, 黎邹邹, 邓建猛, 邹湘军. 基于机器视觉图像特征参数的马铃薯质量和形状分级方法. 农业工程学报, 2016, 32(8): 272-277.
WANG H J, XIONG J T, LI Z Z, DENG J M, ZOU X J. Potato grading method of weight and shape based on imaging characteristics parameters in machine vision system. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 272-277. (in Chinese)
[4]
姜宏, 于永波, 章翔峰, 陈宇彤. 马铃薯外部品质分级方法综述. 科学技术与工程, 2022, 22(14): 5519-5527.
JIANG H, YU Y B, ZHANG X F, CHEN Y T. Potato external quality grading methods: a review. Science Technology and Engineering, 2022, 22(14): 5519-5527. (in Chinese)
[5]
周竹, 黄懿, 李小昱, 文东东, 汪成龙, 陶海龙. 基于机器视觉的马铃薯自动分级方法. 农业工程学报, 2012, 28(7): 178-183.
ZHOU Z, HUANG Y, LI X Y, WEN D D, WANG C L, TAO H L. Automatic detecting and grading method of potatoes based on machine vision. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 178-183. (in Chinese)
[6]
刘丽, 匡纲要. 图像纹理特征提取方法综述. 中国图象图形学报, 2009, 14(4): 622-635.
LIU L, KUANG G Y. Overview of image textural feature extraction methods. Journal of Image and Graphics, 2009, 14(4): 622-635. (in Chinese)
[7]
展慧, 李小昱, 王为, 汪成龙, 周竹, 黄懿. 基于机器视觉的板栗分级检测方法. 农业工程学报, 2010, 26(4): 327-331.
ZHAN H, LI X Y, WANG W, WANG C L, ZHOU Z, HUANG Y. Determination of chestnuts grading based on machine vision. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 327-331. (in Chinese)
[8]
薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析. 电子学报, 2006, 34(1): 155-158, 134.
BO H, MA F L, JIAO L C. Research on computation of GLCM of image texture. Acta Electronica Sinica, 2006, 34(1): 155-158, 134. (in Chinese)
[9]
SINGH K R, CHAUDHURY S. Comparative analysis of texture feature extraction techniques for rice grain classification. IET Image Processing, 2020, 14(11): 2532-2540.

doi: 10.1049/ipr2.v14.11
[10]
LADDI A, SHARMA S, KUMAR A, KAPUR P. Classification of tea grains based upon image texture feature analysis under different illumination conditions. Journal of Food Engineering, 2013, 115(2): 226-231.

doi: 10.1016/j.jfoodeng.2012.10.018
[11]
SHAFI U, MUMTAZ R, HAQ I U, HAFEEZ M, IQBAL N, SHAUKAT A, ZAIDI S M H, MAHMOOD Z. Wheat yellow rust disease infection type classification using texture features. Sensors, 2021, 22(1): 146.

doi: 10.3390/s22010146
[12]
张超, 乔敏, 刘哲, 金虹杉, 宁明宇, 孙海艳. 基于无人机和卫星遥感影像的制种玉米田识别纹理特征尺度优选. 农业工程学报, 2017, 33(17): 98-104.
ZHANG C, QIAO M, LIU Z, JIN H S, NING M Y, SUN H Y. Texture scale analysis and identification of seed maize fields based on UAV and satellite remote sensing images. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 98-104. (in Chinese)
[13]
谢元澄, 徐焕良, 谢庄. 基于牛肉大理石花纹标准(BMS)图像的纹理特征分析. 中国农业科学, 2010, 43(24): 5121-5128. doi: 10.3864/j.issn.0578-1752.2010.24.016.
XIE Y C, XU H L, XIE Z. Analysis of texture features based on beef marbling standards (BMS) images. Scientia Agricultura Sinica, 2010, 43(24): 5121-5128. doi: 10.3864/j.issn.0578-1752.2010.24.016. (in Chinese)
[14]
高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取. 计算机系统应用, 2010, 19(6): 195-198.
GAO C C, HUI X W. GLCM-based texture feature extraction. Computer Systems & Applications, 2010, 19(6): 195-198. (in Chinese)
[15]
刘涛, 仲晓春, 孙成明, 郭文善, 陈瑛瑛, 孙娟. 基于计算机视觉的水稻叶部病害识别研究. 中国农业科学, 2014, 47(4): 664-674. doi: 10.3864/j.issn.0578-1752.2014.04.006.
LIU T, ZHONG X C, SUN C M, GUO W S, CHEN Y Y, SUN J. Recognition of rice leaf diseases based on computer vision. Scientia Agricultura Sinica, 2014, 47(4): 664-674. doi: 10.3864/j.issn.0578-1752.2014.04.006. (in Chinese)
[16]
党满意, 孟庆魁, 谷芳, 顾彪, 胡耀华. 基于机器视觉的马铃薯晚疫病快速识别. 农业工程学报, 2020, 36(2): 193-200.
DANG M Y, MENG Q K, GU F, GU B, HU Y H. Rapid recognition of potato late blight based on machine vision. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 193-200. (in Chinese)
[17]
GOMES J F S, LETA F R. Applications of computer vision techniques in the agriculture and food industry: A review. European Food Research and Technology, 2012, 235(6): 989-1000.

