Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (10): 1966-1981.doi: 10.3864/j.issn.0578-1752.2023.10.012

• HORTICULTURE • Previous Articles     Next Articles

Identification of the VvmiR164s-VvNAC100 Action Module and Analysis of Their Expressions Responsive to Exogenous GA During Grape Ovary Development

WANG Fei1(), XIAO YingKe1, XUAN XuXian1, ZHANG XiaoWen1, LIU Fei1, ZHA ZiXian1, DAI MengTong1, WANG XiCheng2, WU WeiMin2, FANG JingGui1, WANG Chen1()   

  1. 1 School of Horticulture, Nanjing Agricultural University, Nanjing 210095
    2 Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2022-07-04 Accepted:2022-12-27 Online:2023-05-16 Published:2023-05-17

Abstract:

【Objective】The aim of this study was to identify grapevine miR164s (VvmiR164a/b/c/d) and their target genes, and to elucidate the regulatory roles of VvmiR164s and their target genes during exogenous GA-induced grape parthenocarpic process.【Method】Using ‘Wink’ grapes (Vitis vinifera L. Wink) as the test material, miR-RACE, PCR, RLM-RACE and PPM-RACE, qRT-PCR and bioinformatics were used to analyze the spatio-temporal expression of VvmiR164s-VvNAC100 module in response to exogenous GA and its potential functions during grape parthenocarpic process.【Result】Gibberellin application on ‘Wink’ grapes before flowering induced parthenocarpy, leading to seedless berries. The precise sequence of VvmiR164a/b/c/d was cloned and identified, and four of its target genes were predicted, including VvNAC100-1, VvNAC100-2, VvNAC098, and VvNAC021. Combining the degree of match with the comprehensive analysis of the previous data, this work focused on the analysis of the target gene VvNAC100-2, which was named as VvNAC100. The VvNAC100 cleavage site was located at position 9 and position 11 of the 5′ end of miRNA, with a cleavage frequency of 17/20 and 11/20, respectively, and was localized on Chr14, encoding 363 amino acids and containing a NAM. The VvNAC100 protein is highly conserved in amino acid sequence and functionally similar to other species, among which it is more closely related to species such as pepper and tobacco. The promoters of VvMIR164a/b/c/d and its target gene VvNAC100 both contain multiple hormone-acting elements, suggesting that it might be involved in the regulation of grape growth and development by responding to mult-hormones. The RT-qPCR results showed that the expression level of VvmiR164b tended to decrease as the grape ovary developed, while its target gene VvNAC100 showed an increasing expression trend in the early stage of ovary development with a certain negative correlation. On the other hand, VvmiR164a/c/d showed a similar expression pattern with VvNAC100 with a certain positive correlation. However, after GA treatment, the expression of VvmiR164a/c/d was highly significantly increased during parthenocarpy in the grape ovary, which also significantly suppressed the expression of VvNAC100 during this period, promoting a negative correlation between VvmiR164a/c/d-VvNAC100 their expression levels. VvmiR164b showed a decreasing trend after GA treatment, and it’s the expression levels showed some positive correlation with those of VvNAC100, indicating that GA treatment promoted the negative regulation of VvmiR164a/c/d on VvNAC100, but repressed the negative regulation of VvmiR164b on VvNAC100.【Conclusion】VvNAC100 was the true target gene of VvmiR164 family. During grape parthenocarpy, GA induced the negative regulation of VvmiR164a/c/d on the target gene VvNAC100 and suppressed that of VvmiR164b on the target gene VvNAC100. VvmiR164a/c/d were the main effectors of the VvmiR164 family involved in modulation of GA-induced grape parthenocarpy.

