Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1561-1573.doi: 10.3864/j.issn.0578-1752.2023.08.011

• HORTICULTURE • Previous Articles     Next Articles

Genome-Wide Association Studies for Grape Berry Weight Related Traits

WANG HuiLing1(), YAN AiLing2, WANG XiaoYue3, LIU ZhenHua1, REN JianCheng1, XU HaiYing1(), SUN Lei1()   

  1. 1 Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093
    2 Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093
    3 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093
  • Received:2022-06-08 Accepted:2022-08-24 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】Grape berry size is one of important factors affecting grape appearance and the final productivity. It is a complex quantitative trait regulated by multiple genes. Mining the key genetic regulatory loci and the underlying genes for berry size related traits would help to improve grape yield. 【Method】In this study, 150 diverse grapevine varieties were selected as materials. The berry weight, seed number per berry, and seed weight were measured in 2019 and 2020, respectively. Based on high-density genotype data obtained by resequencing, the genome-wide association studies (GWAS) were carried out to detect significantly associated SNPs and to predict important candidate genes.【Result】The three measured traits exhibited extensive phenotypic variation with 39.55%-68.89% of phenotypic variation coefficients; the phenotypic distribution of the observed three traits in the population showed continuous quantitative genetic characteristics; a significant positive correlation between each trait were observed in two years; based on the phenotypic data collected in two years, a total of 150 significant SNPs were detected for berry weight. In 2019, 99 SNPs were detected, each of which contributed the phenotypic variation from 14.48% to 25.59%; in 2020, 73 SNPs were detected, explaining 16.08%-26.83% of phenotypic variation; among these SNPs, 24 were detected repeatedly in both two years, mainly located on chromosome 1, 5, 11 and 16. Compared with the trait of berry weight, less SNPs significantly associated with the seed number were detected. A significant SNP was detected in 2019, and the phenotypic explanation value was 24.29%; in 2020, 17 significant SNPs were detected, which all located on chromosome 18; 1 and 2 SNPs located on chromosome 18 significantly associated with seed weight were detected in 2019 and 2020, respectively, accounting for 23.59%-48.29% of phenotypic variation. Within the genomic region of SNPs detected repeatedly for two years, 11 candidate genes related to berry weight were screened out based on the functional annotation, including ethylene signal pathway genes (VIT_05s0049g00490, VIT_05s0049g00500, VIT_05s0049g00510 and VIT_16s0100g00400), gibberellin signal pathway genes (VIT_11s0016g04630 and VIT_16s0022g02310), auxin responsive protein gene (VIT_11s0016g05640) and some important transcription factor genes (VIT_05s0049g00460, VIT_11s0016g05660 and VIT_16s0022g02330). A candidate gene VIT_18s0041g01880 (encoding a MADS box protein VviAGL11) associated with seed content was identified on chromosome 18, and different SNP genotypes on this gene significantly affected the grape berry seed number and weight. 【Conclusion】A total of 150 SNPs significantly associated with berry weight were detected in two years, mainly located on chromosomes 1, 5, 11 and 16; A total of 19 significant SNPs associated with seed content were detected, mainly located on chromosome 18. Based on the results of gene annotation and genotype analysis, 11 candidate genes that might be involved in the regulation of grape berry weight including VIT_11s0016g04630 and VIT_16s0022g02310 were selected; the candidate gene VIT_18s0041g01880 was determined significantly correlated with seed content.

Key words: grape, berry size, genome-wide association studies, candidate gene

Table 1

Statistics of grape berry size related traits"

性状
Trait
年份
Year
变异范围
Variation range
均值±标准差
Mean±SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
果实单粒重
Berry weight (BW, g)
2019 0.91-11.91 5.62±2.37 -0.02 -0.71 42.17
2020 1.5-11.7 5.92±2.44 -0.004 -0.72 41.22
种子数
Seed number (SN)
2019 0-4.75 2.23±1.15 -0.69 -0.17 51.57
2020 0-4 2.20±0.87 -0.52 0.15 39.55
种子质量
Seed weight (SW, g)
2019 0-1.00 0.34±0.22 -0.13 -0.66 64.71
2020 0-1.32 0.45±0.31 0.11 -0.97 68.89

