Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (24): 4801-4813.doi: 10.3864/j.issn.0578-1752.2023.24.001

• CROP GENETICS & BREEDING・GERMPLASM RESOURCES・MOLECULAR GENETICS • Previous Articles     Next Articles

Research Progress of PPR Protein in Plant Abiotic Stress Response

LI Cheng(), LU Kai, WANG CaiLin, ZHANG YaDong()   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement/Key laboratory of Jiangsu Province for Agrobiology, Nanjing 210014
  • Received:2023-05-25 Accepted:2023-07-24 Online:2023-12-16 Published:2023-12-21
  • Contact: ZHANG YaDong

Abstract:

Abiotic stress is one of the main factors causing global grain yield reduction. It is of great significance to study the function and response mechanisms of plant stress-related proteins to improve crop stress resistance. Pentatricopeptide repeat (PPR) proteins, belong to the largest family of nuclear coding proteins in higher plants and are named because they contain highly specific PPR motifs. Depending on motif type and arrangement, PPR proteins can be classified as P and PLS, and PLS proteins can be further classified as PLS, E, E+, DYW, and other subclasses based on their carboxyl-terminal domains. PPR proteins are widely distributed in terrestrial plants, mainly in chloroplasts and mitochondria, and a few in the nucleus. As sequence-specific RNA binding proteins, PPR proteins are involved in multiple aspects of plant RNA processing, including RNA editing, splicing, stabilization, and translation. PPR protein plays a variety of important roles in the whole life process of plants, but the mechanism of its action in plant stress resistance is not well understood. Based on the localization and function of PPR proteins related to abiotic stress reported, the mechanism of PPR proteins involved in regulation of abiotic stress, including post-transcriptional regulation and retrograde signaling, was reviewed and discussed in this paper. Post-transcriptional regulation is related to the role of PPR proteins in the modification of RNA after transcription. It is generally believed that PPR affects stress resistance in plants by regulating the expression of stress-related genes via binding RNA and by regulating the metabolism of organelle RNA. In terms of retrograde signaling, damage to PPR proteins can lead to impaired mitochondrial or chloroplast function, and then produce various retrograde signals (such as ROS), thereby regulating the expression of related genes and resisting adversity. However, since plastid signaling is affected by many environmental factors, some of which are still unclear, the mechanism of the PPR protein in retrograde signaling remains to be clarified. In addition, PPR proteins are pleiotropic and some have important effects on plant growth and reproduction while acting on stress resistance. Finally, this paper further analyzed the current research status of PPR protein as an RNA editing tool, discussed the remaining problems and research prospects of PPR protein in the direction of abiotic stress, and pointed out the key points and difficulties that need to be paid attention to in future research, to provide references for further research on PPR protein and crop abiotic stress resistance breeding.

Key words: PPR protein, plant, abiotic stress

Fig. 1

Main classification of PPR protein family"

Table 1

Some of PPR proteins involved regulating abiotic stress responses in plant"

蛋白
Protein
来源
Source
定位
Localization
功能
Function
参考文献
Reference
RARE1 拟南芥 Arabidopsis 叶绿体 Chloroplast 耐热 Heat resistance [50]
SVR7 拟南芥 Arabidopsis 叶绿体 Chloroplast 光氧化 Photooxidation [51]
GUN1 拟南芥
Arabidopsis
叶绿体
Chloroplast
蔗糖、ABA、光氧化、耐热
Sucrose, ABA, photooxidation, heat resistance
[52-57]
PPR40
PPR96
拟南芥
Arabidopsis
线粒体
Mitochondrion
盐、ABA、氧化应激
Salt, ABA, oxidative stress
[58]
[65]
ABO5
ABO8
AHG11
拟南芥
Arabidopsis
线粒体
Mitochondrion
ABA [59]
[60]
[62]
PGN 拟南芥 Arabidopsis 线粒体 Mitochondrion ABA、葡萄糖、盐 ABA, glucose, salt [61]
SLG1
POCO1
LOI1/MEF11
拟南芥
Arabidopsis
线粒体
Mitochondrion
ABA、干旱
ABA, drought
[63]
[66]
[67]
SLO2 拟南芥
Arabidopsis
线粒体
Mitochondrion
ABA、盐、干旱、渗透胁迫
ABA, salt, drought, osmotic stress
[64]
SOAR1 拟南芥
Arabidopsis
核质双定位
Nucleus and cytoplasm
ABA、干旱、盐、冷
ABA, drought, salt, cold
[68]
GEND1
PPR2
拟南芥
Arabidopsis
- 耐热
Heat resistance
[69]
[70]
OsV4
TCD10
水稻
Oryza sativa
叶绿体
Chloroplast
低温
Low temperature
[72]
[73]
WSL 水稻 Oryza sativa 叶绿体 Chloroplast ABA、盐、糖 ABA, salt, sugar [74]
PPS1 水稻 Oryza sativa 线粒体 Mitochondrion 盐、ABA Salt, ABA [75]
OsNBL3 水稻 Oryza sativa 线粒体 Mitochondrion 盐 Salt [76]
PPR035
PPR406
水稻
Oryza sativa
线粒体
Mitochondrion
干旱
Drought
[77]
OsSOAR1 水稻 Oryza sativa - 盐 Salt [78]
GmPPR4 大豆 Glycine max - 干旱 Drought [79]
[1]
GONG Z Z, XIONG L M, SHI H Z, YANG S H, HERRERA-ESTRELLA L R, XU G H, CHAO D Y, LI J R, WANG P Y, QIN F, LI J, DING Y L, SHI Y T, WANG Y, YANG Y Q, GUO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63(5): 635-674.