Key words: grape, gibberellin, parthenocarpy, VvmiR164, VvNAC

Table 1

VvmiR164s PCR amplification primer sequences"

基因名称
Gene name
正向引物序列
Forward primer sequence
反向引物序列
Reverse primer sequence
用途
Application
VvmiR164aQT GATGAATTGCCTACAGTTACCAG CCAAGGCCTCCTGCAATTT VvmiR164a前体序列的扩增
Amplification of VvmiR164a precursor
VvmiR164bQT GATGGTCAGCTGCCTAATATTG ACACGCATCTTGGATTTGCT VvmiR164b前体序列的扩增
Amplification of VvmiR164b
precursor
VvmiR164cQT CTTCATTTGCCGCTTTCG CTCCACCAAGAAAATGATAGGC VvmiR164c前体序列的扩增
Amplification of VvmiR164c
precursor
VvmiR164dQT GCAATCACTTGGGAGTTGG ATAGCCAATAGAGGGGAAAAGG VvmiR164d前体序列的扩增
Amplification of VvmiR164d
precursor
VvNAC100 ATGGAAAAGGCTCCTGACCA GGAATGTTTCCCTTCTAATCTGT VvNAC100靶全长序列的扩增
Amplification of full-length sequences of VvNAC100
VvNAC100p ATGGAAAAGGCTCCTGACC GTAATTCCAGAGGCAATCAATG VvNAC100靶片段序列的扩增
Amplification of VvNAC100 target fragment sequences
VvmiR164a-qRT TCAAAACCCGAAACAAGTCC ACCCACCCTCAACCATACAA VvmiR164a定量RT-PCR引物
Real-time PCR of VvmiR164a
VvmiR164b-qRT CGAGTGTTGAGCAAGATGGA CTCCGTGATAATTGGGGAGA VvmiR164b定量RT-PCR引物
Real-time PCR of VvmiR164b
VvmiR164c-qRT TTGGGGGTGTGAAGAAGAAG GAGGAACCCATGTTGGAGAA VvmiR164c 定量RT-PCR引物
Real-time PCR of VvmiR164c
VvmiR164d-qRT TTGGGGGTGTGAAGAAGAAG GAGGAACCCATGTTGGAGAA VvmiR164d定量RT-PCR引物
Real-time PCR of VvmiR164d
VvNAC100-qRT TTCTCATCCCTGACCAGTCC TCTACAGGCCCAGCTGAAGT VvNAC100定量RT-PCR引物
Real-time PCR of VvNAC100
Vvactin GCTCGCTGTTTTGCAGTTCTAC AACATAGGTGAGGCCGCACTT 葡萄actin内参基因
Actin internal reference primer

Fig. 1

Effects of GA treatment on parthenogenesis of Wink grape"

Fig. 2

Sequence analysis and chromosomal distribution of VvmiR164s A: Amplification of precursor genes of VvmiR164s; B: Comparison of mature body sequences of VvmiR164 family; C: VvmiR164a/b/c/d chromosome localization and stem-loop structure"

Fig. 3

Evolutionary analysis (A) and mature sequence alignment (B) of VvmiR164s"

Table 2

Information about grape VvmiR164s and target genes"

miRNAs MiRNA
成熟体长度
Length of miRNA
靶基因编号
Target_Acc.
错配率Expectation 靶区
Target region
靶基因匹配
初始位置
Target_start
靶基因匹配
初始位置
Target_end
切割方式
Interaction
mode inhibition
VvmiR164a/c/d
(UGGAGAAGCAGGGCACGUGCA)
21 VIT_217s0000g06400 (VvNAC100-1) 0.5 gene=VIT_217s0000g06400 CDS=732-1814 1375 1395 裂解 Cleavage
21 VIT_219s0014g02200 (VvNAC098) 1.5 gene=VIT_219s0014g02200 CDS=1105-2196 1826 1846 裂解 Cleavage
21 VIT_219s0027g00230 (VvNAC021) 1.8 gene=VIT_219s0027g00230 CDS=317-1219 939 959 裂解 Cleavage
21 VIT_214s0108g01070(VvNAC100-2) 1.5 gene=VIT_214s0108g01070 CDS=348-1439 988 1008 裂解 Cleavage

