Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3879-3893.doi: 10.3864/j.issn.0578-1752.2023.19.014

• HORTICULTURE • Previous Articles     Next Articles

Differences and Genesis of Grape Phenolic Compounds Among Different Altitudes in Yunnan Shangri-la

ZHANG KeNan1(), YIN HaiNing1, WANG JiaKui2, CAO JianHong2, XI ZhuMei1,3()   

  1. 1 College of Enology, Northwest A&F University, Yangling 712100, Shaanxi
    2 Shangri-la Winery Co, LTD, Shangri-la 674400, Yunnan
    3 Shaanxi Grape and Wine Engineering Center, Yangling 712100, Shaanxi
  • Received:2023-03-15 Accepted:2023-06-05 Online:2023-10-01 Published:2023-10-08
  • Contact: XI ZhuMei

Abstract:

【Objective】Phenolic compounds are important secondary metabolites of wine grape, which have an important influence on the quality of grape and wine. In this study, the differences and genesis of phenolic substances in grape skins among different altitudes were studied combined with soil and climate factors, so as to provide a theoretical basis for the planting management of wine grapes at high altitudes region. 【Method】In the present research, Merlot wine grape was used as the test material. For three consecutive years (2020, 2021 and 2022), the differences of total phenols, flavonoids, tannins, total anthocyanins, the content of individual and non-individual anthocyanin components in grape skins at two altitudes (2 181, 2 300 m) at maturity stage were analyzed. Meanwhile, climate factors such as light, temperature and humidity at different altitudes were monitored during grape development, and the influences of climatic factors on phenolic substances of grape skins were analyzed. 【Result】There were no significant differences in the main mineral nutrients of the soils of the two altitude vineyards, and some differences in climatic factors, such as light, UV intensity, temperature and humidity. Altitude had a significant effect on the content of phenolic substances in grape skins. In the years of 2020-2022, the higher altitude was conducive to the accumulation of phenolic substances in grape skins. the content of total phenols, total tannin, total anthocyanins, most of the individual anthocyanins and the quercetin in berry skins were higher at the altitude of 2 300 m; compared with that at 2 181 m, the content of total tannin in grape skins at 2 300 m increased by 56.27%-174.49%. The flavonoid content at 2 181 m altitude were significantly higher than that at 2 300 m, with an increase of 32.25% to 79.48%. OPLS-DA analysis showed that, the main different compounds of phenolic compounds between the two altitudes were total tannin (TTC), total flavonoids (TFo), malvidin-3-glucoside (Mv), malvidin-3-acetly-glucoside (Mv-Ace), cyanidin-3- glucoside (Cy), and peonidin-3-glucoside (Pn). Grey correlation analysis showed that day-night temperature difference in grape growing season had a great effect on the content of total phenols and total flavonoids in grape skins. The content of total anthocyanins, individual anthocyanins and quercetin in skins were significantly affected by light and ultraviolet intensity. The content of three anthocyanins (Pt, Pn-Ace and Pn-Cou) and quercetin were mainly affected by the light intensity during grape veraison (July).【Conclusion】The climatic conditions of different altitudes, especially day-night temperature difference, light and ultraviolet intensity were the main factors causing the differences of phenolic content. The larger day-night temperature difference, stronger light and ultraviolet intensity at higher altitude were conducive to the accumulation of phenolic substances in grape skins.

Key words: grape, phenolic, altitude, climate factors, grey correlation analysis

Fig. 1

Sampling sites and contour line in Deqin"

Table 1

Soil nutrients of vineyards"

海拔
Altitude
(m)
土壤质地
Soil texture
pH 有机质
Organic matter (g∙kg-1)
全氮
Total N
(g∙kg-1)
全磷
Total P
(g∙kg-1)
全钾
Total K
(g∙kg-1)
速效磷
Available P (mg∙kg-1)
速效钾
Available K (mg∙kg-1)
2181 粉砂质壤土 Silty loam 7.34±0.01a 16.94±0.08a 1.45±0.05a 0.60±0.06a 16.15±0.04a 14.10±0.05a 317.11±0.67a
2300 粉砂质壤土 Silty loam 7.09±0.02b 17.08±0.07a 1.42±0.04a 0.75±0.004a 16.15±0.01a 14.32±0.17a 319.11±1.30a

