Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3894-3904.doi: 10.3864/j.issn.0578-1752.2023.19.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Identification of Molecular Markers Associated with Goose Egg Quality Through Genome-Wide Association Analysis

GAO GuangLiang1,2(), ZHANG KeShan1,2(), ZHAO XianZhi1,2, XU GuoYang1, XIE YouHui1,2, ZHOU Li3, ZHANG ChangLian1,2, WANG QiGui1,2()   

  1. 1 Chongqing Academy of Animal Science, Chongqing 402460
    2 Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing 402460
    3 Chongqing Qijiang Animal Disease Control Center, Chongqing 401420
  • Received:2022-05-10 Accepted:2023-08-08 Online:2023-10-01 Published:2023-10-08
  • Contact: WANG QiGui

Abstract:

【Objective】 The objective of this study was to screen molecular markers and candidate genes related to goose egg quality traits, to provide a theoretical support for the analysis of the genetic mechanism of egg quality traits and marker-assisted selection. 【Method】 In this study, a batch of healthy Sichuan White Geese (209 individuals) was selected as the research subjects. Five eggs from each goose during the peak egg production period were collected, and then six egg quality traits were measured, including egg weight, egg shape index, eggshell strength, eggshell thickness, eggshell weight, and egg yolk weight. Based on the whole-genome resequencing data (2.896 Tb, 12.44×/individual) of 209 Sichuan White Geese (female geese), a genome-wide association analysis was conducted to identify SNP loci and important candidate genes associated with egg quality traits. The genotype frequencies of the SNP loci were determined using the nucleic acid flight time mass spectrometry method. 【Result】After filtering, a total of 9 279 339 SNPs and 209 individuals were included for further analysis. The GWAS analysis identified 48 SNP loci significantly or suggestively associated with six egg quality traits (thresholds: 5.43×10-9 and 1.09×10-7). These loci were annotated to 27 candidate genes related to egg quality traits, including Pregnancy-associated plasma protein A (PAPPA), Serine/threonine-protein phosphatase 4 regulatory subunit 2 (PP4R2), Ethanolamine phosphotransferase 1 (EPT1), and Glutamate receptor ionotropic, kainate 2 (GRIK2). Among them, the candidate gene PAPPA was involved in protein metabolism and promotes the generation of insulin-like growth factor. Five SNPs within the 11 bp range of PP4R2 were significantly associated with eggshell thickness. Additionally, six SNPs on the GRIK2 gene were significantly associated with yolk weight. GRIK2 and PP4R2 were respectively associated with blood calcium homeostasis and cholesterol metabolism in organisms. Functional enrichment analysis revealed that the candidate genes were mainly annotated to “response to growth factor” (GO:0070848), “intracellular chemical homeostasis” (GO:0055082), “response to hormone” (GO:0009725), and “regulation of monoatomic ion transport” (GO:43269). 【Conclusion】 The GWAS analysis showed that the PAPPA, GRIK2, ASCC3, and EPT1 are potential functional genes associated with various egg quality traits, such as egg weight, egg yolk weight, and shell strength, providing theoretical references for molecular genetic marker-assisted selection of goose egg quality traits.

Key words: genome-wide association analysis, molecular marker-assisted selection, goose, egg quality traits

Table 1

The primer sequences utilized to validate the selected SNP"