doi: 10.1007/s00217-012-1844-2
[18]
GUZMÁN E, BAETEN V, PIERNA J A F, GARCÍA-MESA J A. Determination of the olive maturity index of intact fruits using image analysis. Journal of Food Science and Technology, 2015, 52(3): 1462-1470.

doi: 10.1007/s13197-013-1123-7 pmid: 25745214
[19]
WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture, 2019, 158(2019): 226-240.

doi: 10.1016/j.compag.2019.02.005
[20]
LI B, XU X M, ZHANG L, HAN J W, BIAN C S, LI G C, LIU J G, JIN L P. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 161-172.

doi: 10.1016/j.isprsjprs.2020.02.013
[21]
RAZMJOOY N, MOUSAVI B S, SOLEYMANI F. A real-time mathematical computer method for potato inspection using machine vision. Computers & Mathematics with Applications, 2012, 63(1): 268-279.

doi: 10.1016/j.camwa.2011.11.019
[22]
纪娜, 何国荣. 基于灰度识别的猕猴桃形状疤痕图像纹理特征提取方法. 自动化与仪器仪表, 2019(1): 159-162.
JI N, HE G R. Texture feature extraction method of kiwifruit shape scar image based on gray level recognition. Automation & Instrumentation, 2019(1): 159-162. (in Chinese)
[23]
李祚林, 李晓辉, 马灵玲, 胡玥, 唐伶俐. 面向无参考图像的清晰度评价方法研究. 遥感技术与应用, 2011, 26(2): 239-246.
LI Z L, LI X H, MA L L, HU Y, TANG L L. Research of definition assessment based on no-reference digital image quality. Remote Sensing Technology and Application, 2011, 26(2): 239-246. (in Chinese)
[24]
宋凤菲. 彩色图像灰度化及其效果的客观评价方法研究[D]. 泉州: 华侨大学, 2014.
SONG F F. Research on objective evaluation method of color image graying and its effect[D]. Quanzhou: Huaqiao University, 2014. (in Chinese)
[25]
杨卫中, 徐银丽, 乔曦, 饶伟, 李道亮, 李振波. 基于对比度受限直方图均衡化的水下海参图像增强方法. 农业工程学报, 2016, 32(6): 197-203.
YANG W Z, XU Y L, QIAO X, RAO W, LI D L, LI Z B. Method for image intensification of underwater sea cucumber based on contrast-limited adaptive histogram equalization. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 197-203. (in Chinese)
[26]
孙宏琦, 施维颖, 巨永锋. 利用中值滤波进行图像处理. 长安大学学报(自然科学版), 2003, 23(2): 104-106.
SUN H Q, SHI W Y, JU Y F. Image processing with medium value filter. Journal of Chang’an University (Natural Science Edition), 2003, 23(2): 104-106. (in Chinese)
[27]
刘祝华. 图像去噪方法的研究[D]. 南昌: 江西师范大学, 2005.
LIU Z H. Research on image denoising method[D]. Nanchang: Jiangxi Normal University, 2005. (in Chinese)
[28]
DASS A K. Improvising MSN and PSNR for finger-print image noised by GAUSSIAN and SALT & PEPPER. The International Journal of Multimedia & Its Applications, 2012, 4(4): 59-72.
[29]
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621.

doi: 10.1109/TSMC.1973.4309314
[30]
侯群群, 王飞, 严丽. 基于灰度共生矩阵的彩色遥感图像纹理特征提取. 自然资源遥感, 2013, 25(4): 26-32.
HOU Q Q, WANG F, YAN L. Extraction of color image texture feature based on gray-level co-occurrence matrix. Remote Sensing for Natural Resources, 2013, 25(4): 26-32. (in Chinese)
[31]
蔡苇荻, 张羽, 刘海燕, 郑恒彪, 程涛, 田永超, 朱艳, 曹卫星, 姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法. 中国农业科学, 2022, 55(6): 1110-1126. doi: 10.3864/j.issn.0578-1752.2022.06.005.
CAI W D, ZHANG Y, LIU H Y, ZHENG H B, CHENG T, TIAN Y C, ZHU Y, CAO W X, YAO X. Early detection on wheat canopy powdery mildew with hyperspectral imaging. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126. doi: 10.3864/j.issn.0578-1752.2022.06.005. (in Chinese)
[32]
李智峰, 朱谷昌, 董泰锋. 基于灰度共生矩阵的图像纹理特征地物分类应用. 地质与勘探, 2011, 47(3): 456-461.
LI Z F, ZHU G C, DONG T F. Application of GLCM-based texture features to remote sensing image classification. Geology and Exploration, 2011, 47(3): 456-461. (in Chinese)
[33]
郑冠楠, 谭豫之, 张俊雄, 李伟. 基于计算机视觉的马铃薯自动检测分级. 农业机械学报, 2009, 40(4): 166-168, 156.
ZHENG G N, TAN Y Z, ZHANG J X, LI W. Automatic detecting and grading method of potatoes with computer vision. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 166-168, 156. (in Chinese)
[34]
黄辰, 费继友. 基于图像特征融合的苹果在线分级方法. 农业工程学报, 2017, 33(1): 285-291.
HUANG C, FEI J Y. Online apple grading based on decision fusion of image features. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(1): 285-291. (in Chinese)
[35]
魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测. 中国农业科学, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005.
WEI Y K, YANG T C, ZANG S L, HE L, DUAN J Z, XIE Y X, WANG C Y, FENG W. Monitoring wheat lodging based on UAV multi-spectral image feature fusion. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. doi: 10.3864/j.issn.0578-1752.2023.09.005. (in Chinese)
[36]
高传新, 殷勇. 数码相机ISO感光度的调整对刑事案件中痕迹检验照相质量的影响. 影像技术, 2008, 21(3): 33-35.
GAO C X, YIN Y. Influence of digital camera ISO speed setting on the quality of criminological photography for traces detection. Image Technology, 2008, 21(3): 33-35. (in Chinese)
[37]
PHAM L H, TRAN D N N, RHIE C H, JEON J W. Analysis of the smartphone camera exposure effect on laser extraction//2021 International Conference on Electronics, Information, and Communication (ICEIC), 2021.
[38]
唐俊, 邓立苗, 陈辉, 栾涛, 马文杰. 基于机器视觉的玉米叶片透射图像特征识别研究. 中国农业科学, 2014, 47(3): 431-440. doi: 10.3864/j.issn.0578-1752.2014.03.003.
TANG J, DENG L M, CHEN H, LUAN T, MA W J. Research on maize leaf recognition of characteristics from transmission image based on machine vision. Scientia Agricultura Sinica, 2014, 47(3): 431-440. doi: 10.3864/j.issn.0578-1752.2014.03.003. (in Chinese)
[39]
杨嘉能. 基于直方图均衡的图像增强算法优化研究[D]. 乌鲁木齐: 新疆大学, 2021.
YANG J N. Optimization of image enhancement algorithm based on histogram equalization[D]. Urumqi: Xinjiang University, 2021. (in Chinese)
[40]
陈永亮. 灰度图像的直方图均衡化处理研究[D]. 合肥: 安徽大学, 2014.
CHEN Y L. Research on histogram equalization processing of gray image[D]. Hefei: Anhui University, 2014. (in Chinese)
[41]
宁媛, 李皖. 图像去噪的几种方法分析比较. 贵州工业大学学报(自然科学版), 2005, 34(4): 63-66.
NING Y, LI W. Analysis and comparison of some techniques on image denoising. Journal of Guizhou University of Technology (Natural Science Edition), 2005, 34(4): 63-66. (in Chinese)
[42]
杨光义. 图像质量评价及其在图像去噪中的应用研究[D]. 武汉: 武汉大学, 2018.
YANG G Y. Image quality evaluation and its application in image denoising[D]. Wuhan: Wuhan University, 2018. (in Chinese)
[43]
苑丽红, 付丽, 杨勇, 苗静. 灰度共生矩阵提取纹理特征的实验结果分析. 计算机应用, 2009, 29(4): 1018-1021.
YUAN L H, FU L, YANG Y, MIAO J. Analysis of texture feature extracted by gray level co-occurrence matrix. Journal of Computer Applications, 2009, 29(4): 1018-1021. (in Chinese)

doi: 10.3724/SP.J.1087.2009.01018
[44]
王璨, 李志伟. 利用融合高度与单目图像特征的支持向量机模型识别杂草. 农业工程学报, 2016, 32(15): 165-174.
WANG C, LI Z W. Weed recognition using SVM model with fusion height and monocular image features. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 165-174. (in Chinese)
[1] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[2] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] LI WenLi, YUAN JianLong, DUAN HuiMin, JIANG TongHui, LIU LingLing, ZHANG Feng. Comprehensive Evaluation of Potato Tuber Texture [J]. Scientia Agricultura Sinica, 2022, 55(12): 2278-2293.
[5] QiShuo DING,HaiKang LI,KeRun SUN,RuiYin HE,XiaoChan WANG,FuXi LIU,Xiang LI. High-Throughput Phenotyping of Individual Wheat Stem and Ear Traits with Machine Vision [J]. Scientia Agricultura Sinica, 2020, 53(1): 42-54.
[6] ZHANG Zhuo,LONG HuiLing,WANG ChongChang,YANG GuiJun. Comparison of Hyperspectral Remote Sensing Estimation Models Based on Photosynthetic Characteristics of Winter Wheat Leaves [J]. Scientia Agricultura Sinica, 2019, 52(4): 616-628.
[7] ZHANG YongLing, JIANG MengZhou, YU PeiShi, YAO Qing, YANG BaoJun, TANG Jian. Agricultural Pest Identification Based on Multi-Feature Fusion and Sparse Representation [J]. Scientia Agricultura Sinica, 2018, 51(11): 2084-2093.
[8] LIU Ya-qiu, CHEN Hong-yan, WANG Rui-yan, CHANG Chun-yan, CHEN Zhe. Quantitative Analysis of Soil Salt and Its Main Ions Based on Visible/Near Infrared Spectroscopy in Estuary Area of Yellow River [J]. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935.
[9] LIAO Qiu-hong, HE Shao-lan, XIE Rang-jin, QIAN Chun, HU De-yu, Lü Qiang1,YI Shi-lai, ZHENG Yong-qiang, DENG Lie. Study on Producing Area Classification of Newhall Navel Orange Based on the Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2015, 48(20): 4111-4119.
[10] LIU Tao-1, ZHONG Xiao-Chun-2, SUN Cheng-Ming-1, GUO Wen-Shan-1, CHEN Ying-Ying-1, SUN Juan-1. Recognition of Rice Leaf Diseases Based on Computer Vision [J]. Scientia Agricultura Sinica, 2014, 47(4): 664-674.
[11] TANG Jun-1, DENG Li-Miao-2, CHEN Hui-1, LUAN Tao-1, MA Wen-Jie-1. Research on Maize Leaf Recognition of Characteristics from Transmission Image Based on Machine Vision [J]. Scientia Agricultura Sinica, 2014, 47(3): 431-440.
[12] He GU Xiao Lijian Han Jinshui Zhang Yaozhong Pan Le Li. Acquisition of paddy rice coverage based on similar index method by multi-resolution RS-data [J]. Scientia Agricultura Sinica, 2008, 41(4): 978-985 .
[13] . Comparison among Gene Supervised Clustering Methods for DNA Microarray Expression Data [J]. Scientia Agricultura Sinica, 2007, 40(10): 2119-2127 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!