Fig. 1

Frequency distribution of grape berry size related traits"

Table 2

Correlation coefficient for grape berry size related traits"

性状Trait 2019BW 2019SN 2019SW 2020BW 2020SN 2020SW
2019BW 1 0.442** 0.561** 0.858** 0.166 0.526**
2019SN 1 0.584** 0.407** 0.550** 0.561**
2019SW 1 0.494** 0.360** 0.823**
2020BW 1 0.212* 0.529**
2020SN 1 0.537**
2020SW 1

Fig. 2

Population linkage disequilibrium (LD) and population genetic structure"

Fig. 3

The Manhattan diagram of GWAS results for grape berry size related traits A-B: The GWAS results for berry weight in 2019 and 2020, respectively; C-D: The GWAS results for seed number in 2019 and 2020, respectively; E-F: The GWAS results for seed weight in 2019 and 2020, respectively. The X-axis shows the SNPs along each chromosome, a dot represents a SNP loci, the Y-axis is the -log10 P for the association, The red dotted line is the negative logarithm of 0.05/all SNPs, and the blue dotted line is the negative logarithm of 0.1/all SNPs. Scattered dots (or lines) above the threshold line are candidate sites"

Table 3

The information of significant sites detected in two years by genome-wide association analysis for grape berry size related traits"

性状
Trait
染色体
Chr
位置
Position
P P value 贡献率R2 (%) 基因型
Genotype
2019 2020 2019 2020
单粒重
Berry weight
1 22639484 2.48E-10 1.94E-09 23.45 23.30 T/ A
5 7537999 6.37E-11 4.89E-10 21.59 22.03 G/A
5 9220655 6.91E-10 5.16E-10 22.19 23.47 A/G
11 3961705 1.44E-09 7.32E-10 21.88 24.67 T/C
11 4206358 1.97E-09 1.31E-10 17.40 21.14 T/G
11 4206905 1.88E-10 4.3E-11 23.35 26.73 T/A
11 4207208 1.03E-09 2.53E-10 22.20 25.79 G/A
11 4207295 8.32E-10 1.29E-10 21.32 25.17 A/G
11 4208224 1.47E-09 2.31E-10 22.27 26.51 G/A
11 4211568 6.47E-10 1.50E-10 22.79 26.40 A/G
11 4212068 3.21E-11 6.20E-12 23.95 27.69 T/C
11 4337558 1.61E-10 2.89E-11 22.81 26.83 G/A
11 4342720 8.80E-11 2.30E-10 24.01 25.40 A/T
11 4342872 3.19E-10 1.38E-09 22.30 22.73 G/C
11 4420462 1.43E-11 3.06E-10 21.97 21.28 A/G
11 4835190 1.76E-09 1.30E-10 19.10 24.69 T/G
11 4855046 1.86E-09 2.45E-10 18.67 22.55 G/A
11 4902154 1.96E-09 2.16E-10 19.77 24.39 G/A
11 5132979 4.75E-10 2.43E-09 16.23 16.08 G/A
11 5164917 2.34E-09 1.70E-09 16.03 17.85 A/T
11 5168340 4.44E-10 2.25E-10 16.72 19.05 A/G
11 5169147 1.64E-09 2.72E-09 18.08 18.47 C/T
16 14893081 1.17E-09 6.98E-10 17.83 18.70 G/A
16 15790424 1.03E-09 1.96E-09 18.55 18.45 T/C
种子数目 Seed number 18 27835284 2.44E-09 8.72E-10 24.29 25.67 G/A
种子质量 Seed weight 18 26889437 4.90E-11 1.53E-13 40.11 48.29 C/A

Table 4

Published functional candidate genes potentially involved in grapevine seed and/or berry development colocalized significant locus detected"

