Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4621-4634.doi: 10.3864/j.issn.0578-1752.2023.23.005

• SPECIAL FOCUS: FIBER DEVELOPMENT IN COTTON • Previous Articles     Next Articles

Genome-Wide Identification and Interspecific Comparative Analysis of the EXO70 Gene Family in Cotton

DONG YanYu(), XU BiYu, DONG ZeYu, WANG LuYao, CHEN JinWen, FANG Lei()   

  1. College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058
  • Received:2023-02-14 Accepted:2023-05-04 Online:2023-12-04 Published:2023-12-04
  • Contact: FANG Lei

Abstract:

【Objective】The two main types of allotetraploid cotton that are currently cultivated are upland cotton, known for its high yield and good adaptability, and island cotton, which boasts excellent fiber quality but lower yield. EXO70, a vital subunit of the exocyst complex, plays a significant role in plant growth, development, and stress response. By identifying and analyzing members of the EXO70 gene family in upland and island cotton at the whole-genome level, and studying their functions in fiber development and environmental adaptation, we can shed light on the molecular basis for the differences in traits between these two varieties. 【Method】The reference sequences of EXO70 protein in Arabidopsis were obtained from the TAIR database. HMMER, ExPASy, MEME, TBtools, and other analysis tools were used to identify and analyze the members of EXO70 gene family in the genomes of upland cotton TM-1 and island cotton Hai7124. The similarities and differences in gene expression patterns, correlations with crucial agronomic traits, and stress responses of this family were systematically compared. 【Result】Through genome-level analysis of upland cotton and sea-island cotton, 54 EXO70 family members were identified in both upland and sea-island cotton, which could be divided into eight subgroups based on phylogenetic analysis. Orthologous genes between upland cotton and sea-island cotton can be paired one-to-one and are distributed across the 20 chromosomes of both species. The majority of the members have single exons, while 12 pairs of homologous genes displayed significant differences in the reading frame sequences. Most orthologous genes in Gossypium hirsutum and Gossypium barbadense display similar expression patterns, but differences in expression levels are observed during the same fiber development stage, such as GH_A04G1208 and its orthologous gene GB_A04G1253 in subgroup A. Single gene association analysis revealed that more genes were associated with fiber quality traits in sea-island cotton, while more genes were associated with yield traits and environmental adversity sensitivity in upland cotton. Some trait association differences resulted from genetic structural differences between Gossypium hirsutum and Gossypium barbadense. Under different stresses, upland cotton showed a significantly higher number of induced genes compared to sea-island cotton. 【Conclusion】The sequence structure and gene expression patterns of the EXO70 family were found to be relatively conserved in both upland and island cotton during the formation, differentiation, and domestication of tetraploid cotton. However, in terms of EXO70 family members, island cotton had more genes related to fiber quality traits, while upland cotton had more genes related to yield traits and exhibited greater sensitivity to environmental stress.

Key words: Gossypium hirsutum, Gossypium barbadense, EXO70 gene family, expression pattern, trait association analysis, abiotic stress response

Fig. 1

Phylogenetic analysis of EXO70 gene family from Arabidopsis thaliana (At), G. hirsutum (Gh) and G. barbadense (Gb)"

Fig. 2

Phylogenetic tree, protein motif, superfamily and gene structure of EXO70 gene family from G. hirsutum (A) and G. barbadense (B)"

Fig. 3

Collinearity analysis of EXO70 gene family from G. hirsutum (A) and G. barbadense (B)"

Fig. 4

Expression analysis of EXO70 gene family between G. hirsutum and G. barbadense DPA: Day post-anthesis. A small blue triangle indicates that a sequence difference between the homologous genes; A small orange circle represents that the gene was analysed by quantitative real-time analysis"

Fig. 5

Quantitative Real-time expression analysis of four genes during fiber development"