Fig. 2

Climate factors of vineyards at different altitudes Different lowercase letters of same climatic factor indicate significant difference between different altitudes (P<0.05). The same as below"

Fig. 3

The phenolic contents in grape skins of different altitudes"

Fig. 4

The individual anthocyanin content in grape skins of different altitudes * meant significant difference (P<0.05) and higher content of individual anthocyanin between different altitudes in same year"

Table 2

The non-individual anthocyanin content in grape skins of different altitudes (mg·g-1 DW)"

年份
Years
海拔
Altitude
(m)
黄烷醇类
Flavanols
黄酮醇类
Flavonols
羟基肉桂酸类
Hydroxycinnamic acids
羟基苯甲酸类
Hydroxybenzolic acids
儿茶素
Catechin
表儿茶素
Epicatechin
槲皮素
Quercetin
山奈酚
Kaempferol
绿原酸
Chlorogenic acid
咖啡酸
Caffeic acid
反式阿魏酸
Trans-ferulic acid
对香豆酸
P-coumaric acid
没食子酸
Gallic acid
原儿茶酸
Protocatechuic acid
香草酸
Vanillic acid
丁香酸
Syringic acid
2021 2 181 0.60±0.05a 0.58±0.01a 3.00±0.04b 1.84±0.02b 1.02±0.001a 0.90±0.01a 0.39±0.001a 0.40±0.001a 0.33±0.002a 0.54±0.002a 0.36±0.02a 0.35±0.001a
2 300 0.59±0.02a 0.61±0.01a 4.06±0.13a 1.98±0.001a 1.03±0.03a 0.90±±0.001a 0.41±0.01a 0.41±0.002a 0.32±0.001a 0.55±0.003a 0.35±0.01a 0.35±0.01a
2022 2 181 0.52±0.05a 0.75±0.02b 2.89±0.10b 2.14±0.13a 1.00±0.001b 0.89±0.006a 0.40±0.002b 0.34±0.006b 0.32±0.001b 0.54±0.001a 0.37±0.005b 0.40±0.005a
2 300 1.37±0.29a 0.98±0.04a 3.41±0.09a 2.25±0.46a 1.44±0.02a 1.01±0.07a 0.50±0.004a 0.40±0.001a 0.43±0.001a 0.53±0.02a 0.49±0.01a 0.45±0.04a

Fig. 5

OPLS-DA score and test plots of phenolic compounds in grape skins at different altitudes"

Fig. 6

The grey relational analysis between altitude, climatic factors and phenolic substances in grape skins"

[1]
VO G T, LIU Z Y, CHOU O, ZHONG B M, BARROW C J, DUNSHEA F R, SULERIA H A R. Screening of phenolic compounds in Australian grown grapes and their potential antioxidant activities. Food Bioscience, 2022, 47: 101644.

doi: 10.1016/j.fbio.2022.101644
[2]
RIENTH M, CROVADORE J, GHAFFARI S, LEFORT F. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis vinifera) and primes plant immunity mechanisms. PLoS ONE, 2019, 14(9): e0222854.

doi: 10.1371/journal.pone.0222854
[3]
JU Y L, YANG L, YUE X F, LI Y K, HE R, DENG S L, YANG X, FANG Y L. Anthocyanin profiles and color properties of red wines made from Vitis davidii and Vitis vinifera grapes. Food Science and Human Wellness, 2021, 10(3): 335-344.

doi: 10.1016/j.fshw.2021.02.025
[4]
王燕, 李德美, 孙智文, 王宗义, 赵炳岩, 王莹莹. 赤霞珠干红葡萄酒酚类物质及其与苦涩感的关联性分析. 食品与发酵工业, 2022, 48(7): 91-96.
WANG Y, LI D M, SUN Z W, WANG Z Y, ZHAO B Y, WANG Y Y. Phenolics compounds in Cabernet Samvignon wine and their correlation with astringency. Food and Fermentation Industries, 2022, 48(7): 91-96. (in Chinese)
[5]
江雨, 孟江飞, 刘崇怀, 姜建福, 樊秀彩, 严静, 张振文. 中国野生葡萄果实基本品质、酚类物质含量及其抗氧化活性分析. 食品科学, 2017, 38(7): 142-148.