doi: 10.1007/s11427-020-1683-x
[2]
CHANG Y N, ZHU C, JIANG J, ZHANG H M, ZHU J K, DUAN C G. Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 2020, 62(5): 563-580.

doi: 10.1111/jipb.12901
[3]
陈柯岐, 邓星光, 林宏辉, 植物响应非生物胁迫的分子机制. 生物学杂志, 2021, 38(6): 1-8.
CHEN K Q, DENG X G, LIN H H. Molecular mechanisms of plant in response to abiotic stress. Journal of Biology, 2021, 38(6): 1-8. (in Chinese)
[4]
ZHANG H, ZHAO Y, ZHU J K. Thriving under stress: How plants balance growth and the stress response, Developmental Cell, 2020, 55(5): 529-543.

doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694
[5]
YUAN F, YANG H M, XUE Y, KONG D D, YE R, LI C J, ZHANG J Y, THEPRUNGSIRIKUL L, SHRIFT T, KRICHILSKY B, JOHNSON D M, SWIFT G B, HE Y K, SIEDOW J N, PEI Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514(7552): 367-371.

doi: 10.1038/nature13593
[6]
JAMSHEER K M, JINDAL S, LAXMI A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. Journal of Experimental Botany, 2019, 70(8): 2239-2259.

doi: 10.1093/jxb/erz107 pmid: 30870564
[7]
YOON Y, SEO D H, SHIN H, KIM H J, KIM C M, JANG G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 2020, 10(6): 788.

doi: 10.3390/agronomy10060788
[8]
ZHANG M X, ZHAO R R, WANG H T, REN S L, SHI L Y, HUANG S Z, WEI Z Q, GUO B Y, JIN J Y, ZHONG Y, CHEN M J, JIANG W Z, WU T, DU X L. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice. Plant Cell Reports, 2023, 42(2): 223-234.
[9]
HAQ S U, KHAN A, ALI M, KHATTAK A M, GAI W X, ZHANG H X, WEI A M, GONG Z H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 2019, 20(21): 5321.

doi: 10.3390/ijms20215321
[10]
KIM J Y, JANG I C, SEO H S. COP1 controls abiotic stress responses by modulating AtSIZ1 function through its E3 ubiquitin ligase activity. Frontiers in Plant Science, 2016, 7: 1182.

doi: 10.3389/fpls.2016.01182 pmid: 27536318
[11]
LIANG Y, KANG K, GAN L, NING S B, XIONG J Y, SONG S Y, XI L Z, LAI S Y, YIN Y T, GU J W, XIANG J, LI S S, WANG B S, LI M T. Drought‐responsive genes, late embryogenesis abundant group3 (LEA 3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnology Journal, 2019, 17(11): 2123-2142.

doi: 10.1111/pbi.v17.11
[12]
YE Y Y, DING Y F, JIANG Q, WANG F J, SUN J W, ZHU C. The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Reports, 2017, 36(2): 235-242.

doi: 10.1007/s00299-016-2084-x pmid: 27933379
[13]
HAN G L, LU C X, GUO J R, QIAO Z Q, SUI N, QIU N W, WANG B S. C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Frontiers in Plant Science, 2020, 11: 115.

doi: 10.3389/fpls.2020.00115
[14]
YU Z Y, WANG X, ZHANG L S. Structural and functional dynamics of dehydrins: A plant protector protein under abiotic stress. International Journal of Molecular Sciences, 2018, 19(11): 3420.

doi: 10.3390/ijms19113420
[15]
ROBLES P, QUESADA V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. Plant Physiology and Biochemistry, 2022, 189: 35-45.

doi: 10.1016/j.plaphy.2022.07.029 pmid: 36041366
[16]
SMALL I D, PEETERS N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends in Biochemical Sciences, 2000, 25(2): 45-47.

doi: 10.1016/S0968-0004(99)01520-0
[17]
ROVIRA A G, SMITH A G. PPR proteins-orchestrators of organelle RNA metabolism. Physiologia Plantarum, 2019, 166(1): 451-459.