Fig. 6

Single gene association analysis of EXO70 gene family from G. hirsutum and G. barbadense A: The number of genes which were significantly associated with fiber length (FL), fiber strength (FS), and fiber yield (LP) from G. hirsutum (Gh) and G. barbadense (Gb); B: Gene structure diagram of GH_D09G1462 and its homologous gene GB_D09G1474. Two non-synonymous SNP harbored in GB_D09G147 were highlighted (Top); Boxplot showed the difference between different haplotype for FL, FS and LP; **** indicates the extremely significant difference between different haplotypes at P<0.05 (Student’s t-test)"

Fig. 7

Heatmap showed the stress induced genes of EXO70 gene family from G. hirsutum and G. barbadense Heat map indicating whether genes are significantly differentially expressed in response to abiotic stress (red, differentially expressed; white, not differentially expressed)"

[1]
LI S P, VAN OS G M A, REN S C, YU D L, KETELAAR T, EMONS A M C, LIU C M. Expression and functional analyses of EXO70genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiology, 2010, 154(4): 1819-1830.

doi: 10.1104/pp.110.164178
[2]
WU L G, HAMID E, SHIN W, CHIANG H C. Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. Annual Review of Physiology, 2014, 76: 301-331.

doi: 10.1146/physiol.2014.76.issue-1
[3]
ZHANG L, XING J J, LIN J X. At the intersection of exocytosis and endocytosis in plants. The New Phytologist, 2019, 224(4): 1479-1489.

doi: 10.1111/nph.v224.4
[4]
BONIFACINO J S, GLICK B S. The mechanisms of vesicle budding and fusion. Cell, 2004, 116(2): 153-166.

doi: 10.1016/s0092-8674(03)01079-1 pmid: 14744428
[5]
PLESKOT R, CWIKLIK L, JUNGWIRTH P, ŽÁRSKÝ V, POTOCKÝ M. Membrane targeting of the yeast exocyst complex. Biochimica et Biophysica Acta, 2015, 1848(7): 1481-1489.

doi: 10.1016/j.bbamem.2015.03.026 pmid: 25838123
[6]
YU I M, HUGHSON F M. Tethering factors as organizers of intracellular vesicular traffic. Annual Review of Cell and Developmental Biology, 2010, 26: 137-156.

doi: 10.1146/annurev.cellbio.042308.113327 pmid: 19575650
[7]
TERBUSH D R, MAURICE T, ROTH D, NOVICK P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 1996, 15(23): 6483-6494.

doi: 10.1002/embj.1996.15.issue-23
[8]
TERBUSH D R, NOVICK P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. The Journal of Cell Biology, 1995, 130(2): 299-312.

doi: 10.1083/jcb.130.2.299
[9]
HE B, GUO W. The exocyst complex in polarized exocytosis. Current Opinion in Cell Biology, 2009, 21(4): 537-542.

doi: 10.1016/j.ceb.2009.04.007 pmid: 19473826
[10]
SYNEK L, SCHLAGER N, ELIÁS M, QUENTIN M, HAUSER M-T, ZÁRSKÝ V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal, 2006, 48(1): 54-72.

doi: 10.1111/tpj.2006.48.issue-1
[11]
FENDRYCH M, SYNEK L, PEČENKOVá T, TOUPALOVá H, COLE R, DRDOVá E, NEBESÁŘOVÁ J, ŠEDINOVÁ M, HÁLA M, FOWLER J E, ŽÁRSKÝ V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. The Plant Cell, 2010, 22(9): 3053-3065.

doi: 10.1105/tpc.110.074351
[12]
WANG W, LIU N, GAO C Y, CAI H R, ROMEIS T, TANG D Z. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. The New Phytologist, 2020, 227(2): 529-544.

doi: 10.1111/nph.v227.2
[13]
KULICH I, PEČENKOVÁ T, SEKEREŠ J, SMETANA O, FENDRYCH M, FOISSNER I, HÖFTBERGER M, ZÁRSKÝ V. Arabidopsis exocyst sub complex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic (Copenhagen, Denmark), 2013, 14(11): 1155-1165.

