Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3843-3855.doi: 10.3864/j.issn.0578-1752.2023.19.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Synergistic Application of Organic Materials and Chemical Fertilizers on Bacterial Community and Enzyme Activity in Wheat-Maize Rotation Fluvo-Aquic Soil

ZHANG LingFei1,2(), MA Lei2, LI YuDong2, ZHENG FuLi2, WEI JianLin2, TAN DeShui2, CUI XiuMin1(), LI Yan2()   

  1. 1 College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, Shandong
    2 Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2022-11-03 Accepted:2022-12-31 Online:2023-10-01 Published:2023-10-08
  • Contact: CUI XiuMin, LI Yan

Abstract:

【Objective】This experiment studied the effects of long-term synergistic application of organic materials and chemical fertilizers on soil bacterial community and enzyme activity, and revealed the relationship between soil nutrients, extracellular enzyme activity and bacterial community, so as to provide a theoretical basis for formulating long-term and reasonable fertilization strategies under wheat-maize rotation system in fluvo-aquic soil. 【Method】 Based on a 10-year located experiment, five treatments were set up, including no fertilization (NF), chemical fertilizer (NPK), chemical fertilizer with straw return (NPKS), 50% chemical fertilizer with 6 000 kg·hm-2 pig manure (NPKP), and 50% chemical fertilizer with 6 000 kg·hm-2 cow manure ( NPKC ). 【Result】 (1) The combined application of organic materials and chemical fertilizers ( NPKS, NPKP and NPKC ) could significantly improve soil fertility and extracellular enzyme activity, among which NPKC treatment had the most significant effect. Compared with NPK treatment, the contents of organic matter, total nitrogen, available nitrogen, available phosphorus and alkaline phosphatase activity were increased by 13.8%-15.4%, 9.7%-15.5%, 7.2%-15.9%, 13.6%-38.5%和2.5%-13.1%. (2) Long-term combined application of organic and inorganic fertilizer significantly changed the bacterial community structure and composition. In the wheat season, compared with NPK treatment, NPKS treatment significantly increased the abundance of Aggregatilinea and Parachlamydia, NPKP treatment significantly increased the abundance of Pseudomonas, Nonomuraea and Flexilinea, while NPKC treatment only significantly increased the abundance of Luteitalea. In the maize season, compared with NPK treatment, NPKS treatment significantly increased the abundance of Phycisphaera and Syntrophothermus, NPKP treatment significantly increased the abundance of Gemmatimonas, and NPKC treatment significantly increased the abundance of Aquipuribacter and Desulfosoma. (3) The results of functional prediction showed that combined application of organic and inorganic fertilizers could promote soil carbon and nitrogen cycling compared with long-term single application of chemical fertilizer. In particular, the NPKC treatment had a strong effect on nitrification, ureolysis, aromatic compound degradation, xylanolysis and cellulolysis. (4) Mental analysis showed that soil pH was the main factor regulating bacterial community structure and ecological function in fluvo-aquic soil. 【Conclusion】 Long-term application of organic and inorganic fertilizers (especially chemical fertilizers combined with cow manure) could improve soil fertility and extracellular enzyme activity, increase the abundance of beneficial bacteria, significantly change the structure and composition of bacterial communities, and promote the circulation of carbon, nitrogen and phosphorus, thus construct an environment suitable for crop and bacterial growth in fluvo-aquic soil.

Key words: wheat-maize rotation, organic material, chemical fertilizer, long-term application of fertilizers, bacterial community, enzyme activity, nutrient, fluvo-aquic soil

Table 1

Nutrient inputs for each treatment"

处理
Treatment
化肥
Chemical fertilizer (N-P2O5-K2O)(kg·hm-2)
有机肥
Organic fertilizer (N-P2O5-K2O)(kg·hm-2)
周年养分投入
Annual nutrient input
(N+P2O5+K2O)(kg·hm-2)
小麦Wheat 玉米Maize 小麦Wheat 玉米Maize
NF 0 0 0 0 0
NPK 300-120-100 250-45-45 0 0 860
NPKS 300-120-100 250-45-45 0 0 860+秸秆Straw
NPKP 150-60-50 125-22.5-22.5 68-105-42 68-105-42 860
NPKC 150-60-50 125-22.5-22.5 68-108-39 68-108-39 860