基因ID
Gene ID
基因组位置
Physical position
基因注释
NR annotation
参考文献
Reference
VIT_01s0150g00260 1: 22675690-22682439 E3泛素蛋白连接酶At3g02290
E3 ubiquitin-protein ligase At3g02290 [Vitis vinifera]
SONG等[18]
VIT_05s0049g00460 5: 7500113-7506717 转录因子bHLH104异构体X2
Transcription factor bHLH104 isoform X2 [Vitis vinifera]
GU等[19]
VIT_05s0049g00490 5:7542707-7543164 乙烯响应转录因子ERF095
Ethylene-responsive transcription factor ERF095 [Vitis vinifera]
YUSTE-LISBONA等[20]
VIT_05s0049g00500 5: 7549843-7550323 乙烯响应转录因子ERF098
Ethylene-responsive transcription factor ERF098 [Vitis vinifera]
YUSTE-LISBONA等[20]
VIT_05s0049g00510 5: 7567335-7580633 乙烯响应转录因子1B
Ethylene-responsive transcription factor 1B [Vitis vinifera]
YUSTE-LISBONA等[20]
VIT_11s0016g04630 11: 3959481-3961177 DELLA蛋白SLR1
DELLA protein SLR1 [Vitis vinifera]
UPADHYAY等[21]
VIT_11s0016g05640 11: 生长素响应蛋白IAA9异构体X1
Auxin-responsive protein IAA9 isoform X1 [Vitis vinifera]
SU等[22]
VIT_11s0016g05660 11: 5121267-5122148 转录因子MYB82
Transcription factor MYB82 [Vitis vinifera]
MORI等[23]
VIT_16s0022g02310 16: 14861534-14863137 赤霉素-20-氧化酶
gibberellin 20-oxidase [Vitis vinifera]
WANG等[24]
VIT_16s0022g02330 16: 14940190-14955349 MADS-box转录因子6异构体X1
MADS-box transcription factor 6 isoform X1 [Vitis vinifera]
IRELAND等[25]
VIT_16s0100g00400 16: 15837953-15838931 乙烯响应转录因子ERF027
Ethylene-responsive transcription factor ERF027 [Vitis vinifera]
YUSTE-LISBONA等[20]
VIT_18s0041g01880 18: 26888672-26896521 MADS-box蛋白5异构体X2 VviAGL11
MADS-box protein 5 isoform X2 VviAGL11 [Vitis vinifera]
ROYO等[26]

Fig. 4

Genetic effect analysis of significant SNPs associated with candidate genes SNPs 1_22639484, 5_7537999, 11_39611705, 11_5164917, 16_14893081 and 16_15790424 were associated with candidate genes VIT_01s0150g00260, VIT_05s0049g00460-VIT_05s0049g00510, VIT_11s0016g05640-VIT_11s0016g05660, VIT_16s0022g02310-VIT_16s0022g02330, respectively; SNP 18_26889437 located within candidate gene VIT_18s0041g01880; ** and * indicate 0.01 and 0.05 significant level, respectively"

[1]
HOUEL C, MARTIN-MAGNIETTE M L, NICOLAS S D, LACOMBE T, LE CUNFF L, FRANCK D, TORREGROSA L, CONÉJÉRO G, LALET S, THIS P, ADAM-BLONDON A F. Genetic variability of berry size in the grapevine (Vitis vinifera  L.). Australian Journal of Grape and Wine Research, 2013, 19(2): 208-220.

doi: 10.1111/ajgw.12021
[2]
CABEZAS J A, CERVERA M T, RUIZ-GARCÍA L, CARREÑO J, MARTÍNEZ-ZAPATER J M. A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49(12): 1572-1585.

doi: 10.1139/g06-122 pmid: 17426772
[3]
DOLIGEZ A, BERTRAND Y, FARNOS M, GROLIER M, ROMIEU C, ESNAULT F, DIAS S, BERGER G, FRANÇOIS P, PONS T, ORTIGOSA P, ROUX C, HOUEL C, LAUCOU V, BACILIERI R, PÉROS J P, THIS P. New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biology, 2013, 13: 217.

doi: 10.1186/1471-2229-13-217
[4]
MEJÍA N, GEBAUER M, MUÑOZ L, HEWSTONE N, MUÑOZ C, HINRICHSEN P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. American Journal of Enology and Viticulture, 2007, 58(4): 499-507.