doi: 10.1111/tra.2013.14.issue-11
[14]
ZÁRSKÝ V, KULICH I, FENDRYCH M, PEČENKOVÁ T. Exocyst complexes multiple functions in plant cells secretory pathways. Current Opinion in Plant Biology, 2013, 16(6): 726-733.

doi: 10.1016/j.pbi.2013.10.013 pmid: 24246229
[15]
LIU N, HAKE K, WANG W, ZHAO T, ROMEIS T, TANG D Z. Calcium-dependent protein kinase5 associates with the truncated NLR protein TIR-NBS2 to contribute to exo70B1-mediated immunity. The Plant Cell, 2017, 29(4): 746-759.

doi: 10.1105/tpc.16.00822
[16]
LI S P, CHEN M, YU D L, REN S C, SUN S F, LIU L D, KETELAAR T, EMONS A M C, LIU C M. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. The Plant Cell, 2013, 25(5): 1774-1786.

doi: 10.1105/tpc.113.112144
[17]
KALMBACH L, HÉMATY K, DE BELLIS D, BARBERON M, FUJITA S, URSACHE R, DARASPE J, GELDNER N. Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nature Plants, 2017, 3: 17058.

doi: 10.1038/nplants.2017.58 pmid: 28436943
[18]
SYNEK L, VUKA¡INOVIĆ N, KULICH I, HÁLA M, ALDORFOVÁ K, FENDRYCH M, ŽÁRSKÝ V. EXO70C 2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology, 2017, 174(1): 223-240.

doi: 10.1104/pp.16.01282
[19]
TU B, HU L, CHEN W L, LI T, HU B H, ZHENG L, LV Z, YOU S J, WANG Y P, MA B T, CHEN X W, QIN P, LI S G. Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in rice. Scientific Reports, 2015, 5: 18609.

doi: 10.1038/srep18609
[20]
FUJISAKI K, ABE Y, ITO A, SAITOH H, YOSHIDA K, KANZAKI H, KANZAKI E, UTSUSHI H, YAMASHITA T, KAMOUN S, TERAUCHI R. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. The Plant Journal, 2015, 83(5): 875-887.

doi: 10.1111/tpj.12934 pmid: 26186703
[21]
DU Y, OVERDIJK E J R, BERG J A, GOVERS F, BOUWMEESTER K. Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens. Journal of Experimental Botany, 2018, 69(3): 655-666.

doi: 10.1093/jxb/erx442 pmid: 29329405
[22]
WANG H, MA Z H, MAO J, CHEN B H. Genome-wide identification and expression analysis of the EXO70 gene family in grape (Vitis vinifera L.). PeerJ, 2021, 9: e11176.

doi: 10.7717/peerj.11176
[23]
丁颜朋, 葛晓阳, 王鹏, 吴洁, 王省芬, 李付广. 棉花盐胁迫应答基因GhEXO70B1功能分析. 棉花学报, 2018, 30(6): 423-434.
DING Y P, GE X Y, WANG P, WU J, WANG X F, LI F G. Functional analysis of a salt stress response gene, GhEXO70B1, in upland cotton (Gossypium hirsutum L.). Cotton Science, 2018, 30(6): 423-434. (in Chinese)
[24]
ZHU Y Q, QIU L, LIU L L, LUO L, HAN X P, ZHAI Y H, WANG W J, REN M Z, XING Y D. Identification and comprehensive structural and functional analyses of the EXO70 gene family in cotton. Genes, 2021, 12(10): 1594.