Table 2

Effects of long-term combined application of different organic materials and chemical fertilizers on soil nutrients"

作物季节
Crop season
处理
Treatment
pH 有机质
SOM (g·kg-1)
全氮
TN (g·kg-1)
全磷
TP (g·kg-1)
碱解氮
AN (mg·kg-1)
有效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
小麦季
Wheat season
NF 8.51±0.03a 14.10±0.57c 0.97±0.04c 0.85±0.04b 70.26±6.76c 12.46±2.76c 218.50±16.58b
NPK 8.45±0.03ab 17.38±0.28b 1.23±0.07b 1.08±0.07a 87.28±6.45b 49.64±1.72b 276.00±8.04a
NPKS 8.45±0.03ab 19.02±0.30a 1.27±0.11b 1.00±0.09ab 97.78±4.51a 51.14±3.17b 274.75±14.45a
NPKP 8.37±0.16b 18.67±0.67ab 1.29±0.07b 1.10±0.26a 95.20±5.58ab 66.45±6.84a 270.25±11.38a
NPKC 8.43±0.07ab 19.81±1.74a 1.42±0.09a 1.08±0.07a 101.15±4.39a 68.73±1.32a 286.00±12.06a
玉米季
Maize season
NF 8.93±0.04a 14.94±0.24d 1.07±0.02c 0.83±0.04c 75.98±2.07d 4.88±0.32e 222.75±2.50b
NPK 8.74±0.04b 17.00±0.09c 1.24±0.03b 1.03±0.03ab 96.89±0.69b 18.07±0.61c 243.50±2.65a
NPKS 8.75±0.03b 18.63±0.85b 1.28±0.00b 0.99±0.04b 91.47±0.31c 14.46±0.59d 245.75±3.95a
NPKP 8.66±0.03c 18.54±0.29b 1.33±0.04a 1.08±0.03a 103.20±3.59a 22.88±0.62a 239.50±16.42a
NPKC 8.79±0.05b 19.62±0.56a 1.36±0.03a 1.06±0.02a 103.88±3.25a 20.52±1.30b 240.75±6.85a

Fig. 1

Effects of long-term combined application of different organic materials and chemical fertilizers on soil enzyme activities The top and bottom line of boxes represent the ranges of enzyme activities,the short lines inside represent the average values, the error bar above each box represent the variation, and different letters above the bars represent significant difference among treatments (P<0.05)"

Fig. 2

Effects of long-term combined application of different organic materials and chemical fertilizers on bacterial community structure"

Fig. 3

Effects of long-term combined application of different organic materials and chemical fertilizers on bacterial community composition"

Fig. 4

Analysis of species differences in long-term combined application of different organic materials and chemical fertilizers"

Fig. 5

Ecological functional of soil bacterial community under long-term application of different organic materials and chemical fertilizers based on FAPROTAX tool"

Fig. 6

Relationship between soil bacterial communities and biochemical indices The correlation between soil nutrient and enzyme activity was expressed in Spearman correlation coefficients. ***: P<0.001, **: P<0.01, *: P<0.05. Small to large blocks indicate low to high correlations. SOM: Soil organic matter, TN: Total nitrogen, TP: Total phosphorus, AN: Available nitrogen, AP: Available phosphorus, AK: Available potassium. β-GC: β-glucosidase, DHA: Dehydrogenase, UE: Urease, ALP: Alkaline phosphatase"

[1]
BARDGETT R D, VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505-511.