位置
SNP position
上游扩增引物
Upstream amplification primer
下游扩增引物
Downstream amplification primer
单碱基延伸探针
Single-base extension probe
chr29:3653854 TGGTTCCACAGTTGAGAATG GTACCGAACTCAAGTAGAGC gggaCACAGTTGAGAATGTGAACA
chr15:24022773 GGGAATTTCCCAAACAGGGC ACCAGCACCTTGACAACAGC ccaCTCACCCCAGGTGCTTGGTCA
chr12:32856792 AGGCAATAACATGTGGACGG GCCAATTTCTAACCAGAAGG gGCTGAAAAGTGTTGTCTGTAAG
chr15:20262147 TGGCAGCCGCGTATTTACC TGAAGGAGGGCGGCTTTCAT cccctCGTATTTACCGATCGCAG
chr1:444834 CCATTCTACGATCTAGGCTG CCCTCAGAATGTCCTATACC TGATGATTCTAGATTCACAAGG
chr18:6281804 AGTGCTTAGCAAGGCTCAAC CGATGACAGGATTTCCAACC aAAGGCTCAACCCCCTGGC
chr1:1466542 TTTCCACATCTCCAAGTGCC CTCAAGTGCCACGTCTTAAC ggtgTTTCCTCTCCACCATCCCAGTAT
chr5:20299054 CAGCAGCATTTGTTCTCACC GCATGACTTCTGCAGTTACG ACAACTACAGCATGCTGAT
chr1:1467878 TGGAAAAGGCCCTTTCCAAG GCTTTTCCCCCCTCTTTTAG GCCCTTTCCAAGACGGGTG
chr1:11330934 CCCGTGTTGTTTACGAGTTC TTACAAATAGGCTTCGCATC CAGTATACATCATATTAAGAAGTCAT
chr18:18353514 ACAGTGAGAGGTGAATGGAG TAGGCAACAGCTCCAACTAC gAACTGTCTGAAAACGTAAG
chr1:36829464 GGAATTCTGTGGTACCTGTC AGGTATCTCTATGCCAAGTC gAGGATTGTAGTATACTGTTAACATT
chr34:3206857 GCACACTCCCACGGTATTC TGGCTCCTGTCTCTCCTTG CTCCCACGGTATTCACGCTC

Table 2

Statistical analysis of the egg quality traits in Sichuan white goose"

表型
Traits
数量
Number
平均值
Mean
标准差
STDV
最大值
Maximum
最小值
Minimum
变异系数
CV(%)
蛋重 Egg weight (g) 207 132.20 18.90 166.23 87.01 0.14
蛋形指数 Egg shape index 207 1.45 0.15 1.60 1.24 0.10
蛋壳强度 Eggshell strength ( kg·cm-2) 208 67.20 10.19 78.45 24.57 0.15
蛋壳重Eggshell weight (g) 208 22.87 3.17 32.88 14.58 0.14
蛋壳厚度Eggshell width (cm) 208 0.42 0.06 0.56 0.26 0.14
蛋黄重量 Egg yolk weight (g) 208 41.20 6.73 62.75 27.60 0.16

Table 3

The candidate SNPs that were significantly associated with egg quality traits"

