Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (15): 3146-3157.doi: 10.3864/j.issn.0578-1752.2020.15.014
• HORTICULTURE • Previous Articles Next Articles
YUAN GuiBo(),MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong(
)
[1] |
MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat? Trends in Biochemical Sciences, 2012,37:118-125.
pmid: 22236506 |
[2] | BOKSZCZANIN K L, FRAGKOSTEFANAKIS S, BOSTAN H. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front in Plant Science, 2013,4:315. |
[3] | DINAR M, RUDICH J. Effect of heat stress on assimilate metabolism in tomato flower buds. Annals of Botany, 1985,56(2):249-257. |
[4] |
PRESSMAN E, PEET M, PHARR M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of Botany, 2002,90(5):631-636.
pmid: 12466104 |
[5] |
DING H D, YUAN G B, MO S R, QIAN Y, WU Y, CHEN Q, XU X Y, WU X X, GE C L. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. Plant Physiology and Biochemistry, 2019,143:29-39.
pmid: 31479880 |
[6] |
XIE Y D, LI W, GUO D, DONG J, ZHANG Q, FU Y, REN D, PENG M, XIA Y. The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. Plant Cell Environ, 2010,33:828-839.
pmid: 20040062 |
[7] |
CHENG Y, ZHOU Y, YANG Y, CHI Y J, ZHOU J, CHEN J Y, WANG F, FAN B F, SHI K, ZHOU Y H, YU J Q, CHEN Z X. Structural and functional analysis of VQ motif containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiology, 2012,159:810-825.
pmid: 22535423 |
[8] |
JING Y J, LIN R C. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiology, 2015,169:371-378.
doi: 10.1104/pp.15.00788 pmid: 26220951 |
[9] |
KLAUS P, QIU J L, JURY L, BERTHE K F, SIDSEL H, JOHN M, MORTEN P. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE, 2010,5:e14364.
pmid: 21203436 |
[10] |
WANG A H, DAMIEN G, ZHANG H Y, FENG K, ABED C, FRED B, WILLIAM J P, ELIZABETH S D, LUO M. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal, 2010,63:670-679.
doi: 10.1111/j.1365-313X.2010.04271.x pmid: 20545893 |
[11] |
LAI Z B, LI Y, WANG F, CHENG Y, FAN B F, YU J Q, CEHN Z X. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. The Plant Cell, 2011,23:3824-3841.
doi: 10.1105/tpc.111.090571 pmid: 21990940 |
[12] |
HU P, ZHOU W, CHENG Z W, FAN M, WANG L, XIE D X. JAV1 controls jasmonate-regulated plant defense. Molecular Cell, 2013,50:504-515.
pmid: 23706819 |
[13] |
LI Y L, JING Y J, LI J J, XU G, LIN R C. Arabidopsis VQ MOTIF-CON-TAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology, 2014,164:2068-2080.
pmid: 24569844 |
[14] |
PAN J J, WANG H P, HU Y R, YU D Q. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. The Plant Journal, 2018,95:529-544.
pmid: 29771466 |
[15] |
WANG H P, HU Y R, PAN J J, YU D Q. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Scientific Reports, 2015,5:14185.
doi: 10.1038/srep14185 pmid: 26394921 |
[16] |
MARTIN W, LENNARD E, PASCAL P. Ménage à trois the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins. Plant Signaling & Behavior, 2014,9(8):e29519.
pmid: 25763630 |
[17] |
LEI R H, LI X L, MA Z B, LV Y, HU Y R, YU D Q. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal, 2017,91:962-976.
pmid: 28635025 |
[18] |
QIU J L, FIIL B K, PETERSEN K, NIELSEN H B, BOTANGA C J, THORGRIMSEN S, PALMA K, SUAREZ R M C, SANDBECH C S, LICHOTA J, QIU J L, FIIL B K, PEETRSEN K. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. The EMBO Journal, 2008,27:2214-2221.
pmid: 18650934 |
[19] |
GARGUL J M, MIBUS H, SEREK M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. Plant Biotechnology Journal, 2015,13:51-61.
pmid: 25082411 |
[20] |
KIM D Y, KWON S I, CHOI C. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene, 2013,529:208-214.
doi: 10.1016/j.gene.2013.08.023 pmid: 23958655 |
[21] |
SONG W B, ZHAO H M, ZHANG X B, LEI L, LAI J S. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Frontiers in Plant Science, 2016,6:1177.
pmid: 26779214 |
[22] |
WANG X B, ZHANG H W, SUN G L, JIN Y, QIU L J. Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. Gene, 2014,543(2):237-243.