doi: 10.7506/spkx1002-6630-201707023
JIANG Y, MENG J F, LIU C H, JIANG J F, FAN X C, YAN J, ZHANG Z W. Quality characteristics, phenolics content and antioxidant activity of Chinese wild grapes. Food Science, 2017, 38(7): 142-148. (in Chinese)

doi: 10.7506/spkx1002-6630-201707023
[6]
FLAMINI R, MATTIVI F, ROSSO M, ARAPITSAS P, BAVARESCO L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences, 2013, 14(10): 19651-19669.

doi: 10.3390/ijms141019651 pmid: 24084717
[7]
RIENTH M, VIGNERON N, DARRIET P, SWEETMAN C, BURBIDGE C, BONGHI C, WALKER R P, FAMIANI F, CASTELLARIN S D. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario-A review. Frontiers in Plant Science, 2021, 12: 643258.

doi: 10.3389/fpls.2021.643258
[8]
赵亚蒙, 尹春晓, 梁攀, 乐小凤, 张振文. 不同海拔对刺葡萄果实风味物质的影响. 果树学报, 2018, 35(10): 1197-1207.
ZHAO Y M, YIN C X, LIANG P, LE X F, ZHANG Z W. Effects of altitude on berry flavor compounds in spine grapes. Journal of Fruit Science, 2018, 35(10): 1197-1207. (in Chinese)
[9]
蒋宝, 蒲飞, 孙占育, 王录军. 海拔对酿酒葡萄果实和相应葡萄酒中多酚物质影响的研究概述. 食品与发酵工业, 2016, 42(8): 262-267.
JIANG B, PU F, SUN Z Y, WANG L J. Research progress on influence of cultivation altitude on phenolics of grape berry and wine. Food and Fermentation Industries, 2016, 42(8): 262-267. (in Chinese)
[10]
DE OLIVEIRA J B, EGIPTO R, LAUREANO O, DE CASTRO R D, PEREIRA G, RICARDO-DA-SILVA J. Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. Food Research International, 2019, 121: 870-879.

doi: S0963-9969(19)30011-0 pmid: 31108820
[11]
URVIETA R, JONES G, BUSCEMA F, BOTTINI R, FONTANA A. Terroir and vintage discrimination of Malbec wines based on phenolic composition across multiple sites in Mendoza, Argentina. Scientific Reports, 2021, 11: 2863.

doi: 10.1038/s41598-021-82306-0
[12]
MUÑOZ F, URVIETA R, BUSCEMA F, RASSE M, FONTANA A, BERLI F. Phenolic characterization of Cabernet Sauvignon wines from different geographical indications of Mendoza, Argentina: Effects of plant material and environment. Frontiers in Sustainable Food Systems, 2021, 5: 700642.

doi: 10.3389/fsufs.2021.700642
[13]
何涛, 杜鸿燕, 马义, 邓维萍, 朱书生, 杜飞. 香格里拉海拔高度对‘赤霞珠’葡萄果实花色苷的影响. 中外葡萄与葡萄酒, 2021(1): 8-13.
HE T, DU H Y, MA Y, DENG W P, ZHU S S, DU F. Effect of altitude on anthocyanin of ‘Cabernet Sauvignon’ grape in Shangri-La region. Sino-Overseas Grapevine & Wine, 2021(1): 8-13. (in Chinese)
[14]
JIN X D, WU X, LIU X. Phenolic characteristics and antioxidant activity of merlot and Cabernet Sauvignon wines increase with vineyard altitude in a high-altitude region. South African Journal of Enology & Viticulture, 2017, 38(2): 132-143.
[15]
RAMOS M C, MARTÍNEZ DE TODA F. Macabeo (Viura) grape response to climate variability in areas located at different elevations in the Rioja Designation of Origin. Journal of the Science of Food and Agriculture, 2022, 102(13): 5670-5679.