表型 Traits SNP 染色体 Chromosome 位置 Position 等位基因 Genotype P 值 P value 基因 Gene symbol
蛋重 Egg weight chr29:3653854 29 3653854 G/A 6.98×10-09** PAPPA
蛋重 Egg weight chr15:24022773 15 24022773 G/T 3.04×10-08* ADA2C
蛋重 Egg weight chr29:3648283 29 3648283 T/C 3.98×10-08* SGCE
蛋重 Egg weight chr12:32856792 12 32856792 G/C 4.00×10-08* TXNL1
蛋形指数 Egg shape index chr4:20222331 4 20222331 A/T 5.76×10-09** BCOR
蛋形指数 Egg shape index chr4:20222337 4 20222337 G/T 5.76×10-09** BCOR
蛋形指数 Egg shape index chr4:20186649 4 20186649 C/G 8.11×10-09** BCOR
蛋形指数 Egg shape index chr15:14494772 15 14494772 A/G 2.39×10-08* M1IP1
蛋形指数 Egg shape index chr9:32698552 9 32698552 T/A 3.32×10-08* GLRX3
蛋形指数 Egg shape index chr15:14497223 15 14497223 T/C 4.48×10-08* DHX15
蛋形指数 Egg shape index chr15:20262147 15 20262147 T/G 4.60×10-08* TBC1D14
蛋形指数 Egg shape index chr15:14786356 15 14786356 C/A 5.15×10-08* DHX15
蛋形指数 Egg shape index chr15:14494538 15 14494538 A/G 6.81×10-08* DHX15
蛋形指数 Egg shape index chr9:32698542 9 32698542 C/G 9.67×10-08* DHX15
蛋壳强度 Eggshell strength chr1:444834 1 444834 G/A 5.70×10-09** DTNB
蛋壳强度 Eggshell strength chr1:1466542 1 1466542 A/T 2.27×10-08* EPT1
蛋壳强度 Eggshell strength chr1:1467878 1 1467878 T/C 5.45×10-08* EPT1
蛋壳强度 Eggshell strength chr5:429465 5 429465 G/A 6.09×10-08* NFAC1
蛋壳强度 Eggshell strength chr5:429561 5 429561 G/A 6.24×10-08* NFAC1
蛋壳强度 Eggshell strength chr5:429586 5 429586 G/A 1.89×10-08* NFAC1
蛋壳强度 Eggshell strength chr5:20299054 5 20299054 T/C 3.04×10-08* DC1I1
蛋壳强度 Eggshell strength chr5:20324779 5 20324779 T/A 2.93×10-08* DC1I1
蛋壳强度 Eggshell strength chr5:20325470 5 20325470 C/T 3.72×10-08* DC1I1
蛋壳强度 Eggshell strength chr18:6281804 18 6281804 A/G 1.53×10-08* BSN
蛋壳强度 Eggshell strength chr19:1292936 19 1292936 T/C 1.38×10-08* NOX5
蛋壳强度 Eggshell strength chr37:3102113 37 3102113 A/G 7.03×10-08* KANL1
蛋壳重Eggshell weight chr18:8947937 18 8947937 T/C 1.35×10-09* K1257
蛋壳重Eggshell weight chr6:21095706 6 21095706 C/T 1.81×10-08* CP4V2
蛋壳重Eggshell weight chr10:33758926 10 33758926 A/G 2.05×10-08* KI16B
蛋壳重Eggshell weight chr10:33758927 10 33758927 A/G 2.05×10-08* KI16B
蛋壳重Eggshell weight chr1:11330934 1 11330934 A/G 3.29×10-08* TRIB2
蛋壳重Eggshell weight chr4:36821594 4 36821594 A/G 8.42×10-08* GBRB3
蛋壳重Eggshell weight chr33:1028855 33 1028855 T/C 9.79×10-08* K1522
蛋壳厚度Eggshell width chr18:18353514 18 18353514 T/C 3.54×10-09* PP4R2
蛋壳厚度Eggshell width chr18:18353504 18 18353504 C/T 4.94×10-08* PP4R2
蛋壳厚度Eggshell width chr18:18353509 18 18353509 G/A 4.94×10-08* PP4R2
蛋壳厚度Eggshell width chr18:18353511 18 18353511 A/G 4.94×10-08* PP4R2
蛋壳厚度Eggshell width chr18:18353515 18 18353515 C/G 4.94×10-08* PP4R2
蛋黄重量 Egg yolk weight chr1:36803702 1 36803702 C/T 4.53×10-08* ASCC3
蛋黄重量 Egg yolk weight chr1:36829464 1 36829464 A/G 3.46×10-08* ASCC3
蛋黄重量 Egg yolk weight chr1:37042051 1 37042051 G/A 9.08×10-08* GRIK2
蛋黄重量 Egg yolk weight chr1:37047532 1 37047532 C/T 7.13×10-08* GRIK2
蛋黄重量 Egg yolk weight chr1:37246474 1 37246474 G/C 3.68×10-08* GRIK2
蛋黄重量 Egg yolk weight chr1:37262254 1 37262254 C/T 5.03×10-08* GRIK2
蛋黄重量 Egg yolk weight chr1:37282181 1 37282181 G/A 2.87×10-09* GRIK2
蛋黄重量 Egg yolk weight chr1:37295041 1 37295041 A/G 9.54×10-08* GRIK2
蛋黄重量 Egg yolk weight chr11:26886902 11 26886902 C/T 6.17×10-08* ELOC
蛋黄重量 Egg yolk weight chr34:3206857 34 3206857 A/G 9.35×10-08* SOX13