VvmiR164b
(UGGAGAAGCAGGGCACAUGCU)
21 VIT_217s0000g06400(VvNAC100-1) 1.0 gene=VIT_217s0000g06400 CDS=732-1814 1375 1395 裂解 Cleavage
21 VIT_219s0014g02200 (VvNAC098) 2.5 gene=VIT_219s0014g02200 CDS=1105-2196 1826 1846 裂解 Cleavage
21 VIT_219s0027g00230 (VvNAC021) 1.8 gene=VIT_219s0027g00230 CDS=317-1219 939 959 裂解 Cleavage
21 VIT_214s0108g01070(VvNAC100-2) 2.5 gene=VIT_214s0108g01070 CDS=348-1439 988 1008 裂解 Cleavage

Fig. 4

The degree of matching between VvmiR164s and target genes"

Fig. 5

Clonal identification, subcellular localization and sequence analysis of VvNAC100 A: Chromosomal localization of VvNAC100 gene; B: Cloning of VvNAC100 gene; C: Subcellular localization of VvNAC100 gene; D: Structural domain analysis of VvNAC100"

Fig. 6

NAC protein evolution analysis (A), conserved motif analysis (B) and element analysis (C)"

Fig. 7

Verification of VvmiR164s and its target gene cleavage A: Schematic diagram of cleavage sites of VvmiR164s on target gene VvNAC100; B: Schematic diagram of vector construction; C: GUS staining of tobacco cotransformed leaves"

Fig. 8

Promoter cis-acting elements of VvmiR164s and VvNAC100"

Fig. 9

Patterns of VvmiR164s and VvNAC100 during grape ovary development"

Fig. 10

The pattern of VvmiR164s and VvNAC100 in response to gibberellin during grape flower development"

[1]
WANG X C, ZHAO M Z, WU W M, KORIR N K, QIAN Y M, WANG Z W. Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis vinifera L. Genes & Genomics, 2017, 39(5): 493-507.
[2]
ACHEAMPONG A K, ZHENG C L, HALALY T, GIACOMELLI L, TAKEBAYASHI Y, JIKUMARU Y, KAMIYA Y, LICHTER A, OR E. Abnormal endogenous repression of GA signaling in a seedless table grape cultivar with high berry growth response to GA application. Frontiers in Plant Science, 2017, 8: 850.

doi: 10.3389/fpls.2017.00850 pmid: 28596775
[3]
崔梦杰, 王晨, 张文颖, 汤崴, 朱旭东, 李晓鹏, 房经贵. 无核葡萄研究进展. 植物生理学报, 2017, 53(3): 317-330.
CUI M J, WANG C, ZHANG W Y, TANG W, ZHU X D, LI X P, FANG J G. Research progress of seedless grape. Plant Physiology Journal, 2017, 53(3): 317-330. (in Chinese)

doi: 10.1104/pp.53.2.317
[4]
WANG M Q, SUN X, WANG C, CUI L W, CHEN L D, ZHANG C B, SHANGGUAN L F, FANG J G. Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Functional & Integrative Genomics, 2017, 17(5): 537-549.
[5]
PARK M Y, WU G, GONZALEZ-SULSER A, VAUCHERET H, POETHIG R S. Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10): 3691-3696.
[6]
BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN-RASMUSSEN M, DUNOYER P, YAMAMOTO Y Y, SIEBURTH L, VOINNET O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880): 1185-1190.

doi: 10.1126/science.1159151 pmid: 18483398
[7]
DA SILVA E M, E SILVA G F F, BIDOIA D B, DA SILVA AZEVEDO M, DE JESUS F A, PINO L E, PERES L E P, CARRERA E, LÓPEZ-DÍAZ I, NOGUEIRA F T S. MicroRNA159-targeted SlGAMYB transcription factors are required for fruit set in tomato. Plant Journal, 2017, 92(1): 95-109.

doi: 10.1111/tpj.2017.92.issue-1
[8]
ACHARD P, HERR A, BAULCOMBE D C, HARBERD N P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004, 131(14): 3357-3365.

doi: 10.1242/dev.01206 pmid: 15226253
[9]
WANG C, JOGAIAH S, ZHANG W Y, ABDELRAHMAN M, FANG J G. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin- induced grapevine parthenocarpy. Journal of Experimental Botany, 2018, 69(15): 3639-3650.