doi: 10.5344/ajev.2007.58.4.499
[5]
COSTANTINI L, BATTILANA J, LAMAJ F, FANIZZA G, GRANDO M S. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to underlying genes. BMC Plant Biology, 2008, 8: 38.

doi: 10.1186/1471-2229-8-38
[6]
CORREA J, RAVEST G, LABORIE D, MAMANI M, TORRES E, MUÑOZ C, PINTO M, HINRICHSEN P. Quantitative trait loci for the response to gibberellic acid of berry size and seed mass in tablegrape (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 2015, 21(3): 496-507.

doi: 10.1111/ajgw.2015.21.issue-3
[7]
HOUEL C, CHATBANYONG R, DOLIGEZ A, RIENTH M, FORIA S, LUCHAIRE N, ROUX C, ADIVÈZE A, LOPEZ G, FARNOS M, PELLEGRINO A, THIS P, ROMIEU C, TORREGROSA L. Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biology, 2015, 15: 205.

doi: 10.1186/s12870-015-0588-0
[8]
BAN Y, MITANI N, SATO A, KONO A, HAYASHI T. Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica, 2016, 211(3): 295-310.

doi: 10.1007/s10681-016-1737-8
[9]
张芳, 任毅, 曹俊梅, 李法计, 夏先春, 耿洪伟. 基于SNP标记的小麦籽粒性状全基因组关联分析. 中国农业科学, 2021, 54(10): 2053-2064. doi: 10.3864/j.issn.0578-1752.2021.10.002.

doi: 10.3864/j.issn.0578-1752.2021.10.002
ZHANG F, REN Y, CAO J M, LI F J, XIA X C, GENG H W. Genome-wide association analysis of wheat grain size related traits based on SNP markers. Scientia Agricultura Sinica, 2021, 54(10): 2053-2064. doi: 10.3864/j.issn.0578-1752.2021.10.002. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.10.002
[10]
崔承齐, 刘艳阳, 江晓林, 孙知雨, 杜振伟, 武轲, 梅鸿献, 郑永战. 芝麻产量相关性状的多位点全基因组关联分析及候选基因预测. 中国农业科学, 2022, 55(1): 219-232. doi: 10.3864/j.issn.0578-1752.2022.01.018.

doi: 10.3864/j.issn.0578-1752.2022.01.018
CUI C Q, LIU Y Y, JIANG X L, SUN Z Y, DU Z W, WU K, MEI H X, ZHENG Y Z. Multi-locus genome-wide association analysis of yield-related traits and candidate gene prediction in sesame(Sesamum indicum L.). Scientia Agricultura Sinica, 2022, 55(1): 219-232. doi: 10.3864/j.issn.0578-1752.2022.01.018. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.01.018
[11]
GUO D L, ZHAO H L, LI Q, ZHANG G H, JIANG J F, LIU C H, YU Y H. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.]based on genotyping-by-sequencing markers. Horticulture Research, 2019, 6: 11.

doi: 10.1038/s41438-018-0089-z
[12]
FLUTRE T, LE CUNFF L, FODOR A, LAUNAY A, ROMIEU C, BERGER G, BERTRAND Y, TERRIER N, BECCAVIN I, BOUCKENOOGHE V, ROQUES M, PINASSEAU L, VERBAERE A, SOMMERER N, CHEYNIER V, BACILIERI R, BOURSIQUOT J M, LACOMBE T, LAUCOU V, THIS P, PÉROS J P, DOLIGEZ A. A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs. G3: Genes|Genomes|Genetics, 2022, 12(7): jkac103.
[13]
ZHANG H, FAN X C, ZHANG Y, JIANG J F, LIU C H. Identification of favorable SNP alleles and candidate genes for seedlessness in Vitis vinifera L. Euphytica, 2017, 213(7): 136.

doi: 10.1007/s10681-017-1919-z
[14]
刘崇怀, 沈育杰, 陈俊. 葡萄种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LIU C H, SHEN Y J, CHEN J. Descriptors and data standard for grape (Vitis L.). Beijing: China Agriculture Press, 2006. (in Chinese)
[15]
ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009, 19(9): 1655-1664.

doi: 10.1101/gr.094052.109 pmid: 19648217
[16]
ZHANG C, DONG S S, XU J Y, HE W M, YANG T L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35(10): 1786-1788.