Fig. 1

Manhattan and Q-Q plots for genome-wide association study on egg quality traits in goose"

Fig. 2

The Gene Ontology (GO) biological processes for analysis of annotated candidate genes in the region of 500 k upstream and downstream of the selected SNPs"

Table 4

Effect of 48 SNPs and genotypes on six egg quality traits in geese"

性状 Traits 最小二乘均值±标准差 Least-squares means ± Standard deviation (Genotype) PP value
蛋重 Egg weight (g)
chr29:3653854 133.50±1.45a(AA) 119.76±2.87b(AG) 121.92±6.79b(GG) <.0001
chr15:24022773 133.21±1.44a(GG) 124.91±2.38b(GT) 133.35±1.07a(TT) <.0001
chr12:32856792 133.53±1.05a(CC) 118.54±3.11b(CG) 74.94±10.08c(GG) <.0001
蛋形指数 Egg shape index
chr15:20262147 1.45±0.0047a(GG) 1.42±0.0094b(GT) 1.37±0.0347b(TT) 0.0013
蛋壳强度 Eggshell strength (g/cm3)
chr1:444834 68.85±0.74a(AA) 62.74±1.23b(GA) 53.69±4.53b(GG) <.0001
chr18:6281804 68.41±0.65a(GG) 56.53±1.76b(GA) <.0001
chr1:1466542 53.13±3.69c(AA) 63.41±1.24b(AT) 68.83±0.74a(TT) <.0001
chr5:20299054 68.60±0.71a(CC) 60.79±1.40b(CT) 64.00±60.43ab(TT) <.0001
chr1:1467878 68.75±0.70a(CC) 61.60±1.42b(CT) 54.85±3.66c(TT) <.0001
蛋壳重量Eggshell weight (g)
chr1:11330934 24.45±0.55a(AA) 23.44±2.07ab(GA) 22.67±0.22b(GG) 0.0123
蛋壳厚度Eggshell width (mm)
chr18:18353514 0.43±0.0039a(CC) 0.38±0.01b(CT) 0.38±0.0267b(TT) 0.0001
蛋黄重量 Egg yolk weight (g)
chr1:36829464 44.92±1.79a(AA) 43.70±0.79a(GA) 39.48±0.54b(GG) <.0001
chr34:3206857 48.58±3.61a(AA) 44.11±1.61b(GA) 40.27±0.49c(GG) 0.0077
[1]
侯水生, 刘灵芝. 2022年水禽产业现状、未来发展趋势与建议. 中国畜牧杂志, 2023, 59(3): 274-280.
HOU S S, LIU L Z. Present situation, future development trend and suggestions of waterfowl industry in 2022. Chinese Journal of Animal Science, 2023, 59(3): 274-280. (in Chinese)
[2]
王一冰, 陈芳, 苟钟勇, 李龙, 林厦菁, 张盛, 蒋守群. 快大型黄羽肉种鸡VD3需要量研究. 中国农业科学, 2021, 54(16): 3549-3560.

doi: 10.3864/j.issn.0578-1752.2021.16.016
WANG Y B, CHEN F, GOU Z Y, LI L, LIN X J, ZHANG S, JIANG S Q. Requirement of vitamin D3 on fast-growing yellow-feathered breeder hens. Scientia Agricultura Sinica, 2021, 54(16): 3549-3560. (in Chinese)
[3]
KOWALSKA E, KUCHARSKA-GACA J, KUŹNIACKA J, LEWKO L, GORNOWICZ E, BIESEK J, ADAMSKI M. Egg quality depending on the diet with different sources of protein and age of the hens. Scientific Reports, 2021, 11: 2638.

doi: 10.1038/s41598-021-82313-1 pmid: 33514842
[4]
NASRI H, VAN DEN BRAND H, NAJJAR T, BOUZOUAIA M. Egg storage and breeder age impact on egg quality and embryo development. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 257-268.