doi: 10.1002/jsfa.v102.13
[16]
毛如志, 张国涛, 王家逵, 杜飞, 邓维萍, 邵建辉, 赵新节, 朱书生, 何霞红. 西拉葡萄浆果代谢物对低海拔和高海拔气象因子的响应. 现代农业科技, 2015(20): 240-246.
MAO R Z, ZHANG G T, WANG J K, DU F, DENG W P, SHAO J H, ZHAO X J, ZHU S S, HE X H. Shiraz/syrah grape metabolites response to low/high altitudes. XianDai NongYe KeJi, 2015(20): 240-246. (in Chinese)
[17]
XING R R, HE F, XIAO H L, DUAN C Q, PAN Q H. Accumulation pattern of flavonoids in Cabernet Sauvignon grapes grown in a low-latitude and high-altitude region. South African Journal of Enology & Viticulture, 2016, 36(1): 32-43.
[18]
KÖRNER C. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution, 2007, 22(11): 569-574.

doi: 10.1016/j.tree.2007.09.006
[19]
冀晓昊, 王海波, 张克坤, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 王志强, 刘凤之. 不同颜色果袋对葡萄花青苷合成的调控. 中国农业科学, 2016, 49(22): 4460-4468. doi: 10.3864/j.issn.0578-1752.2016.22.018.
JI X H, WANG H B, ZHANG K K, WANG X D, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z. The grape anthocyanin biosynthesis regulation by different color fruit bags. Scientia Agricultura Sinica, 2016, 49(22): 4460-4468. doi: 10.3864/j.issn.0578-1752.2016.22.018. (in Chinese)
[20]
GAIOTTI F, PASTORE C, FILIPPETTI I, LOVAT L, BELFIORE N, TOMASI D. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Scientific Reports, 2018, 8: 8719.

doi: 10.1038/s41598-018-26921-4
[21]
SUN L, LI S C, TANG X P, FAN X C, ZHANG Y, JIANG J F, LIU J H, LIU C H. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L.). Gene, 2020, 728: 144284.

doi: 10.1016/j.gene.2019.144284
[22]
张衡, 刘红梅, 杨雪, 宫厚杰. 不同微喷高度对葡萄棚架下微气候因子及品质的影响. 节水灌溉, 2022(5): 97-100.
ZHANG H, LIU H M, YANG X, GONG H J. Effects of different micro-spray heights on the microclimate factors and quality under the grape trellis. Water Saving Irrigation, 2022(5): 97-100. (in Chinese)
[23]
杨世琼, 杨再强, 王琳, 李军, 张曼义, 李凯伟. 高温高湿交互对设施番茄叶片光合特性的影响. 生态学杂志, 2018, 37(1): 57-63.
YANG S Q, YANG Z Q, WANG L, LI J, ZHANG M Y, LI K W. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops. Chinese Journal of Ecology, 2018, 37(1): 57-63. (in Chinese)
[24]
刘笑宏, 孙永江, 孙红, 翟衡. 不同叶幕类型对‘摩尔多瓦’葡萄果穗微域环境及果实品质的影响. 中国农业科学, 2016, 49(21): 4246-4254. doi: 10.3864/j.issn.0578-1752.2016.21.019.
LIU X H, SUN Y J, SUN H, ZHAI H. Effect of canopy types on the cluster micro-environment and fruit quality of the ‘Moldova’ grapes. Scientia Agricultura Sinica, 2016, 49(21): 4246-4254. doi: 10.3864/j.issn.0578-1752.2016.21.019. (in Chinese)
[25]
XIE S, LEI Y J, WANG Y J, WANG X Q, REN R H, ZHANG Z W. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regulation, 2019, 87(1): 83-92.