doi: 10.3390/genes12101594
[25]
DAI F, CHEN J D, ZHANG Z Q, LIU F J, LI J, ZHAO T, HU Y, ZHANG T Z, FANG L. COTTONOMICS: A comprehensive cotton multi-omics database. Database, 2022, 2022: baac080.
[26]
EL-GEBALI S, MISTRY J, BATEMAN A, EDDY S R, LUCIANI A, POTTER S C, QURESHI M, RICHARDSON L J, SALAZAR G A, SMART A, SONNHAMMER E L, HIRSH L, PALADIN L, PIOVESAN D, TOSATTO S C, FINN R D. The Pfam protein families database in 2019. Nucleic Acids Research, 2019, 47(D1): D427-D432.
[27]
CAMACHO C, COULOURIS G, AVAGYAN V, MA N, PAPADOPOULOS J, BEALER K, MADDEN T L. BLAST+: Architecture and applications. BMC Bioinformatics, 2009, 10: 421.

doi: 10.1186/1471-2105-10-421 pmid: 20003500
[28]
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W W, NOBLE W S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(supp1_2): W202- W208.

doi: 10.1093/nar/gkp335
[29]
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.

doi: S1674-2052(20)30187-8 pmid: 32585190
[30]
WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49.

doi: 10.1093/nar/gkr1293
[31]
KRZYWINSKI M, SCHEIN J, BIROL I, CONNORS J, GASCOYNE R, HORSMAN D, JONES S J, MARRA M A. Circos: An information aesthetic for comparative genomics. Genome Research, 2009, 19(9): 1639-1645.

doi: 10.1101/gr.092759.109 pmid: 19541911
[32]
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: An ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.

doi: 10.1093/bioinformatics/bty560
[33]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.

doi: 10.1038/nmeth.3317 pmid: 25751142
[34]
LIAO Y, SMYTH G K, SHI W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30(7): 923-930.

doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[35]
HU Y, CHEN J D, FANG L, ZHANG Z Y, MA W, NIU Y C, JU L Z, DENG J Q, ZHAO T, LIAN J M, BARUCH K, FANG D, LIU X, RUAN Y L, RAHMAN M U, HAN J L, WANG K, WANG Q, WU H T, MEI G F, ZANG Y H, HAN Z G, XU C Y, SHEN W J, YANG D F, SI Z F, DAI F, ZOU L F, HUANG F, BAI Y L, ZHANG Y G, BRODT A, BEN-HAMO H, ZHU X F, ZHOU B L, GUAN X Y, ZHU S J, CHEN X Y, ZHANG T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4): 739-748.

doi: 10.1038/s41588-019-0371-5
[36]
FANG L, GONG H, HU Y, LIU C X, ZHOU B L, HUANG T, WANG Y K, CHEN S Q, FANG D D, DU X M, CHEN H, CHEN J D, WANG S, WANG Q, WAN Q, LIU B L, PAN M Q, CHANG L J, WU H T, MEI G F, XIANG D, LI X H, CAI C P, ZHU X F, CHEN Z J, HAN B, CHEN X Y, GUO W Z, ZHANG T Z, HUANG X H. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biology, 2017, 18(1): 33.

doi: 10.1186/s13059-017-1167-5 pmid: 28219438
[37]
FANG L, ZHAO T, HU Y, SI Z F, ZHU X F, HAN Z G, LIU G Z, WANG S, JU L Z, GUO M L, MEI H, WANG L Y, QI B W, WANG H, GUAN X Y, ZHANG T Z. Divergent improvement of two cultivated allotetraploid cotton species. Plant Biotechnology Journal, 2021, 19(7): 1325-1336.

doi: 10.1111/pbi.13547 pmid: 33448110
[38]
WANG K, LI M Y, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.

doi: 10.1093/nar/gkq603
[39]
LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y L, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.

doi: 10.1038/nbt.3208
[40]
ZHU T, LIANG C Z, MENG Z G, SUN G Q, MENG Z, GUO S D, ZHANG R. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biology, 2017, 17(1): 101.
[41]
WANG M J, TU L L, YUAN D J, ZHU D, SHEN C, LI J Y, LIU F Y, PEI L L, WANG P C, ZHAO G N, YE Z X, HUANG H, YAN F L, MA Y Z, ZHANG L, LIU M, YOU J Q, YANG Y C, LIU Z P, HUANG F, LI B Q, QIU P, ZHANG Q H, ZHU L F, JIN S X, YANG X Y, MIN L, LI G L, CHEN L L, ZHENG H K, LINDSEY K, LIN Z X, UDALL J A, ZHANG X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51(2): 224-229.