doi: 10.1111/ppl.2019.166.issue-1
[18]
CHENG S F, GUTMANN B, ZHONG X A, YE Y T, FISHER M F, BAI F Q, CASTLEDEN I, SONG Y E, SONG B, HUANG J Y, LIU X, XU X, LIM B L, BOND C S, YIU S M, SMALL I. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. The Plant Journal, 2016, 85(4): 532-547.

doi: 10.1111/tpj.13121 pmid: 26764122
[19]
KHROUCHTCHOVA A, MONDE R A, BARKAN A. A short PPR protein required for the splicing of specific group Ⅱ introns in angiosperm chloroplasts. RNA, 2012, 18(6): 1197-1209.

doi: 10.1261/rna.032623.112
[20]
MEIERHOFF K, FELDER S, NAKAMURA T, BECHTOLD N, SCHUSTER G. HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. The Plant Cell, 2003, 15(6): 1480-1495.

doi: 10.1105/tpc.010397
[21]
YAMAZAKI H, TASAKA M, SHIKANAI T. PPR motifs of the nucleus-encoded factor, PGR3, function in the selective and distinct steps of chloroplast gene expression in Arabidopsis. The Plant Journal, 2004, 38(1): 152-163.

doi: 10.1111/tpj.2004.38.issue-1
[22]
LI X L, SUN M D, LIU S J, TENG Q A, LI S H, JIANG Y S. Functions of PPR proteins in plant growth and development. International Journal of Molecular Sciences, 2021, 22(20): 11274.

doi: 10.3390/ijms222011274
[23]
ANDRÉS-COLÁS N, ZHU Q A, TAKENAKA M, DE RYBEL B, WEIJERS D, VAN DER STRAETEN D, Multiple PPR protein interactions are involved in the RNA editing system in Arabidopsis mitochondria and plastids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8883-8888.
[24]
GUILLAUMOT D, LOPEZ-OBANDO M, BAUDRY K, AVON A, RIGAILL G, FALCON DE LONGEVIALLE A, BROCHE B, TAKENAKA M, BERTHOMÉ R, DE JAEGER G, DELANNOY E, LURIN C. Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8877-8882.
[25]
ICHINOSE M, KAWABATA M, AKAIWA Y, SHIMAJIRI Y, NAKAMURA I, TAMAI T, NAKAMURA T, YAGI Y, GUTMANN B. U-to-C RNA editing by synthetic PPR-DYW proteins in bacteria and human culture cells. Communications Biology, 2022, 5(1): 968.

doi: 10.1038/s42003-022-03927-3
[26]
CHEN X Z, FENG F, QI W W, XU L M, YAO D S, WANG Q, SONG R T. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant, 2017, 10(3): 427-441.

doi: 10.1016/j.molp.2016.08.008
[27]
SUN F, ZHANG X Y, SHEN Y, WANG H C, LIU R, WANG X M, GAO D H, YANG Y Z, LIU Y W, TAN B C. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. The Plant Journal, 2018, 95(5): 919-932.

doi: 10.1111/tpj.2018.95.issue-5
[28]
LEGEN J, RUF S, KROOP X, WANG G W, BARKAN A, BOCK R, SCHMITZ-LINNEWEBER C. Stabilization and translation of synthetic operon-derived mRNA s in chloroplasts by sequences representing PPR protein-binding sites. The Plant Journal, 2018, 94(1): 8-21.

doi: 10.1111/tpj.2018.94.issue-1
[29]
ZHANG Y F, SUZUKI M, SUN F, TAN B C. The mitochondrion- targeted PENTATRICOPEPTIDE REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Molecular Plant, 2017, 10(10): 1321-1333.

doi: 10.1016/j.molp.2017.09.009
[30]
WANG C D, AUBÉ F, PLANCHARD N, QUADRADO M, DARGEL- GRAFFIN C, NOGUÉ F, MIREAU H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Research, 2017, 45(10): 6119-6134.

doi: 10.1093/nar/gkx162 pmid: 28334831
[31]
LEE K, HAN J H, PARK Y I, COLAS DES FRANCS-SMALL C, SMALL I, KANG H. The mitochondrial pentatricopeptide repeat protein PPR19 is involved in the stabilization of NADH dehydrogenase 1 transcripts and is crucial for mitochondrial function and Arabidopsis thaliana development. New Phytologist, 2017, 215(1): 202-216.

doi: 10.1111/nph.2017.215.issue-1
[32]
HAÏLI N, PLANCHARD N, ARNAL N, QUADRADO M, VRIELYNCK N, DAHAN J, FRANCS-SMALL C C D, MIREAU H. The MTL 1 pentatricopeptide repeat protein is required for both translation and splicing of the mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis. Plant Physiology, 2016, 170(1): 354-366.

doi: 10.1104/pp.15.01591
[33]
ZOSCHKE R, WATKINS K P, MIRANDA R G, BARKAN A. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNA s in maize. The Plant Journal, 2016, 85(5): 594-606.