doi: 10.1093/jxb/ery172
[10]
ZHENG G H, WEI W, LI Y P, KAN L J, WANG F X, ZHANG X, LI F, LIU Z C, KANG C Y. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. The New Phytologist, 2019, 224(1): 480-492.

doi: 10.1111/nph.v224.1
[11]
SIEBER P, WELLMER F, GHEYSELINCK J, RIECHMANN J L, MEYEROWITZ E M. Redundancy and specialization among plant microRNAs: Role of the MIR164 family in developmental robustness. Development, 2007, 134(6): 1051-1060.

doi: 10.1242/dev.02817 pmid: 17287247
[12]
NIKOVICS K, BLEIN T, PEAUCELLE A, ISHIDA T, MORIN H, AIDA M, LAUFS P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. The Plant Cell, 2006, 18(11): 2929-2945.

doi: 10.1105/tpc.106.045617
[13]
FANG Y J, XIE K B, XIONG L Z. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 2014, 65(8): 2119-2135.

doi: 10.1093/jxb/eru072
[14]
OOKA H, SATOH K, DOI K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, JUN K W, CARNINCI P, HAYASHIZAKI Y, SUZUKI K, KOJIMA K, TAKAHARA Y, YAMAMOTO K, KIKUCHI S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10(6): 239-247.

doi: 10.1093/dnares/10.6.239
[15]
AIDA M, ISHIDA T, FUKAKI H, FUJISAWA H, TASAKA M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9(6): 841-857.

doi: 10.1105/tpc.9.6.841
[16]
LARSSON E, SITBON F, SUNDSTRÖM J, VON ARNOLD S. NAC regulation of embryo development in conifers. BMC Proceedings, 2011, 5(7): 67.
[17]
HE X J, MU R L, CAO W H, ZHANG Z G, ZHANG J S, CHEN S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 2005, 44(6): 903-916.

doi: 10.1111/tpj.2005.44.issue-6
[18]
LIU Y Z, BAIG M N R, FAN R, YE J L, CAO Y C, DENG X X. Identification and expression pattern of a novel NAM, ATAF, and CUC-like gene from Citrus sinensis osbeck. Plant Molecular Biology Reporter, 2009, 27(3): 292-297.

doi: 10.1007/s11105-008-0082-z
[19]
SHAHNEJAT-BUSHEHRI S, TARKOWSKA D, SAKURABA Y, BALAZADEH S. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants, 2016, 2(3): 1-9.
[20]
ZHANG W Y, ABDELRAHMAN M, JIU S T, GUAN L, HAN J, ZHENG T, JIA H F, SONG C N, FANG J G, WANG C. VvmiR160s/ VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biology, 2019, 19(1): 111.

doi: 10.1186/s12870-019-1719-9
[21]
吴伟民, 钱亚明, 赵密珍, 王壮伟, 袁骥. 赤霉素处理对‘魏可’葡萄果穗长度和坐果的影响. 江苏农业科学, 2006, 34(6): 257-258.
WU W M, QIAN Y M, ZHAO M Z, WANG Z W, YUAN J. Effects of gibberellin treatment on ear length and fruit setting of Weike grape. Jiangsu Agricultural Sciences, 2006, 34(6): 257-258. (in Chinese)
[22]
ABU-ZAHRA T R. Percentage of thompson seeds affected by GIBBERELLIC acid and cance GIRDLING. Pakistan Journal of Botany, 2010, 42(3): 1755-1760.
[23]
CHENG C X, XU X Z, SINGER S D, LI J, ZHANG H J, GAO M, WANG L, SONG J Y, WANG X P. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE, 2013, 8(11): e80044.

doi: 10.1371/journal.pone.0080044
[24]
LUO Y, GUO Z H, LI L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Developmental Biology, 2013, 380(2): 133-144.

doi: 10.1016/j.ydbio.2013.05.009 pmid: 23707900
[25]
MALLORY A C, VAUCHERET H. Functions of microRNAs and related small RNAs in plants. Nature Genetics, 2006, 38(6): S31-S36.