doi: 10.1038/nature13855
[2]
BAHRAM M, HILDEBRAND F, FORSLUND S K, ANDERSON J L, SOUDZILOVSKAIA N A, BODEGOM P M, BENGTSSON-PALME J, ANSLAN S, COELHO L P, HAREND H, HUERTA-CEPAS J, MEDEMA M H, MALTZ M R, MUNDRA S, OLSSON P A, PENT M, PÕLME S, SUNAGAWA S, RYBERG M, TEDERSOO L, BORK P. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237.

doi: 10.1038/s41586-018-0386-6
[3]
SCHMID C A O, SCHRÖDER P, ARMBRUSTER M, SCHLOTER M. Organic amendments in a long-term field trial-consequences for the bulk soil bacterial community as revealed by network analysis. Microbial Ecology, 2018, 76(1): 226-239.

doi: 10.1007/s00248-017-1110-z pmid: 29188301
[4]
LI J, COOPER J M, LIN Z A, LI Y T, YANG X D, ZHAO B Q. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 75-87.

doi: 10.1016/j.apsoil.2015.07.001
[5]
LIU D M, ZHANG S R, FEI C, DING X D. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils. Applied Soil Ecology, 2021, 168: 104115.

doi: 10.1016/j.apsoil.2021.104115
[6]
张雅丽, 郭晓明, 胡慧, 郭暖, 徐小涛, 李建林. 牛粪还田对土壤微生物群落特征的影响. 环境科学, 2023, 44(3): 1792-1800.
ZHANG Y L, GUO X M, HU H, GUO N, XU X T, LI J L. Effects of cow manure application on soil microbial community in farmland. Environmental Science, 2023, 44(3): 1792-1800. (in Chinese)

doi: 10.1021/es903455p
[7]
SUN R B, ZHANG X X, GUO X S, WANG D Z, CHU H Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015, 88: 9-18.

doi: 10.1016/j.soilbio.2015.05.007
[8]
LI F, CHEN L, ZHANG J B, YIN J, HUANG S M. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 2017, 8: 187.

doi: 10.3389/fmicb.2017.00187 pmid: 28232824
[9]
赵凤艳, 张勇勇, 张玥琦, 张天实, 张国显, 张慧, 杨丽娟. 有机物料对设施番茄长期连作土壤细菌群落结构的影响. 生态学杂志, 2019, 38(6): 1732-1740.
ZHAO F Y, ZHANG Y Y, ZHANG Y Q, ZHANG T S, ZHANG G X, ZHANG H, YANG L J. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse. Chinese Journal of Ecology, 2019, 38(6): 1732-1740. (in Chinese)
[10]
XUN W B, HUANG T, ZHAO J, RAN W, WANG B R, SHEN Q R, ZHANG R F. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 2015, 90: 10-18.

doi: 10.1016/j.soilbio.2015.07.018
[11]
敖金成, 李博, 阎凯, 李永梅. 连作对云南典型烟区植烟土壤细菌群落多样性的影响. 农业资源与环境学报, 2022, 39(1): 46-54.
AO J C, LI B, YAN K, LI Y M. Effects of continuous cropping on tobacco-planting soil bacterial community diversity in typical tobacco-growing areas of Yunnan Province. Journal of Agricultural Resources and Environment, 2022, 39(1): 46-54. (in Chinese)
[12]
CUI X W, ZHANG Y Z, GAO J S, PENG F Y, GAO P. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports, 2018, 8: 16554.

doi: 10.1038/s41598-018-34685-0 pmid: 30410029
[13]
MEI N, ZHANG X Z, WANG X Q, PENG C, GAO H J, ZHU P, GU Y. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. European Journal of Agronomy, 2021, 130: 126332.

doi: 10.1016/j.eja.2021.126332
[14]
FAN K K, DELGADO-BAQUERIZO M, GUO X S, WANG D Z, ZHU Y G, CHU H Y. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology and Biochemistry, 2020, 141: 107679.

doi: 10.1016/j.soilbio.2019.107679
[15]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[16]
WEYERS E, STRAWN D G, PEAK D, MOORE A D, BAKER L L, CADE-MENUN B. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Science Society of America Journal, 2016, 80(6): 1531-1542.

doi: 10.2136/sssaj2016.09.0280
[17]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[18]
CHEN X D, OPOKU-KWANOWAA Y, LI J M, WU J G. Application of organic wastes to primary saline-alkali soil in northeast China: Effects on soil available nutrients and salt ions. Communications in Soil Science and Plant Analysis, 2020, 51(9): 1238-1252.

doi: 10.1080/00103624.2020.1763394
[19]
YAN Z J, CHEN S, DARI B, SIHI D, CHEN Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma, 2018, 322: 163-171.

doi: 10.1016/j.geoderma.2018.02.035
[20]
温延臣, 李海燕, 袁亮, 徐久凯, 马荣辉, 林治安, 赵秉强. 长期定位施肥对潮土剖面养分分布的影响. 中国农业科学, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014.
WEN Y C, LI H Y, YUAN L, XU J K, MA R H, LIN Z A, ZHAO B Q. Effect of long-term fertilization on nutrient distribution of fluvo-aquic soil profile. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014. (in Chinese)
[21]
刘国辉, 买文选, 田长彦. 施用有机肥对盐碱土的改良效果:Meta分析. 农业资源与环境学报, 2023, 40(1): 86-96.
LIU G H, MAI W X, TIAN C Y. Effects of organic fertilizer application on the improvement of saline soils: Meta analysis. Journal of Agricultural Resources and Environment, 2023, 40(1): 86-96. (in Chinese)
[22]
ZHAO S C, LI K J, ZHOU W, QIU S J, HUANG S W, HE P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 2016, 216: 82-88.

doi: 10.1016/j.agee.2015.09.028
[23]
LIU E K, YAN C R, MEI X R, HE W Q, BING S H, DING L P, LIU Q, LIU S, FAN T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 2010, 158(3/4): 173-180.

doi: 10.1016/j.geoderma.2010.04.029
[24]
HU Y J, XIA Y H, SUN Q, LIU K P, CHEN X B, GE T D, ZHU B L, ZHU Z K, ZHANG Z H, SU Y R. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. The Science of the Total Environment, 2018(628/629): 53-63.
[25]
XING L, ZHANG Y M, HU C S, DONG W X, LI X X, LIU X P, ZHANG L J, WEN H D. Effects of long-term nutrient recycling pathways on soil nutrient dynamic and fertility in farmland. Chinese Journal of Eco-Agriculture, 2022, 30(6): 937-951.
[26]
ZHANG Q Q, ZHAO W W, ZHOU Z Z, HUANG G H, WANG X B, HAN Q, LIU G F. The application of mixed organic and inorganic fertilizers drives soil nutrient and bacterial community changes in teak plantations. Microorganisms, 2022, 10(5): 958.

doi: 10.3390/microorganisms10050958
[27]
杨旭, 刘海林, 黄艳艳, 杨红竹, 贝美容, 林清火. 有机无机复混肥施用量对热带水稻土微生物群落和酶活性的影响. 植物营养与肥料学报, 2021, 27(4): 619-629.
YANG X, LIU H L, HUANG Y Y, YANG H Z, BEI M R, LIN Q H. Effects of application of organic-inorganic compound fertilizers on microbial communities and enzyme activities in tropical paddy soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 619-629. (in Chinese)
[28]
LIU Y R, LV Z Z, HOU H Q, LAN X J, JI J H, LIU X M. Long-term effects of combination of organic and inorganic fertilizer on soil properties and microorganisms in a Quaternary Red Clay. PLoS One, 2021, 16(12): e0261387.

doi: 10.1371/journal.pone.0261387
[29]
FUKUNAGA Y, KURAHASHI M, SAKIYAMA Y, OHUCHI M, YOKOTA A, HARAYAMA S. Phycisphaera mikurensis Gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the Phylum Planctomycetes. The Journal of General and Applied Microbiology, 2009, 55(4): 267-275.

doi: 10.2323/jgam.55.267
[30]
NGATCHOU DJAO O D, ZHANG X J, LUCAS S, LAPIDUS A, GLAVINA DEL RIO T, NOLAN M, TICE H, CHENG J F, HAN C, TAPIA R, GOODWIN L, PITLUCK S, LIOLIOS K, IVANOVA N, MAVROMATIS K, MIKHAILOVA N, OVCHINNIKOVA G, PATI A, BRAMBILLA E, CHEN A, PALANIAPPAN K, LAND M, HAUSER L, CHANG Y J, JEFFRIES C D, ROHDE M, SIKORSKI J, SPRING S, GÖKER M, DETTER J C, WOYKE T, BRISTOW J, EISEN J A, MARKOWITZ V, HUGENHOLTZ P, KYRPIDES N C, KLENK H P. Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1^T). Standards in Genomic Sciences, 2010, 3(3): 267-275.
[31]
REZAKHANI L, MOTESHAREZADEH B, TEHRANI M M, ETESAMI H, MIRSEYED HOSSEINI H. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 2019, 173: 504-513.

doi: 10.1016/j.ecoenv.2019.02.060
[32]
田美, 刘汉湖, 申欣, 赵方庆, 陈帅, 姚永佳. 百乐克(BIOLAK)活性污泥宏基因组的生物多样性及功能分析. 环境科学, 2015, 36(5): 1739-1748.
TIAN M, LIU H H, SHEN X, ZHAO F Q, CHEN S, YAO Y J. Biodiversity and function analyses of BIOLAK activated sludge metagenome. Environmental Science, 2015, 36(5): 1739-1748. (in Chinese)
[33]
VIEIRA S, LUCKNER M, WANNER G, OVERMANN J. Luteitalea pratensis Gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1408-1414.

doi: 10.1099/ijsem.0.001827
[34]
SRINIVAS T N R, ANIL KUMAR P, TANK M, SUNIL B, POORNA M, ZAREENA B, SHIVAJI S. Aquipuribacter nitratireducens sp. nov., isolated from a soil sample of a mud volcano. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2391-2396.

doi: 10.1099/ijs.0.000269
[35]
GRÉGOIRE P, FARDEAU M L, GUASCO S, LAGIÈRE J, CAMBAR J, MICHOTEY V, BONIN P, OLLIVIER B. Desulfosoma profundi sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France. Antonie Van Leeuwenhoek, 2012, 101(3): 595-602.

doi: 10.1007/s10482-011-9675-x
[36]
CAO Y R, JIN R X, JIANG Y, HE W X, JIANG C L. Nonomuraea soli sp. nov., an actinomycete isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(7): 1587-1591.

doi: 10.1099/ijs.0.034751-0
[37]
DE OLIVEIRA PARANHOS A G, PEREIRA A R, DA FONSECA Y A, DE QUEIROZ SILVA S, DE AQUINO S F. Tylosin in anaerobic reactors: Degradation kinetics, effects on methane production and on the microbial community. Biodegradation, 2022, 33(3): 283-300.

doi: 10.1007/s10532-022-09980-3 pmid: 35482264
[38]
LI C X, MA S C, SHAO Y, MA S T, ZHANG L L. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. Journal of Integrative Agriculture, 2018, 17(1): 210-219.

doi: 10.1016/S2095-3119(17)61740-4
[39]
李胜君, 胡菏, 李刚, 王蕊, 赵建宁, 张贵龙, 修伟明. 化肥减量与有机物料添加对华北潮土微生物氮循环功能基因丰度和氮转化遗传潜力的影响. 环境科学, 2022, 43(10): 4735-4744.
LI S J, HU H, LI G, WANG R, ZHAO J N, ZHANG G L, XIU W M. Impacts of co-application of chemical fertilizer reduction and organic material amendment on fluvo-aquic soil microbial N-cycling functional gene abundances and N-converting genetic potentials in Northern China. Environmental Science, 2022, 43(10): 4735-4744. (in Chinese)
[40]
FENG H J, PAN H, LI C L, ZHUGE Y P. Microscale heterogeneity of soil bacterial communities under long-term fertilizations in fluvo- aquic soils. Soil Ecology Letters, 2022, 4(4): 337-347.

doi: 10.1007/s42832-021-0121-3
[41]
ROUSK J, BÅÅTH E, BROOKES P C, LAUBER C L, LOZUPONE C, CAPORASO J G, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351.

doi: 10.1038/ismej.2010.58
[42]
ZHALNINA K, DIAS R, DE QUADROS P D, DAVIS-RICHARDSON A, CAMARGO F A O, CLARK I M, MCGRATH S P, HIRSCH P R, TRIPLETT E W. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 2015, 69(2): 395-406.

doi: 10.1007/s00248-014-0530-2 pmid: 25395291
[43]
林惠瑛, 周嘉聪, 曾泉鑫, 孙俊, 李锦隆, 刘苑苑, 谢欢, 吴玥, 张秋芳, 崔琚琰, 程栋梁, 陈岳民. 武夷山黄山松林土壤细菌群落特征沿海拔梯度的分布模式. 生态学杂志, 2022, 41(8): 1482-1492.
LIN H Y, ZHOU J C, ZENG Q X, SUN J, LI J L, LIU Y Y, XIE H, WU Y, ZHANG Q F, CUI J Y, CHENG D L, CHEN Y M. Distribution pattern of soil bacterial community characteristics in a Pinus taiwanensis forest along an elevational gradient of Wuyi Mountains. Chinese Journal of Ecology, 2022, 41(8): 1482-1492. (in Chinese)
[44]
DE SCALLY S Z, MAKHALANYANE T P, FROSSARD A, HOGG I D, COWAN D A. Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biology and Biochemistry, 2016, 103: 160-170.

doi: 10.1016/j.soilbio.2016.08.013
[45]
刘泽勋, 庄家尧, 刘超, 郑康, 陈玲. 大同铅锌尾矿不同污染程度土壤细菌群落分析及生态功能特征. 环境科学, 2023, 44(7): 4191-4200.
LIU Z X, ZHUANG J Y, LIU C, ZHENG K, CHEN L. Analysis of soil bacterial community structure and ecological function characteristics in different pollution levels of lead-zinc tailings in Datong. Environmental Science, 2023, 44(7): 4191-4200. (in Chinese)

doi: 10.1021/es100205t
[46]
MUNEER M A, HOU W, LI J, HUANG X M, UR REHMAN KAYANI M, CAI Y Y, YANG W H, WU L Q, JI B M, ZHENG C Y. Soil pH: A key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC Microbiology, 2022, 22(1): 38.

doi: 10.1186/s12866-022-02452-x pmid: 35109809
[47]
DELGADO-BAQUERIZO M, ELDRIDGE D J, OCHOA V, GOZALO B, SINGH B K, MAESTRE F T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 2017, 20(10): 1295-1305.

doi: 10.1111/ele.2017.20.issue-10
[1] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[4] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[5] SHENG QianNan, YU XiaoHong, ZHOU Xiong, TIAN GuiSheng, WU HaiYa, GENG GuoTao, YAN JinYao, LI Jing, REN Tao, LU JianWei. Response of Biomass and Nutrient Competition Between Oilseed Rape and Weed to the Rate of N, P and K Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(3): 481-489.
[6] TENG YunFei, SHANG Bin, TAO XiuPing. Nutritional Effects of Liquid Digestate on Tomatoes Grown in Facility Substrates [J]. Scientia Agricultura Sinica, 2023, 56(19): 3869-3878.
[7] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[8] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[9] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[10] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
[11] MA XiaoYan, YANG Yu, HUANG DongLin, WANG ZhaoHui, GAO YaJun, LI YongGang, LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[12] LI Qian, QIN YuBo, YIN CaiXia, KONG LiLi, WANG Meng, HOU YunPeng, SUN Bo, ZHAO YinKai, XU Chen, LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[13] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[14] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[15] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!