doi: 10.1111/tpj.2016.85.issue-5
[34]
LURIN C, ANDREÉS C, AUBOURG S, BELLAOUI M, BITTON F, BRUYÈRE C, CABOCHE M, DEBAST C, GUALBERTO J, HOFFMANN B. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. The Plant Cell, 2004, 16(8): 2089-2103.

doi: 10.1105/tpc.104.022236
[35]
李景芳, 王宝祥, 刘艳, 刘金波, 陈庭木, 孙志广, 杨波, 邢运高, 迟铭, 徐波. PPR蛋白在水稻生长发育中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 358-367.
LI J F, WANG B X, LIU Y, LIU J B, CHEN T M, SUN Z G, YANG B, XING Y G, CHI M, XU B. Progress of research in functions of PPR proteins in growth and development of rice. Journal of Plant Genetic Resources, 2022, 23(2): 358-367. (in Chinese)
[36]
ZHANG Y, LU C. The enigmatic roles of PPR-SMR proteins in plants. Advanced Science, 2019, 6(13): 1900361.

doi: 10.1002/advs.v6.13
[37]
ZHANG J H, GUO Y P, FANG Q, ZHU Y L, ZHANG Y, LIU X J, LIN Y J, BARKAN A, ZHOU F. The PPR-SMR protein ATP4 is required for editing the chloroplast rps8 mRNA in rice and maize. Plant Physiology, 2020, 184(4): 2011-2021.

doi: 10.1104/pp.20.00849
[38]
LONGEVIALLE A F D, HENDRICKSON L, TAYLOR N L, DELANNOY E, LURIN C, BADGER M, MILLAR A H, SMALL I. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. The Plant Journal, 2008, 56(1): 157-168.

doi: 10.1111/tpj.2008.56.issue-1
[39]
SCHMITZ-LINNEWEBER C, WILLIAMS-CARRIER R E, WILLIAMS- VOELKER P M, KROEGER T S, VICHAS A, BARKAN A. A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. The Plant Cell, 2006, 18(10): 2650-2663.

doi: 10.1105/tpc.106.046110
[40]
YIN P, LI Q X, YAN C Y, LIU Y, LIU J J, YU F, WANG Z, LONG J F, HE J H, WANG H W, WANG J W, ZHU J K, SHI Y G, YAN N. Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature, 2013, 504(7478): 168-171.

doi: 10.1038/nature12651
[41]
YAN J, ZHANG Q, YIN P. RNA editing machinery in plant organelles. Science China Life Sciences, 2018, 61(2): 162-169.

doi: 10.1007/s11427-017-9170-3
[42]
BARKAN A, SMALL I. Pentatricopeptide repeat proteins in plants. Annual Review of Plant Biology, 2014, 65: 415-442.

doi: 10.1146/annurev-arplant-050213-040159 pmid: 24471833
[43]
FUJII S, SMALL I. The evolution of RNA editing and pentatricopeptide repeat genes. New Phytologist, 2011, 191(1): 37-47.

doi: 10.1111/j.1469-8137.2011.03746.x pmid: 21557747
[44]
王婉珍, 任育军, 缪颖. PPR蛋白在植物生长发育中的作用. 热带亚热带植物学报, 2019, 27(2): 225-234.
WANG W Z, REN Y J, MIAO Y. Roles of PPR proteins in plant growth and development. Journal of Tropical and Subtropical Botany, 2019, 27(2): 225-234. (in Chinese)
[45]
COLCOMBET J, LOPEZ-OBANDO M, HEURTEVIN L, BERNARD C, MARTIN K, BERTHOMÉ R, LURIN C. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biology, 2013, 10(9): 1557-1575.

doi: 10.4161/rna.26128
[46]
HAMMANI K, TAKENAKA M, MIRANDA R A. Barkan, A PPR protein in the PLS subfamily stabilizes the 5′-end of processed rpl16 mRNAs in maize chloroplasts. Nucleic Acids Research, 2016, 44(9): 4278-4288.

doi: 10.1093/nar/gkw270
[47]
HAO Y Y, WANG Y L, WU M M, ZHU X P, TENG X, SUN Y L, ZHU J P, ZHANG Y Y, JING R N, LEI J, LI J F, BAO X H, WANG C M, WANG Y H, WAN J M. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. Journal of Experimental Botany, 2019, 70(18): 4705-4720.

doi: 10.1093/jxb/erz226 pmid: 31087099
[48]
XIAO H J, XU Y H, NI C Z, ZHANG Q N, ZHONG F Y, HUANG J S, ZHU Y G, HU J. A rice dual-localized pentatricopeptide repeat protein is involved in organellar RNA editing together with OsMORFs. Journal of Experimental Botany, 2018, 69(12): 2923-2936.

doi: 10.1093/jxb/ery108 pmid: 29562289
[49]
HAMMANI K, GOBERT A, HLEIBIEH K, CHOULIER L, SMALL I, GIEGÉ P. An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. The Plant Cell, 2011, 23(2): 730-740.

doi: 10.1105/tpc.110.081638
[50]
HUANG C, LIU D, LI Z A, MOLLOY D P, LUO Z F, SU Y, LI H O, LIU Q, WANG R Z, XIAO L T. The PPR protein RARE1-mediated editing of chloroplast accD transcripts is required for fatty acid biosynthesis and heat tolerance in Arabidopsis. Plant Communications, 2023, 4(1): 100461.

doi: 10.1016/j.xplc.2022.100461
[51]
LV H X, HUANG C, GUO G Q, YANG Z N. Roles of the nuclear-encoded chloroplast SMR domain-containing PPR protein SVR7 in photosynthesis and oxidative stress tolerance in Arabidopsis. Journal of Plant Biology, 2014, 57(5): 291-301.

doi: 10.1007/s12374-014-0041-1
[52]
MOCHIZUKI N, SUSEK R, CHORY J. An intracellular signal transduction pathway between the chloroplast and nucleus is involved in de-etiolation. Plant Physiology, 1996, 112(4): 1465-1469.

pmid: 8972595
[53]
WU G Z, CHALVIN C, HOELSCHER M, MEYER E H, WU X N, BOCK R. Control of retrograde signaling by rapid turnover of GENOMES UNCOUPLED1. Plant Physiology, 2018, 176(3): 2472-2495.

doi: 10.1104/pp.18.00009
[54]
COTTAGE A, MOTT E K, KEMPSTER J A, GRAY J C. The Arabidopsis plastid-signalling mutant gun1 (genomes uncoupled1) shows altered sensitivity to sucrose and abscisic acid and alterations in early seedling development. Journal of Experimental Botany, 2010, 61(13): 3773-3786.

doi: 10.1093/jxb/erq186
[55]
GUO J G, ZHOU Y P, LI J A, SUN Y J, SHANGGUAN Y, ZHU Z N, HU Y J, LI T, HU Y H, ROCHAIX J D, MIAO Y C, SUN X W. COE 1 and GUN1 regulate the adaptation of plants to high light stress. Biochemical and Biophysical Research Communications, 2020, 521(1): 184-189.

doi: S0006-291X(19)32003-0 pmid: 31630799
[56]
LASORELLA C, FORTUNATO S, DIPIERRO N, JERAN N, TADINI L, VITA F, PESARESI P, PINTO M C D E. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2022, 13: 1058831.

doi: 10.3389/fpls.2022.1058831
[57]
FORTUNATO S, LASORELLA C, TADINI L, JERAN N, VITA F, PESARESI P, PINTO M C D E. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. Plant Science, 2022, 320: 111265.

doi: 10.1016/j.plantsci.2022.111265
[58]
ZSIGMOND L, RIGÓG, SZARKA A, SZEKELY G, OTVOS K, DARULA Z, MEDZIHRADSZKY K F, KONCZ C, KONCZ Z, SZABADOS L. Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiology, 2008, 146(4): 1721-1737.

doi: 10.1104/pp.107.111260
[59]
LIU Y, HE J N, CHEN Z Z, REN X Z, HONG X H, GONG Z Z. ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. The Plant Journal, 2010, 63(5): 749-765.

doi: 10.1111/tpj.2010.63.issue-5
[60]
YANG L, ZHANG J, HE J N, QIN Y Y, HUA D P, DUAN Y, CHEN Z Z, GONG Z Z. ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genetics, 2014, 10(12): e1004791.

doi: 10.1371/journal.pgen.1004791
[61]
LALUK K, ABUQAMAR S, MENGISTE T. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiology, 2011, 156(4): 2053-2068.

doi: 10.1104/pp.111.177501
[62]
MURAYAMA M, HAYASHI S, NISHIMURA N, ISHIDE M, KOBAYASHI K, YAGI Y, ASAMI T, NAKAMURA T, SHINOZAKI K, HIRAYAMA T. Isolation of Arabidopsis ahg11, a weak ABA hypersensitive mutant defective in nad4 RNA editing. Journal of Experimental Botany, 2012, 63(14): 5301-5310.

doi: 10.1093/jxb/ers188
[63]
YUAN H, LIU D. Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. The Plant Journal, 2012, 70(3): 432-444.

doi: 10.1111/tpj.2012.70.issue-3
[64]
ZHU Q, DUGARDEYN J, ZHANG C Y, MÜHLENBOCK P, EASTMOND P J, VALCKE R, CONINCK B DE, ÖDEN S, KARAMPELIAS M, CAMMUE B P. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. Molecular Plant, 2014, 7(2): 290-310.

doi: 10.1093/mp/sst102
[65]
LIU J M, ZHAO J Y, LU P P, CHEN M, GUO C H, XU Z S, MA Y Z. The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses. Frontiers in Plant Science, 2016, 7: 1825.
[66]
H. EMAMI, A. KUMAR, F. KEMPKEN. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC Plant Biology, 2020, 20(1): 1-21.

doi: 10.1186/s12870-019-2170-7
[67]
SECHET J, ROUX C, PLESSIS A, EFFROY D, FREY A, PERREAU F, BINIEK C, KRIEGER-LISZKAY A, MACHEREL D, NORTH H M. The ABA-deficiency suppressor locus HAS2 encodes the PPR protein LOI1/MEF11 involved in mitochondrial RNA editing. Molecular Plant, 2015, 8(4): 644-656.

doi: 10.1016/j.molp.2014.12.005 pmid: 25708384
[68]
JIANG S C, MEI C, LIANG S, YU Y T, LU K, WU Z, WANG X F, ZHANG D P. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Molecular Biology, 2015, 88(4): 369-385.

doi: 10.1007/s11103-015-0327-9
[69]
GUO Z F, WANG X Y, HU Z B, WU C Y, SHEN Z G. The pentatricopeptide repeat protein GEND1 is required for root development and high temperature tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2021, 578: 63-69.

doi: 10.1016/j.bbrc.2021.09.022
[70]
PARK Y J, LEE H J, KWAK K J, LEE K, HONG S W, KANG H. MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi. Plant and Cell Physiology, 2014, 55(9): 1660-1668.

doi: 10.1093/pcp/pcu096
[71]
CHEN G L, ZOU Y, HU J H, DING Y. Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics, 2018, 19(1): 720.

doi: 10.1186/s12864-018-5088-9 pmid: 30285603
[72]
GONG X D, SU Q Q, LIN D Z, JIANG Q, XU J L, ZHANG J H, TENG S, DONG Y J. The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. Journal of Integrative Plant Biology, 2014, 56(4): 400-410.

doi: 10.1111/jipb.v56.4
[73]
WU L L, WU J, LIU Y X, GONG X D, XU J L, LIN D Z, DONG Y J. The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice, 2016, 9(1): 67.

doi: 10.1186/s12284-016-0134-1
[74]
TAN J J, TAN Z H, WU F Q, SHENG P K, HENG Y Q, WANG X H, REN Y L, WANG J L, GUO X P, ZHANG X, CHENG Z J, JIANG L, LIU X M, WANG H Y, WAN J M. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Molecular Plant, 2014, 7(8): 1329-1349.

doi: S1674-2052(14)60936-9 pmid: 24821718
[75]
XIAO H J, LIU Z J, ZOU X, XU Y H, PENG L L, HU J, LIN H H. Silencing of rice PPR gene PPS1 exhibited enhanced sensibility to abiotic stress and remarkable accumulation of ROS. Journal of Plant Physiology, 2021, 258-259: 153361.
[76]
QIU T C, ZHAO X S, FENG H J, QI L L, YANG J, PENG Y L, ZHAO W S. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotechnology Journal, 2021, 19(11): 2277-2290.

doi: 10.1111/pbi.v19.11
[77]
LUO Z, XIONG J, XIA H, WANG L, HOU G H, LI Z Y, LI J, ZHOU H L, LI T F, LUO L J. Pentatricopeptide repeat gene-mediated mitochondrial rna editing impacts on rice drought tolerance. Frontiers in Plant Science, 2022, 13: 926285.

doi: 10.3389/fpls.2022.926285
[78]
LU K, LI C, GUAN J, LIANG W H, CHEN T, ZHAO Q Y, ZHU Z, YAO S, HE L, WEI X D, ZHAO L, ZHOU L H, ZHAO C F, WANG C L, ZHANG Y D. The PPR-Domain Protein SOAR1 Regulates Salt Tolerance in Rice. Rice, 2022, 15: 1-16.

doi: 10.1186/s12284-021-00548-y
[79]
SU H G, LI B, SONG X Y, MA J, CHEN J, ZHOU Y B, CHEN M, MIN D H, XU Z S, MA Y Z. Genome-wide analysis of the DYW subgroup PPR gene family and identification of GmPPR4 responses to drought stress. International Journal of Molecular Sciences, 2019, 20(22): 5667.

doi: 10.3390/ijms20225667
[80]
SCHMITZ-LINNEWEBER C, SMALL I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends in Plant Science, 2008, 13(12): 663-670.

doi: 10.1016/j.tplants.2008.10.001
[81]
PRIKRYL J, ROJAS M, SCHUSTER G, BARKAN A. Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proceedings of the National Academy of Sciences of the United State of America, 2011, 108(1): 415-420.
[82]
XIONG J, TAO T, LUO Z, YAN S G, LIU Y, YU X Q, LIU G L, XIA H, LUO L J. RNA editing responses to oxidative stress between a wild abortive type male-sterile line and its maintainer line. Frontiers in Plant Science, 2017, 8: 2023.

doi: 10.3389/fpls.2017.02023 pmid: 29234339
[83]
RICHTER A S, NÄGELE T, GRIMM B, KAUFMANN K, SCHRODA M, LEISTER D, KLEINE T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. Plant Communications, 2023, 4(1): 20.
[84]
POGSON B J, WOO N S, FÖRSTER B, SMALL I D. Plastid signalling to the nucleus and beyond. Trends in Plant Science, 2008, 13(11): 602-609.

doi: 10.1016/j.tplants.2008.08.008 pmid: 18838332
[85]
LEE K, KANG H. Roles of organellar RNA-binding proteins in plant growth, development, and abiotic stress responses. International Journal of Molecular Sciences, 2020, 21(12): 4548.

doi: 10.3390/ijms21124548
[86]
PESARESI P, KIM C. Current understanding of GUN1: A key mediator involved in biogenic retrograde signaling. Plant Cell Reports, 2019, 38(7): 819-823.

doi: 10.1007/s00299-019-02383-4 pmid: 30671650
[87]
HERNÁNDEZ-VERDEJA T, STRAND Å. Retrograde signals navigate the path to chloroplast development. Plant Physiology, 2018, 176(2): 967-976.

doi: 10.1104/pp.17.01299
[88]
WU G Z, MEYER E H, RICHTER A S, SCHUSTER M, LING Q, SCHÖTTLER M A, WALTHER D, ZOSCHKE R, GRIMM B, JARVIS R P. Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 2019, 5(5): 525-538.

doi: 10.1038/s41477-019-0415-y
[89]
TADINI L, PESARESI P, KLEINE T, ROSSI F, GULJAMOW A, SOMMER F, MÜHLHAUS T, SCHRODA M, MASIERO S, PRIBIL M. GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis. Plant Physiology, 2016, 170(3): 1817-1830.

doi: 10.1104/pp.15.02033 pmid: 26823545
[90]
ZHAO X B, HUANG J Y, CHORY J. GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling. Proceedings of the National Academy of Sciences of the United State of America, 2019, 116(20): 10162-10167.
[91]
TADINI L, PERACCHIO C, TROTTA A, COLOMBO M, MANCINI I, JERAN N, COSTA A, FAORO F, MARSONI M, VANNINI C. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. The Plant Journal, 2020, 101(5): 1198-1220.

doi: 10.1111/tpj.v101.5
[92]
SHIMIZU T, KACPRZAK S M, MOCHIZUKI N, NAGATANI A, WATANABE S, SHIMADA T, TANAKA K, HAYASHI Y, ARAI M, LEISTER D. The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis. Proceedings of the National Academy of Sciences of the United State of America, 2019, 116(49): 24900-24906.
[93]
TAKENAKA M, ZEHRMANN A, VERBITSKIY D, KUGELMANN M, HÄRTEL B, BRENNICKE A. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proceedings of the National Academy of Sciences of the United State of America, 2012, 109(13): 5104-5109.
[94]
JIA Y B, TIAN H Y, ZHANG S, DING Z J, MA C L. GUN1- interacting proteins open the door for retrograde signaling. Trends in Plant Science, 2019, 24(10): 884-887.

doi: 10.1016/j.tplants.2019.07.005
[95]
COLOMBO M, TADINI L, PERACCHIO C, FERRARI R, PESARESI P. GUN1, a jack-of-all-trades in chloroplast protein homeostasis and signaling. Frontiers in Plant Science, 2016, 7(257): 1427.
[96]
BRUNKARD J O, BURCH-SMITH T M. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays in Biochemistry, 2018, 62(1): 95-107.

doi: 10.1042/EBC20170011 pmid: 29563221
[97]
SUN X W, FENG P Q, XU X M, GUO H L, MA J F, CHI W, LIN R C, LU C M, ZHANG L X. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nature Communications, 2011, 2: 477.

doi: 10.1038/ncomms1486 pmid: 21934661
[98]
PAGE M T, KACPRZAK S M, MOCHIZUKI N, OKAMOTO H, SMITH A G, TERRY M J. Seedlings lacking the PTM protein do not show a genomes uncoupled (gun) mutant phenotype. Plant Physiology, 2017, 174(1): 21-26.

doi: 10.1104/pp.16.01930
[99]
KINDGREN P, NOREN L, LOPEZ J D D B, SHAIKHALI J, STRAND Å. Interplay between Heat Shock Protein 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal. Molecular Plant, 2012, 5(4): 901-913.

doi: 10.1093/mp/ssr112
[100]
KAKIZAKI T, MATSUMURA H, NAKAYAMA K, CHE F S, TERAUCHI R, INABA T. Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiology, 2009, 151(2): 1339-1353.

doi: 10.1104/pp.109.145987
[101]
KOUSSEVITZKY S, NOTT A, MOCKLER T C, HONG F X, SACHETTO-MARTINS G, SURPIN M, LIM J, MITTLER R, CHORY J. Signals from chloroplasts converge to regulate nuclear gene expression. Science, 2007, 316(5825): 715-719.

doi: 10.1126/science. 1140516 pmid: 17395793
[102]
MARTIN G, LEIVAR P, LUDEVID D, TEPPERMAN J M, QUAIL P H, MONTE E. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network. Nature Communications, 2016, 7: 11431.

doi: 10.1038/ncomms11431 pmid: 27150909
[103]
VECIANA N, MARTÍN G, LEIVAR P, MONTE E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. New Phytologist, 2022, 234(1): 93-106.

doi: 10.1111/nph.17975 pmid: 35043407
[104]
WU G Z, BOCK R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. The Plant Cell, 2021, 33(3): 457-474.

doi: 10.1093/plcell/koaa048
[105]
KOBAYASHI K, SUZUKI M, TANG J, NAGATA N, OHYAMA K, SEKI H, KIUCHI R, KANEKO Y, NAKAZAWA M, MATSUI M. Lovastatin insensitive 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant and Cell Physiology, 2007, 48(2): 322-331.

doi: 10.1093/pcp/pcm005
[106]
TANG J W, KOBAYASHI K, SUZUKI M, MATSUMOTO S, MURANAKA T. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. The Plant Journal, 2010, 61(3): 456-466.

doi: 10.1111/j.1365-313X.2009.04082.x pmid: 19929879
[107]
EMAMI H, KEMPKEN F. PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana. The Plant Journal, 2019, 100(2): 265-278.

doi: 10.1111/tpj.v100.2
[108]
OLDENKOTT B, YANG Y, LESCH E, KNOOP V, SCHALLENBERG- RÜDINGER M. Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Communications Biology, 2019, 2: 85.

doi: 10.1038/s42003-019-0328-3
[109]
NAKAMURA T. Understanding RNA editing and its use in gene editing. Gene and Genome Editing, 2022(3/4): 100021.
[110]
MCDERMOTT J J, WATKINS K P, WILLIAMS-CARRIER R, BARKAN A. Ribonucleoprotein capture by in vivo expression of a designer pentatricopeptide repeat protein in Arabidopsis. The Plant Cell, 2019, 31(8): 1723-1733.

doi: 10.1105/tpc.19.00177
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[3] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[4] LUO WanZhen, WANG Dan, QI HongYue, WANG Tong, LIU Zheng, TIAN Li, DAI XiaoFeng, CHEN JinYin, MIJITI Maihemuti. Identification of Antagonistic Bacterium Strain KRS022 and Its Inhibition Effect on Verticillium dahliae [J]. Scientia Agricultura Sinica, 2023, 56(4): 649-664.
[5] DONG YanYu, XU BiYu, DONG ZeYu, WANG LuYao, CHEN JinWen, FANG Lei. Genome-Wide Identification and Interspecific Comparative Analysis of the EXO70 Gene Family in Cotton [J]. Scientia Agricultura Sinica, 2023, 56(23): 4621-4634.
[6] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[7] CHEN JinRong, LÜ ZiJian, FAN LiSha, YOU Qian, LI Tao, GONG Chao, SUN GuangWen, LI ZhiLiang, SUN BaoJuan. Analysis of Genetic Effect of Fruit Color Controlled by Epistatic Genes in Eggplant [J]. Scientia Agricultura Sinica, 2023, 56(23): 4729-4741.
[8] GAO ChenKai, LIU ShuiMiao, LI YuMing, WU PengNian, WANG YanLi, LIU ChangShuo, QIAO YiBo, GUAN XiaoKang, WANG TongChao, WEN PengFei. Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization [J]. Scientia Agricultura Sinica, 2023, 56(22): 4403-4416.
[9] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[10] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[11] JIAO ZhiHui, CHEN GuiPing, FAN Hong, ZHANG JinDan, YIN Wen, LI HanTing, WANG QiMing, HU FaLong, CHAI Qiang. Water Use Characteristics of Increased Plant Density and Reduced Nitrogen Application Maize in Oasis Irrigated Area [J]. Scientia Agricultura Sinica, 2023, 56(16): 3088-3099.
[12] KONG LeHui, ZONG DeQian, SHI QingYao, YIN PanPan, WU WenYu, TIAN Peng, SHAN WeiXing, QIANG XiaoYu. Identification of StCYP83 Gene Family in Potato and Analysis of Its Function in Resistance Against Late Blight [J]. Scientia Agricultura Sinica, 2023, 56(16): 3124-3139.
[13] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[14] YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248.
[15] NIAN HeFen, ZHANG YuXi, LI BoLiao, CHEN XiuLin, LUO Kun, LI GuangWei. Expression and Ligand Binding Characteristics of GfunOBP2 from Grapholita funebrana [J]. Scientia Agricultura Sinica, 2023, 56(12): 2302-2316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!