doi: 10.1093/bioinformatics/bty875 pmid: 30321304
[17]
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.

doi: 10.1038/ng.2310 pmid: 22706312
[18]
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.

doi: 10.1038/ng2014
[19]
GU C, ZHOU Y H, SHU W S, CHENG H Y, WANG L, HAN Y P, ZHANG Y Y, YU M L, JOLDERSMA D, ZHANG S L. RNA-Seq analysis unveils gene regulation of fruit size cooperatively determined by velocity and duration of fruit swelling in peach. Physiologia Plantarum, 2018, 164(3): 320-336.

doi: 10.1111/ppl.2018.164.issue-3
[20]
YUSTE-LISBONA F J, FERNÁNDEZ-LOZANO A, PINEDA B, BRETONES S, ORTÍZ-ATIENZA A, GARCÍA-SOGO B, MÜLLER N A, ANGOSTO T, CAPEL J, MORENO V, JIMÉNEZ-GÓMEZ J M, LOZANO R. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 8187-8195.
[21]
UPADHYAY A, MASKE S, JOGAIAH S, KADOO N Y, GUPTA V S. GA3 application in grapes (Vitis vinifera L.) modulates different sets of genes at cluster emergence, full bloom, and berry stage as revealed by RNA sequence-based transcriptome analysis. Functional & Integrative Genomics, 2018, 18(4): 439-455.
[22]
SU L Y, BASSA C, AUDRAN C, MILA I, CHENICLET C, CHEVALIER C, BOUZAYEN M, ROUSTAN J P, CHERVIN C. The auxin sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion. Plant and Cell Physiology, 2014, 55(11): 1969-1976.

doi: 10.1093/pcp/pcu124 pmid: 25231966
[23]
MORI K, LEMAIRE-CHAMLEY M, ASAMIZU E, MIZOGUCHI T, EZURA H, ROTHAN C. Comparative analysis of common genes involved in early fruit development in tomato and grape. Plant Biotechnology, 2013, 30(3): 295-300.

doi: 10.5511/plantbiotechnology.13.0321a
[24]
WANG H B, WU T, LIU J L, CONG L, ZHU Y F, ZHAI R, YANG C Q, WANG Z G, MA F W, XU L F. PbGA20ox2 regulates fruit set and induces parthenocarpy by enhancing GA4 content. Frontiers in Plant Science, 2020, 11: 113.

doi: 10.3389/fpls.2020.00113
[25]
IRELAND H S, YAO J L, TOMES S, SUTHERLAND P W, NIEUWENHUIZEN N, GUNASEELAN K, WINZ R A, DAVID K M, SCHAFFER R J. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant Journal, 2013, 73(6): 1044-1056.

doi: 10.1111/tpj.12094 pmid: 23236986
[26]
ROYO C, TORRES-PÉREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBÁÑEZ J, TORNEL M, CARREÑO J, MARTÍNEZ-ZAPATER J M, CARBONELL-BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.

doi: 10.1104/pp.18.00259
[27]
FRIEND A P, TROUGHT M C T, CREASY G L. The influence of seed weight on the development and growth of berries and live green ovaries in Vitis vinifera L. cvs. Australian Journal of Grape and Wine Research, 2009, 15(2): 166-174.

doi: 10.1111/ajgw.2009.15.issue-2
[28]
WALKER R R, BLACKMORE D H, CLINGELEFFER P R, KERRIDGE G H, RÜHL E H, NICHOLAS P R. Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 2005, 11(1): 2-8.

doi: 10.1111/j.1755-0238.2005.tb00273.x
[29]
EBADI A, MOGHADAM J E, FATAHI R. Evaluation of 22 populations achieved from controlled crossing between some seeded × seedless grapevine cultivars. Scientia Horticulturae, 2009, 119(4): 371-376.

doi: 10.1016/j.scienta.2008.08.014
[30]
FISCHER B M, SALAKHUTDINOV I, AKKURT M, EIBACH R, EDWARDS K J, TÖPFER R, ZYPRIAN E M. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics, 2004, 108(3): 501-515.