doi: 10.1038/s41588-018-0282-x
[42]
KULICH I, VOJTÍKOVÁ Z, SABOL P, ORTMANNOVÁ J, NEDĚLA V, TIHLAŘÍKOVÁ E, ŽÁRSKÝ V. Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiology, 2018, 176(3): 2040-2051.

doi: 10.1104/pp.17.01693 pmid: 29301954
[43]
YAMAZAKI T, KAWAMURA Y, MINAMI A, UEMURA M. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. The Plant Cell, 2009, 20(12): 3389-3404.

doi: 10.1105/tpc.108.062679
[44]
SEKEREŠ J, PEJCHAR P, ŠANTRŮČEK J, VUKAŠINOVIĆ N, ŽÁRSKÝ V, POTOCKÝ M. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiology, 2017, 173(3): 1659-1675.

doi: 10.1104/pp.16.01709 pmid: 28082718
[45]
YU H H, LI M, SANDHU J, SUN G C, SCHNABLE J C, WALIA H, XIE W B, YU B, MOWER J P, ZHANG C. Pervasive misannotation of microexons that are evolutionarily conserved and crucial for gene function in plants. Nature Communications, 2022, 13: 820.

doi: 10.1038/s41467-022-28449-8 pmid: 35145097
[46]
HURST L D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics, 2002, 18(9): 486.

doi: 10.1016/S0168-9525(02)02722-1
[47]
GUAN X Y, YU N, SHANGGUAN X X, WANG S, LU S, WANG L J, CHEN X Y. Arabidopsis trichome research sheds light on cotton fiber development mechanisms. Chinese Science Bulletin, 2007, 52(13): 1734-1741.

doi: 10.1007/s11434-007-0273-2
[48]
KULICH I, VOJTÍKOVÁ Z, GLANC M, ORTMANNOVÁ J, RASMANN S, ŽÁRSKÝ V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiology, 2015, 168(1): 120-131.

doi: 10.1104/pp.15.00112
[1] KAYOUMU MiReZhaTiJiang, WUMAIERJIANG XiErAiLi, LI XiaoTong, WANG XiangRu, GUI HuiPing, ZHANG HengHeng, ZHANG XiLing, DONG Qiang, SONG MeiZhen. Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(21): 4150-4162.
[2] HAN XiaoWen, HAN Shuo, HU YiFeng, WANG MengRu, CHEN ZhongYi, ZHU YongXing, YIN JunLiang. Genome-Wide Identification of AP2/ERF Gene Family in Alternanthera philoxeroides and Its Expression Patterns Under Herbicide Stresses [J]. Scientia Agricultura Sinica, 2023, 56(20): 4021-4034.
[3] MA YanBin, LI HuanLi, WEN Jin, ZHOU XianTing, QIN Xin, WANG Xia, WANG XinSheng, LI YanE. Identification of Molecular Characterizations for Transgenic Cotton R1-3 Line of Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3277-3284.
[4] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[5] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[6] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[7] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[8] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[9] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[10] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[11] HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
[12] XIAO LuoDan, TANG Lei, WANG WeiDong, GAO YueFang, HUANG YiFan, MENG Yang, YANG YaJun, XIAO Bin. Cloning and Functional Analysis of CsWRKYIIcs Transcription Factors in Tea Plant [J]. Scientia Agricultura Sinica, 2020, 53(12): 2460-2476.
[13] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[14] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[15] WEI HaiDian, CHEN XueQiu, HUANG Yan, SHI HengZhi, ZHOU JingRu, WU Fei, DU AiFang, YANG Yi. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus [J]. Scientia Agricultura Sinica, 2019, 52(17): 3059-3068.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!