pmid: 24727126 |
[23] |
WANG M, VANNOZZI A, WANG G, ZHONG Y, CORSO M, CAVALLINI E, CHENG Z M. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Frontiers in Plant Science, 2015,6:417.
pmid: 26124765 |
[24] |
ZHANG G Y, WANG F D, LI J J, DING Q, ZHANG Y H, LI H Y, ZHANG J N, GAO J W. Genome-wide identification and analysis of the VQ motif- containing protein family in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences, 2015,16(12):28683-28704.
doi: 10.3390/ijms161226127 pmid: 26633387 |
[25] |
DONG Q L, ZHAO S, DUAN D Y, TIAN Y, WANG Y P, MAO K, ZHOU Z S, MA F W. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Science, 2018,272:208-219.
pmid: 29807593 |
[26] | 何洁. 番茄SlMPK1的互作蛋白筛选及初步功能分析[D]. 扬州: 扬州大学, 2016. |
HE J. Screening and preliminary functional analysis of interaction proteins of tomato SlMPK1[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
[27] | KANEHISA M, SATO Y, FURUMICHI M, MORISHIMA K, TANABE M. New approach for understanding genome variations in KEGG. Nucleic Acids Research, 2018,47:590-595. |
[28] |
SZKLARCZYK D, MORRIS J H, COOK H, KUHN M, WYDER S, SIMONOVIC M, SANTOS A, DONCHEVA N T, ROTH A, BORK P, JENSEN L J, VON M C. The STRING database in 2017: Quality- controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 2017,45(D1):D362-D368.
pmid: 27924014 |
[29] |
CHANG S J, HSIAO J C, SONNBERG S. Poxvirus host range protein CP77 Contains an F-Box-like domain that is necessary to suppress NF-κB activation by tumor necrosis factor alpha but is independent of its host range function. Journal of Virology, 2009,83(9):4140-4152.
doi: 10.1128/JVI.01835-08 pmid: 19211746 |
[30] |
DING H D, HE J, WU Y, WU X X, GE C L, WANG Y J, ZHONG S L, PEITER E, LIANG J S, XU W F. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high temperature stress response. Plant Physiology, 2018,177(2):633-651
pmid: 29678861 |
[31] |
MORIKAWA K, SHIINA T, MURAKAMI S, TOYOSHIMA Y. Novel nuclear encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Letters, 2002,514:300-304.
doi: 10.1016/s0014-5793(02)02388-8 pmid: 11943170 |
[32] |
PERRUC E, CHARPENTEAU M, RAMIREZ B C, JAUNEAU A, GALAUD J P, RAOUL R, RANTY B. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. The Plant Journal, 2004,38:410-420.
doi: 10.1111/j.1365-313X.2004.02062.x pmid: 15086802 |
[33] |
HU Y R, CHEN L G, WANG H P, ZHANG L P, WANG F, YU D Q. Arabidopsis transcription factor WRKY8 function agonistically with its interacting partner VQ9 to modulates salinity stress tolerance. The Plant Journal, 2013,74(5):730-745.
doi: 10.1111/tpj.12159 pmid: 23451802 |
[34] |
PECHER P, ESCHENLIPPOLD L, HERKLOTZ S. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. New Phytologist, 2014,203(2):592-606.
doi: 10.1111/nph.12817 pmid: 24750137 |
[35] |
ISLAS-FLORES T, RAHMAN A, ULLAH H, VILLANUEVA M A. The receptor for activated C kinase in plant signaling: Tale of a promiscuous little molecule. Frontiers in Plant Science, 2015,6:1090.
pmid: 26697044 |
[1] | SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789. |
[2] | WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718. |
[3] | HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980. |
[4] | LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444. |
[5] | CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377. |
[6] | LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154. |
[7] | FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751. |
[8] | LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. |
[9] | XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028. |
[10] | WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276. |
[11] | ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003. |
[12] | LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550. |
[13] | DU Xia,WU Kuo,LIU Xia,ZHANG LiZhen,SU XiaoXia,ZHANG HongRui,ZHANG ZhongKai,HU XianQi,DONG JiaHong,YANG YanLi,GAO YuLin. The Occurrence Trends of Dominant Species of Potato Viruses and Thrips in Yunnan Province [J]. Scientia Agricultura Sinica, 2020, 53(3): 551-562. |
[14] | ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801. |
[15] | ZHANG LiLi,SHI QingHua,GONG Biao. Application of Fulvic Acid and Phosphorus Fertilizer on Tomato Growth, Development, and Phosphorus Utilization in Neutral and Alkaline Soil [J]. Scientia Agricultura Sinica, 2020, 53(17): 3567-3575. |
|