doi: 10.1111/jpn.13240 pmid: 31691404
[5]
SUN C J, LIU J N, YANG N, XU G Y. Egg quality and egg albumen property of domestic chicken, duck, goose, Turkey, quail, and pigeon. Poultry Science, 2019, 98(10): 4516-4521.

doi: 10.3382/ps/pez259 pmid: 31287885
[6]
DA SILVA TEIXEIRA M, TRIGINELLI M V, DE ATAÍDE COSTA T, LARA L J C, SOTO-BLANCO B. Effects of caffeine on egg quality and performance of laying hens. Frontiers in Veterinary Science, 2020, 7: 545359.

doi: 10.3389/fvets.2020.545359
[7]
WANG J, YUE H Y, WU S G, ZHANG H J, QI G H. Nutritional modulation of health, egg quality and environmental pollution of the layers. Animal Nutrition, 2017, 3(2): 91-96.

doi: 10.1016/j.aninu.2017.03.001 pmid: 29767091
[8]
ZHU F, CUI Q Q, HOU Z C. SNP discovery and genotyping using Genotyping-by-Sequencing in Pekin ducks. Scientific Reports, 2016, 6: 36223.

doi: 10.1038/srep36223 pmid: 27845353
[9]
ZHU F, YIN Z T, WANG Z, SMITH J, ZHANG F, MARTIN F, OGEH D, HINCKE M, LIN F B, BURT D W, ZHOU Z K, HOU S S, ZHAO Q S, LI X Q, DING S R, LI G S, YANG F X, HAO J P, ZHANG Z D, LU L Z, YANG N, HOU Z C. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nature Communications, 2021, 12: 5932.

doi: 10.1038/s41467-021-26272-1 pmid: 34635656
[10]
ZHANG H, SHEN L Y, XU Z C, KRAMER L M, YU J Q, ZHANG X Y, NA W, YANG L L, CAO Z P, LUAN P, REECY J M, LI H. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poultry Science, 2020, 99(5): 2349-2361.

doi: S0032-5791(20)30086-9 pmid: 32359570
[11]
LIU Z, SUN C J, YAN Y Y, LI G Q, SHI F Y, WU G Q, LIU A Q, YANG N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8: 10832.

doi: 10.1038/s41598-018-29162-7 pmid: 30018363
[12]
GAO G L, GAO D F, ZHAO X Z, XU S S, ZHANG K S, WU R, YIN C H, LI J, XIE Y H, HU S L, WANG Q G. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Frontiers in Genetics, 2021, 12: 602583.

doi: 10.3389/fgene.2021.602583
[13]
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26(5): 589-595.

doi: 10.1093/bioinformatics/btp698 pmid: 20080505
[14]
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.

doi: 10.1101/gr.107524.110 pmid: 20644199
[15]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.

doi: 10.1086/519795
[16]
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44(7): 821-824.

doi: 10.1038/ng.2310 pmid: 22706312
[17]
KARSSEN L C, VAN DUIJN C M, AULCHENKO Y S. The GenABEL project for statistical genomics. F1000Research, 2016, 5: 914.

doi: 10.12688/f1000research.8733.1 pmid: 27347381
[18]
QUINLAN A R. BEDTools: The swiss-army tool for genome feature analysis. Current Protocols in Bioinformatics, 2014, 47: 11.12.1-11.1234.
[19]
WANG K, LI M Y, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010, 38(16): e164.

doi: 10.1093/nar/gkq603
[20]
ZHOU Y Y, ZHOU B, PACHE L, CHANG M, KHODABAKHSHI A H, TANASEICHUK O, BENNER C, CHANDA S K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 2019, 10: 1523.

doi: 10.1038/s41467-019-09234-6 pmid: 30944313
[21]
KETTA M, TŮMOVÁ E. Eggshell structure, measurements, and quality-affecting factors in laying hens: A review. Czech Journal of Animal Science, 2016, 61(7): 299-309.

doi: 10.17221/46/2015-CJAS
[22]
HISASAGA C, GRIFFIN S E, TARRANT K J. Survey of egg quality in commercially available table eggs. