Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1484-1493.doi: 10.3864/j.issn.0578-1752.2023.08.005

• PLANT PROTECTION • Previous Articles     Next Articles

Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis

WANG ZhaoHao(), GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao()   

  1. Citrus Research Institute, Southwest University/National Citrus Engineering Technology Research Center/National Center for Citrus Varieties Improvement, Chongqing 400712
  • Received:2023-01-20 Accepted:2023-01-31 Online:2023-04-16 Published:2023-04-23

Abstract:

Objective】The objective of this study is to identify the expression pattern of csi-miR399 in response to the infection of citrus canker bacteria (Xanthomonas citri subsp. citri, Xcc), screen its target genes, analyze the correlation between csi-miR399 and Xcc resistance in host plants, and to lay a foundation for the creation of citrus canker resistant germplasms.【Method】In order to clarify the expression pattern of csi-miR399 in response to Xcc infection, Xcc-resistant variety Calamondin (Citrus microcarpa) Xcc-sensitive variety Newhall Navel Orange (Citrus sinensis) were used as materials, and changes in the relative expression of csi-miR399 were analyzed by stem-loop qPCR after their leaves were injected with Xcc at 1, 3 and 5 d in vitro. The online software psRNATarget was used to predict the target genes of csi-miR399, which were further confirmed by qPCR in citrus leaves infected with Xcc and transiently over-expressed with csi-miR399. The viral expression vector pCLBV202-MIR399 was constructed by in-fusion cloning through csi-miR399 precursor sequence being inserted into pCLBV202, and transferred into Eureka Lemon (Citrus limon) by Agrobacterium tumefaciens-mediated vacuum infiltration. The lemon over-expressed with csi-miR399 was evaluated for resistance against Xcc through being stab-inoculated with the pathogen and investigated disease index.【Result】After inoculation with Xcc, the expression of csi-miR399 in Calamondin showed a downward trend and then an upward trend, while that in Newhall Navel Orange continued to decrease. At 5 d, the expression of csi-miR399 in Calamondin and Newhall Navel Orange was 4.64 times and 7.61% as its expression in healthy leaves, respectively, preliminary indicating that csi-miR399 was related to citrus canker resistance. Thirteen predicted target genes were screened from citrus genome. Three of them were confirmed because of the opposite expression trends with csi-miR399, which were Cs2g06030 (PHO2), Cs7g03830 (unknown protein), and Cs8g18800 (laccase). Three lemon strains (Y37, Y41 and Y57) with over-expressed csi-miR399 were obtained. Comparing with L35 (empty vector pCLBV202), csi-miR399 was significantly up-regulated in the Y37, Y41 and Y57 strains. The area of canker lesions in Y37, Y41 and Y57 was also significantly reduced, and the disease index was significantly decreased after inoculation with Xcc (P<0.01). It indicated that overexpression of csi-miR399 significantly enhanced the resistance to citrus canker.【Conclusion】csi-miR399 is closely related to the resistance of citrus to canker disease. Overexpression of csi-miR399 significantly improves the resistance, which can be applied to the molecular breeding of citrus against canker disease.

Key words: csi-miR399, citrus canker, target gene, over-expression vector based on citrus virus, biotic stress

Table 1

Nucleotide sequences of qPCR-related primers"

引物名称
Primer name
核苷酸序列
Nucleotide sequence (5′-3′)
csi-Actin-F CATCCCTCAGCACCTTCC
csi-Actin-R CCAACCTTAGCACTTCTCC
miR399-RT CTCAACTGGTGTCGTGGAGTCCGGCAATTCAGTTGAGCAGGGCAA
miR399-F ACACTCCAGCTGGGTGCCAAAGGA
Universal-miR AACTGGTGTCGTGGAG
Cs2g02870F AATGCCGCTATTTCTGTCCCA
Cs2g02870R GCTCCTCAGCCAGGTTTGTT
Cs2g06030F GAGCTTGTGGAGGAGCACTT
Cs2g06030R CCCACTGAACATCCGTTGGA
Cs2g14510F AGGAATTCAGGCAGCCCATC
Cs2g14510R CGACTTGGCTTCTTCCCCTT
Cs3g09820F CGGCAACTTGAGCAAAGCAT
Cs3g09820R GAACGCTTGGAAGGCTCAAC
Cs4g04510F TCAAATCCCCAAGCCTTTGC
Cs4g04510R AACAGAACAAGTCAGCGAGT
Cs7g03830F ATAGCCGGTGTGCTCATTGT
Cs7g03830R TCCCAGTACACTCGCAAGGA
Cs7g08000F TATTCCGGTGCGTGTGATCG
Cs7g08000R ATTTGACACAACCGCAAGGC
Cs7g22930F AGAGGTGGGCCTCAATTTGG
Cs7g22930R AGCTTGCCTTAGGTCACCAAT
Cs8g05410F ACCACCTGATGCTCCCCTTA
Cs8g05410R TGATCCGACGGCAGATAGTG
Cs8g18800F ACACAGCCGATTTCCCACAA
Cs8g18800R ATGAAGAGGGTGGCTTTCGG
1.1g025013mF CGTCAAACTCCAACGTGCTT
1.1g025013mR ATCATACCCCTGGCGAAGTC
1.1t01536F GGTCTTGCAACCAGGGATCA
1.1t01536R ACTGCCTGTGATGATCTGCC
1.1t02010F CCACCTGGATCTAAGGGCAA
1.1t02010R CATTTGCTGGAAAAGCGCCA

Table 2

Nucleotide sequence of primers for vector construction"

引物名称
Primer name
核苷酸序列
Nucleotide sequence (5′-3′)
pLGN-MIR399-F GGGTACCCGGGGATCAAAGCAGTTTTAGGGCACCTCTT
pLGN-MIR399-R TTAAAGCAGGGAATTGAAGCAGTCACAGGGCAACTCT
pCLBV202-MIR399-F AGATTGAGAAAACCCAAAGCAGTTTTAGGGCACC
pCLBV202-MIR399-R CAGAATTCGGGACCCGAAGCAGTCACAGGGCAAC
pClbv-s CTGATGGGAGCGTTAGACTGA
pClbv-r TGTAAAGTCCTGGCCCACC

Fig. 1

Differential expression of csi-miR399 in C. microcarpa (SJ) and C. sinensis (NH) after Xcc inoculation"

Fig. 2

Differential expression of candidate target genes in C. microcarpa (SJ) and C. sinensis (NH) after Xcc inoculation at 5 d 1: csi-miR399; 2: Cs2g02870; 3: Cs2g06030; 4: Cs2g14510; 5: Cs3g09820; 6: Cs4g04510; 7: Cs7g03830; 8: Cs7g08000; 9: Cs7g22930; 10: Cs8g05410; 11: Cs8g18800; 12: orange1.1g025013m; 13: orange1.1t01536; 14: orange1.1t02010"

Fig. 3

Relative expression of csi-miR399 and its target genes in transiently expressed citrus leaves with pLGN-MIR399"

Fig. 4

Cloning and constructing expression vector of csi-miR399"

Fig. 5

Identification and expression analysis of csi-miR399-overexpressed plants"

Fig. 6

Symptoms (A) and disease index (B) of csi-miR399-overexpressed lemon leaves post Xcc inoculation"

[1]
AL-SAADI A, REDDY J D, DUAN Y P, BRUNINGS A M, YUAN Q, GABRIEL D W. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions, 2007, 20(8): 934-943. doi: 10.1094/mpmi-20-8-0934.

doi: 10.1094/mpmi-20-8-0934
[2]
PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research, 2015, 2: 15042. doi: 10.1038/hortres.2015.42.

doi: 10.1038/hortres.2015.42 pmid: 26504581
[3]
王晓宇, 彭埃天, 宋晓兵, 黄峰, 崔一平. 柑橘溃疡病综合防控技术研究进展. 中国农学通报, 2021, 37(31): 106-111.
WANG X Y, PENG A T, SONG X B, HUANG F, CUI Y P. Comprehensive control technology of citrus bacterial canker disease: A review. Chinese Agricultural Science Bulletin, 2021, 37(31): 106-111. (in Chinese)
[4]
ISLAM M N, ALI M S, CHOI S J, HYUN J W, BAEK K H. Biocontrol of citrus canker disease caused by Xanthomonas citri subsp. citri using an endophytic Bacillus thuringiensis. Plant Pathology Journal, 2019, 35(5): 486-497. doi: 10.5423/PPJ.OA.03.2019.0060.

doi: 10.5423/PPJ.OA.03.2019.0060
[5]
VILLAMIZAR S, FERRO J A, CAICEDO J C, ALVES L M C. Bactericidal effect of entomopathogenic bacterium Pseudomonas entomophila against Xanthomonas citri reduces citrus canker disease severity. Frontiers in Microbiology, 2020, 11: 1431. doi: 10.3389/fmicb.2020.01431.

doi: 10.3389/fmicb.2020.01431
[6]
CONTI G, XOCONOSTLE-CAZARES B, MARCELINO-PEREZ G, HOPP H E, REYES C A. Citrus genetic transformation: An overview of the current strategies and insights on the new emerging technologies. Frontiers in Plant Science, 2021, 12: 768197. doi: 10.3389/fpls.2021.768197.

doi: 10.3389/fpls.2021.768197
[7]
姚利晓, 范海芳, 张庆雯, 何永睿, 许兰珍, 雷天刚, 彭爱红, 李强, 邹修平, 陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能. 中国农业科学, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020.10.007.

doi: 10.3864/j.issn.0578-1752.2020.10.007
YAO L X, FAN H F, ZHANG Q W, HE Y R, XU L Z, LEI T G, PENG A H, LI Q, ZOU X P, CHEN S C. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020.10.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.10.007
[8]
PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9- targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 2017, 15(12): 1509-1519. doi: 10.1111/pbi.12733.

doi: 10.1111/pbi.12733
[9]
CHEN X M. Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology, 2009, 25: 21-44. doi: 10.1146/annurev.cellbio.042308.113417.

doi: 10.1146/annurev.cellbio.042308.113417 pmid: 19575669
[10]
VAUCHERET H. Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes & Development, 2006, 20(7): 759-771. doi: 10.1101/gad.1410506.

doi: 10.1101/gad.1410506
[11]
YANG X, ZHANG L, YANG Y, SCHMID M, WANG Y. miRNA mediated regulation and interaction between plants and pathogens. International Journal of Molecular Sciences, 2021, 22(6): 2913. doi: 10.3390/ijms22062913.

doi: 10.3390/ijms22062913
[12]
NAVARRO L, DUNOYER P, JAY F, ARNOLD B, DHARMASIRI N, ESTELLE M, VOINNET O, JONES J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436-439. doi: 10.1126/science.1126088.

doi: 10.1126/science.1126088 pmid: 16627744
[13]
CARUANA J C, DHAR N, RAINA R. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8. Plant Direct, 2020, 4(9): e00270. doi: 10.1002/pld3.270.

doi: 10.1002/pld3.270
[14]
LI Y, LU Y G, SHI Y, WU L, XU Y J, HUANG F, GUO X Y, ZHANG Y, FAN J, ZHAO J Q, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 2014, 164(2): 1077-1092. doi: 10.1104/pp.113.230052.

doi: 10.1104/pp.113.230052
[15]
LI Y, CAO X L, ZHU Y, YANG X M, ZHANG K N, XIAO Z Y, WANG H, ZHAO J H, ZHANG L L, LI G B, et al. Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytologist, 2019, 222(3): 1507-1522. doi: 10.1111/nph.15678.

doi: 10.1111/nph.15678
[16]
LUAN Y S, CUI J, LI J, JIANG N, LIU P, MENG J. Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta, 2018, 247(1): 127-138. doi: 10.1007/s00425-017-2773-x.

doi: 10.1007/s00425-017-2773-x
[17]
FAN D, RAN L Y, HU J, YE X, XU D, LI J Q, SU H L, WANG X Q, REN S, LUO K M. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytologist, 2020, 227(3): 867-883. doi: 10.1111/nph.16585.

doi: 10.1111/nph.16585
[18]
ZHENG Z, WANG N, JALAJAKUMARI M, BLACKMAN L, SHEN E, VERMA S, WANG M B, MILLAR A A. miR159 represses a constitutive pathogen defense response in tobacco. Plant Physiology, 2020, 182(4): 2182-2198. doi: 10.1104/pp.19.00786.

doi: 10.1104/pp.19.00786 pmid: 32041907
[19]
MISHRA R, MOHANTY J N, CHAND S K, JOSHI R K. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L. Plant Science, 2018, 267: 135-147. doi: 10.1016/j.plantsci.2017.12.001.

doi: 10.1016/j.plantsci.2017.12.001
[20]
XU Y, WANG R, MA P, CAO J, CAO Y, ZHOU Z, LI T, WU J, ZHANG H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. Molecular Plant Pathology, 2022, 23(10): 1446-1460. doi: 10.1111/mpp.13240.

doi: 10.1111/mpp.13240
[21]
BARI R, PANT B D, STITT M, SCHEIBLE W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 2006, 141(3): 988-999. doi: 10.1104/pp.106.079707.

doi: 10.1104/pp.106.079707 pmid: 16679424
[22]
PANT B D, BUHTZ A, KEHR J, SCHEIBLE W R. MicroRNA 399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal, 2008, 53(5): 731-738. doi: 10.1111/j.1365-313X.2007.03363.x.

doi: 10.1111/j.1365-313X.2007.03363.x
[23]
WANG R, FANG Y N, WU X M, QING M, LI C C, XIE K D, DENG X X, GUO W W. The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus. Plant Physiology, 2020, 183(4): 1681-1695. doi: 10.1104/pp.20.00129.

doi: 10.1104/pp.20.00129
[24]
WANG Y, ZHANG J, CUI W, GUAN C, MAO W, ZHANG Z. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7361-7370. doi: 10.1021/acs.jafc.7b01687.

doi: 10.1021/acs.jafc.7b01687 pmid: 28783952
[25]
HU Z, WANG F S, YU H, ZHANG M M, JIANG D, HUANG T J, XIANG J S, ZHU S P, ZHAO X C. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Scientia Horticulturae, 2022, 298: 110974. doi: 10.1016/j.scienta.2022.110974.

doi: 10.1016/j.scienta.2022.110974
[26]
VAL-TORREGROSA B, BUNDO M, MARTIN-CARDOSO H, BACH-PAGES M, CHIOU T J, FLORS V, SEGUNDO B S. Phosphate-induced resistance to pathogen infection in Arabidopsis. The Plant Journal, 2022, 110(2): 452-469. doi: 10.1111/tpj.15680.

doi: 10.1111/tpj.15680
[27]
ZHANG Q, ZHANG Y, WANG S, HAO L, WANG S, XU C, JIANG F, LI T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. Planta, 2019, 249(3): 693-707. doi: 10.1007/s00425-018-3027-2.

doi: 10.1007/s00425-018-3027-2 pmid: 30368557
[28]
ZHAO H W, SUN R B, ALBRECHT U, PADMANABHAN C, WANG A R, COFFEY M D, GIRKE T, WANG Z H, CLOSE T J, ROOSE M, et al. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Molecular Plant, 2013, 6(2): 301-310. doi: 10.1093/mp/sst002.

doi: 10.1093/mp/sst002 pmid: 23292880
[29]
DAI X, ZHUANG Z, ZHAO P X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Research, 2018, 46(W1): W49-W54. doi: 10.1093/nar/gky316.

doi: 10.1093/nar/gky316
[30]
LI F, DAI S, DENG Z, LI D, LONG G, LI N, LI Y, GENTILE A. Evaluation of parameters affecting Agrobacterium-mediated transient expression in citrus. Journal of Integrative Agriculture, 2017, 16(3): 572-579. doi: 10.1016/S2095-3119(16)61460-0.

doi: 10.1016/S2095-3119(16)61460-0
[31]
ACANDA Y, WELKER S, ORBOVIĆ V, LEVY A. A simple and efficient agroinfiltration method for transient gene expression in citrus. Plant Cell Reports, 2021, 40(7): 1171-1179. doi: 10.1007/s00299-021-02700-w.

doi: 10.1007/s00299-021-02700-w pmid: 33948685
[32]
张琦, 段玉, 苏越, 蒋琪琪, 王春庆, 宾羽, 宋震. 基于柑橘叶斑驳病毒的表达载体构建及应用. 中国农业科学, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006.

doi: 10.3864/j.issn.0578-1752.2022.22.006
ZHANG Q, DUAN Y, SU Y, JIANG Q Q, WANG C Q, BIN Y, SONG Z. Construction and application of expression vector based on citrus leaf blotch virus. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.22.006
[33]
SIMMONS C W, VANDERGHEYNST J S, UPADHYAYA S K. A model of Agrobacterium tumefaciens vacuum infiltration into harvested leaf tissue and subsequent in planta transgene transient expression. Biotechnology and Bioengineering, 2009, 102(3): 965-970. doi: 10.1002/bit.22118.

doi: 10.1002/bit.22118
[34]
CAMPOS-SORIANO L, BUNDO M, BACH-PAGES M, CHIANG S F, CHIOU T J, SEGUNDO B S. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology, 2020, 21(4): 555-570. doi: 10.1111/mpp.12916.

doi: 10.1111/mpp.12916
[35]
PEGLER J L, NGUYEN D Q, OULTRAM J M J, GROF C P L, EAMENS A L. Molecular manipulation of the miR396 and miR399 expression modules alters the response of Arabidopsis thaliana to phosphate stress. Plants, 2021, 10(12): 2570. doi: 10.3390/plants10122570.

doi: 10.3390/plants10122570
[36]
LIN S I, CHIANG S F, LIN W Y, CHEN J W, TSENG C Y, WU P C, CHIOU T J. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology, 2008, 147(2): 732-746. doi: 10.1104/pp.108.116269.

doi: 10.1104/pp.108.116269
[37]
PENG K K, TIAN Y, SUN X Z, SONG C H, REN Z P, BAO Y Z, XING J P, LI Y S, XU Q H, YU J, ZHANG D, CANG J. tae-miR399-UBC24 module enhances freezing tolerance in winter wheat via a CBF signaling pathway. Journal of Agricultural and Food Chemistry, 2021, 69(45): 13398-13415. doi: 10.1021/acs.jafc.1c04316.

doi: 10.1021/acs.jafc.1c04316
[38]
ZHOU H, LI C, QIU X, LU S. Systematic analysis of alkaline/neutral invertase genes reveals the involvement of Smi-miR399 in regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza. Plants, 2019, 8(11): 490. doi: 10.3390/plants8110490.

doi: 10.3390/plants8110490
[39]
BAEK D, CHUN H J, KANG S, SHIN G, PARK S J, HONG H, KIM C, KIM D H, LEE S Y, KIM M C, YUN D J. A role for Arabidopsis miR399f in salt, drought, and ABA signaling. Molecules and Cells, 2016, 39(2): 111-118. doi: 10.14348/molcells.2016.2188.

doi: 10.14348/molcells.2016.2188
[40]
BAI Y, ALI S, LIU S, ZHOU J, TANG Y. Characterization of plant laccase genes and their functions. Gene, 2023, 852: 147060. doi: 10.1016/j.gene.2022.147060.

doi: 10.1016/j.gene.2022.147060
[41]
VELAZQUEZ K, AGUERO J, VIVES M C, ALEZA P, PINA J A, MORENO P, NAVARRO L, GUERRI J. Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: A new tool for genetics and breeding. Plant Biotechnology Journal, 2016, 14(10): 1976-1985. doi: 10.1111/pbi.12555.

doi: 10.1111/pbi.12555 pmid: 26920394
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[3] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[4] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[5] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[6] ZHAO JingJing,ZHOU Nong,CAO MingYu. Advance on the Methylglyoxal Metabolism in Plants Under Abiotic Stress [J]. Scientia Agricultura Sinica, 2021, 54(8): 1627-1637.
[7] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[8] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[9] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[10] WANG Xiao,CAI Jian,ZHOU Qin,DAI TingBo,JIANG Dong. Physiological Mechanisms of Abiotic Stress Priming Induced the Crops Stress Tolerance: A Review [J]. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301.
[11] CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
[12] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[13] ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen,YU AiLi. Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress [J]. Scientia Agricultura Sinica, 2019, 52(22): 3950-3963.
[14] ZOU XiuPing,LONG JunHong,PENG AiHong,CHEN Min,LONG Qin,CHEN ShanChun. Overexpression of CsGH3.6 Enhanced Resistance to Citrus Canker Disease by Inhibiting Auxin Signaling Transduction [J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818.
[15] ZHANG WenYing, HAN Xu, ZHU XuDong, XIE ZhenQiang, JIU SongTao, HUANG YuQing, JIA HaiFeng, FANG JingGui, WANG Chen. Identification of the Target Genes of VvmiR159s and Their Regulation in Response to GA in Different Tissues of Grape Berry [J]. Scientia Agricultura Sinica, 2019, 52(16): 2858-2870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!