doi: 10.1007/s10725-018-0455-8
[26]
张江辉, 刘洪波, 白云岗, 杨旭东, 丁平. 果园微气候因子改善葡萄净光合速率与蒸腾速率研究. 北方园艺, 2020(1): 27-33.
ZHANG J H, LIU H B, BAI Y G, YANG X D, DING P. Studies on orchard microclimate factors to improve grape net photosynthetic rate and transpiration rate. Northern Horticulture, 2020(1): 27-33. (in Chinese)
[27]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[28]
TIAN M B, YUAN L, ZHENG M Y, XI Z M. Differences in anthocyanin accumulation profiles between teinturier and non- teinturier cultivars during ripening. Foods, 2021, 10(5): 1073.

doi: 10.3390/foods10051073
[29]
MENG J F, FANG Y L, QIN M Y, ZHUANG X F, ZHANG Z W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chemistry, 2012, 134(4): 2049-2056.

doi: 10.1016/j.foodchem.2012.04.005
[30]
MERCURIO MEAGAN D, DAMBERGS ROBERT G, HERDERICH MARKUS J, SMITH PAUL A. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4651-4657.

pmid: 17497877
[31]
RAPISARDA P, TOMAINO A, LO CASCIO R, BONINA F, DE PASQUALE A, SAIJA A. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4718-4723.

pmid: 10552879
[32]
PEINADO J, LOPEZ DE LERMA N, MORENO J, PEINADO R A. Antioxidant activity of different phenolics fractions isolated in must from Pedro Ximenez grapes at different stages of the off-vine drying process. Food Chemistry, 2009, 114(3): 1050-1055.

doi: 10.1016/j.foodchem.2008.10.068
[33]
YANG P, YUAN C L, WANG H, HAN F L, LIU Y J, WANG L, LIU Y. Stability of anthocyanins and their degradation products from Cabernet Sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules, 2018, 23(2): 354.

doi: 10.3390/molecules23020354
[34]
赵裴, 成甜甜, 王开贤, 韩富亮. 干化处理对‘马瑟兰’葡萄有机酸、花色苷和单宁组分的影响. 食品与发酵工业, 2021, 47(18): 194-200.
ZHAO P, CHENG T T, WANG K X, HAN F L. Effects of postharvest dehydration on the organic acids, anthocyanins and tannin fractions of ‘Marselan’ grapes. Food and Fermentation Industries, 2021, 47(18): 194-200. (in Chinese)
[35]
李桂荣, 程珊珊, 张少伟, 扈惠灵, 连艳会, 周瑞金, 朱自果. 葡萄抗寒相关生理生化指标灰色关联分析. 东北林业大学学报, 2018, 46(10): 40-47, 53.
LI G R, CHENG S S, ZHANG S W, HU H L, LIAN Y H, ZHOU R J, ZHU Z G. Grey correlation analysis of physi-biochemical indexes related to cold tolerance in different grapes. Journal of Northeast Forestry University, 2018, 46(10): 40-47, 53. (in Chinese)
[36]
MATEUS N, PROENCA S, RIBEIRO P, MACHADO J M, DE FREITAS V. Grape and wine polyphenolic composition of red Vitis vinifera varieties concerning vineyard altitude. CyTA-Journal of Food, 2001, 3(2): 102-110.
[37]
王小龙, 张正文, 钟晓敏, 王福成, 史祥宾, 张艺灿, 王宝亮, 冀晓昊, 王海波. 不同组织和土壤矿质营养与美乐葡萄果实品质的多元分析. 果树学报, 2021, 38(12): 2108-2118.
WANG X L, ZHANG Z W, ZHONG X M, WANG F C, SHI X B, ZHANG Y C, WANG B L, JI X H, WANG H B. Multivariate analysis of fruit quality and mineral nutritions in different tissues and soils of Merlot grape. Journal of Fruit Science, 2021, 38(12): 2108-2118. (in Chinese)
[38]
BLANCQUAERT E H, OBERHOLSTER A, RICARDO-DA-SILVA J M, DELOIRE A J. Grape flavonoid evolution and composition under altered light and temperature conditions in cabernet sauvignon (Vitis vinifera L.). Frontiers in Plant Science, 2019, 10: 1062.