doi: 10.1007/s00122-003-1445-3 pmid: 14574452
[31]
RICHTER R, GABRIEL D, RIST F, TÖPFER R, ZYPRIAN E. Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture. Theoretical and Applied Genetics, 2019, 132(4): 1159-1177.

doi: 10.1007/s00122-018-3269-1 pmid: 30569367
[32]
ZINELABIDINE L H, TORRES-PÉREZ R, GRIMPLET J, BAROJA E, IBÁÑEZ S, CARBONELL-BEJERANO P, MARTÍNEZ-ZAPATER J M, IBÁÑEZ J, TELLO J. Genetic variation and association analyses identify genes linked to fruit set-related traits in grapevine. Plant Science, 2021, 306: 110875.

doi: 10.1016/j.plantsci.2021.110875
[33]
VANDENBUSSCHE F, VASEVA I, VISSENBERG K, VAN DER STRAETEN D. Ethylene in vegetative development: a tale with a riddle. The New Phytologist, 2012, 194(4): 895-909.

doi: 10.1111/nph.2012.194.issue-4
[34]
张文颖, 王晨, 朱旭东, 马超, 王文然, 冷翔鹏, 郑婷, 房经贵. 葡萄全基因组DELLA蛋白基因家族鉴定及其应答外源赤霉素调控葡萄果实发育的特征. 中国农业科学, 2018, 51(16): 3130-3146. doi: 10.3864/j.issn.0578-1752.2018.16.009.

doi: 10.3864/j.issn.0578-1752.2018.16.009
ZHANG W Y, WANG C, ZHU X D, MA C, WANG W R, LENG X P, ZHENG T, FANG J G. Genome-wide identification and expression of DELLA protein gene family during the development of grape berry induced by exogenous GA. Scientia Agricultura Sinica, 2018, 51(16): 3130-3146. doi: 10.3864/j.issn.0578-1752.2018.16.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.16.009
[35]
WU J, ZHONG J H, XU K, WEI Q P, WEI Z L. Effects of exogenous GA3 on fruit development and endogenous hormones in fujiminori grape. Journal of Fruit Science, 2001, 4: 209-212.
[36]
ACHEAMPONG A K, HU J H, ROTMAN A, ZHENG C L, HALALY T, TAKEBAYASHI Y, JIKUMARU Y, KAMIYA Y, LICHTER A, SUN T P, OR E. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera. Journal of Experimental Botany, 2015, 66(5): 1463-1476.

doi: 10.1093/jxb/eru504
[37]
袁华招, 赵密珍, 吴伟民, 于红梅, 钱亚明, 王壮伟, 王西成. 葡萄生长素响应基因家族生物信息学鉴定和表达分析. 遗传, 2015, 37(7): 720-730.
YUAN H Z, ZHAO M Z, WU W M, YU H M, QIAN Y M, WANG Z W, WANG X C. Genome-wide identification and expression analysis of auxin-related gene families in grape. Hereditas, 2015, 37(7): 720-730. (in Chinese)
[38]
RIECHMANN J L, HEARD J, MARTIN G, REUBER L, JIANG C Z, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE O J, SAMAHA R R, CREELMAN R, PILGRIM M, BROUN P, ZHANG J Z, GHANDEHARI D, SHERMAN B K, YU G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.
[39]
MAKKENA S, LAMB R S. The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC Plant Biology, 2013, 13: 1.

doi: 10.1186/1471-2229-13-1
[40]
MAHJOUB A, HERNOULD M, JOUBÈS J, DECENDIT A, MARS M, BARRIEU F, HAMDI S, DELROT S. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism. Plant Physiology and Biochemistry, 2009, 47(7): 551-561.

doi: 10.1016/j.plaphy.2009.02.015 pmid: 19375343
[41]
TYAGI S, MIR R R, KAUR H, CHHUNEJA P, RAMESH B, BALYAN H S, GUPTA P K. Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Molecular Breeding, 2014, 34: 167-175.

doi: 10.1007/s11032-014-0027-1
[1] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[2] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[3] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[4] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[7] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[8] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[9] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[10] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[11] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[12] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[13] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[14] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[15] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!