doi: 10.1038/ng1791
[26]
MA X L, ZHANG X G, ZHAO K K, LI F P, LI K, NING LL, HE J L, XIN Z Y, YIN D M. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut (Arach ihypogaea L.). Frontiers in Plant Science, 2018, 9: 349.

doi: 10.3389/fpls.2018.00349
[27]
CUI M J, WANG C, ZHANG W Y, PERVAIZ T, HAIDER M S, TANG W, FANG J G. Characterization of Vv-miR156: Vv-SPL pairs involved in the modulation of grape berry development and ripening. Molecular Genetics and Genomics, 2018, 293(6): 1333-1354.

doi: 10.1007/s00438-018-1462-1
[28]
张文颖, 韩旭, 朱旭东, 解振强, 纠松涛, 黄雨晴, 贾海锋, 房经贵, 王晨. 葡萄miR159s靶基因的鉴定及其应答GA在果实不同组织的调控作用. 中国农业科学, 2019, 52(16): 2858-2870. doi: 10.3864/j.issn.0578-1752.2019.16.011.

doi: 10.3864/j.issn.0578-1752.2019.16.011
ZHANG W Y, HAN X, ZHU X D, XIE Z Q, JIU S T, HUANG Y Q, JIA H F, FANG J G, WANG C. Identification of the target genes of VvmiR159s and their regulation in response to GA in different tissues of grape berry. Scientia Agricultura Sinica, 2019, 52(16): 2858-2870. doi: 10.3864/j.issn.0578-1752.2019.16.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.16.011
[29]
宣旭娴, 盛子璐, 解振强, 黄雨晴, 巩培杰, 张川, 郑婷, 王晨, 房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析. 中国农业科学, 2021, 54(6): 1199-1217. doi: 10.3864/j.issn.0578-1752.2021.06.011.

doi: 10.3864/j.issn.0578-1752.2021.06.011
XUAN X X, SHENG Z L, XIE Z Q, HUANG Y Q, GONG P J, ZHANG C, ZHENG T, WANG C, FANG J G. Function analysis of wi-miR172s and their target genes response to gibberellin regulation of grape berry development. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217. doi: 10.3864/j.issn.0578-1752.2021.06.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.06.011
[30]
王文然, 王晨, 解振强, 贾海锋, 汤崴, 崔梦杰, 房经贵. VvmiR397a及其靶基因VvLACs在葡萄果实发育中的作用分析. 园艺学报, 2018, 45(8): 1441-1455.

doi: 10.16420/j.issn.0513-353x.2018-0059
WANG W R, WANG C, XIE Z Q, JIA H F, TANG W, CUI M J, FANG J G. Function analysis of VvmiR397a and its target genes VvLACs in grape berry development. Acta Horticulturae Sinica, 2018, 45(8): 1441-1455. (in Chinese)
[31]
JIN J P, ZHANG H, KONG L, GAO G, LUO J C. PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 2014, 42: D1182-D1187.

doi: 10.1093/nar/gkt1016
[32]
WANG B J, WANG J, WANG C, SHEN W B, JIA H F, ZHU X D, LI X P. Study on expression modes and cleavage role of miR156b/c/d and its target gene vv-SPL9 during the whole growth stage of grapevine. Journal of Heredity, 2016, 107(7): 626-634.

pmid: 27660497
[33]
HENDELMAN A, STAV R, ZEMACH H, ARAZI T. The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. Journal of Experimental Botany, 2013, 64(18): 5497-5507.

doi: 10.1093/jxb/ert324 pmid: 24085581
[34]
GUO H S, XIE Q, FEI J F, CHUA N H. microRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell, 2005, 17(5): 1376-1386.

doi: 10.1105/tpc.105.030841
[1] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[2] SHENG HongJie, LU SuWen, ZHENG XuanAng, JIA HaiFeng, FANG JingGui. Identification and Comparative Analysis of Metabolites in Grape Seed Based on Widely Targeted Metabolomics [J]. Scientia Agricultura Sinica, 2023, 56(7): 1359-1376.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[8] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[9] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[10] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[11] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[15] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!