doi: 10.3389/fpls.2019.01062
[39]
SONG J Q, SMART R, WANG H, DAMBERGS B, SPARROW A, QIAN M C. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot Noir wine. Food Chemistry, 2015, 173: 424-431.

doi: 10.1016/j.foodchem.2014.09.150
[40]
BRANDT M, SCHEIDWEILER M, RAUHUT D, PATZ C D, WILL F, ZORN H, STOLL M. The influence of temperature and solar radiation on phenols in berry skin and maturity parameters of Vitis vinifera L. cv. Riesling. Journal volume & issue, 2019, 53(2): 261-276.
[41]
EDWARDS E J, UNWIN D, KILMISTER R, TREEBY M. Multi- seasonal effects of warming and elevated CO2 on the physiology, growth and production of mature, field grown, Shiraz grapevines. OENO ONE, 2017, 51(2): 127-132.

doi: 10.20870/oeno-one.2017.51.2.1586
[42]
GOUOT J C, SMITH J P, HOLZAPFEL B P, WALKER A R, BARRIL C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 2019, 70(2): 397-423.

doi: 10.1093/jxb/ery392 pmid: 30388247
[43]
DOWNEY M O, HARVEY J S, ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 2008, 10(1): 55-73.

doi: 10.1111/j.1755-0238.2004.tb00008.x
[44]
PONTIN M A, PICCOLI P N, FRANCISCO R, BOTTINI R, MARTÍNEZ-ZAPATER J M, LIJAVETZKY D. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biology, 2010, 10(1): 224.

doi: 10.1186/1471-2229-10-224
[45]
KATAOKA I, SUGIYAMA A, BEPPU K. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘gros Colman’ grapes (Vitis vinifera L.). Journal of the Japanese Society for Horticultural Science, 2003, 72(1): 1-6.
[46]
SINGH R K, MARTINS V, SOARES B, CASTRO I, FALCO V. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cão) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. International Journal of Molecular Sciences, 2020, 21(1): 306.

doi: 10.3390/ijms21010306
[47]
MORI K, SUGAYA S, GEMMA H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae, 2005, 105(3): 319-330.

doi: 10.1016/j.scienta.2005.01.032
[48]
YAN Y F, SONG C Z, FALGINELLA L, CASTELLARIN S D. Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in ‘Merlot’ (Vitis vinifera L.) grapes during ripening. Frontiers in Plant Science, 2020, 11: 1095.

doi: 10.3389/fpls.2020.01095
[49]
孙晨娜, 杨大新, 宋清海, 陈爱国, 闻国静, 张树斌, 张晶, 段兴武, 金艳强. 2011-2020年云南元江干热河谷生态站气象监测数据集. 中国科学数据, 2022, 7(1): 199-210.
SUN C N, YANG D X, SONG Q H, CHEN A G, WEN G J, ZHANG S B, ZHANG J, DUAN X W, JIN Y Q. A dataset of meteorological observations at Yuanjiang Savanna Ecosystem Research Station, Yunnan Province (2011-2020). China Scientific Data, 2022, 7(1): 199-210. (in Chinese)
[1] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[2] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[3] SONG ZhiZhong, WANG JianPing, SHI ShengPeng, CAO JingWen, LIU WanHao, XU WeiHua, XIAO HuiLin, TANG MeiLing. Identification and Cloning of Ferritin Family Genes in Grape and Response to Compound Amino Acid-Iron Spraying During Different Fruit Developmental Stages [J]. Scientia Agricultura Sinica, 2023, 56(18): 3629-3641.
[4] WANG Fei, XIAO YingKe, XUAN XuXian, ZHANG XiaoWen, LIU Fei, ZHA ZiXian, DAI MengTong, WANG XiCheng, WU WeiMin, FANG JingGui, WANG Chen. Identification of the VvmiR164s-VvNAC100 Action Module and Analysis of Their Expressions Responsive to Exogenous GA During Grape Ovary Development [J]. Scientia Agricultura Sinica, 2023, 56(10): 1966-1981.
[5] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[6] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[7] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[8] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[9] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[10] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[11] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[12] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[13] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[14] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[15] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!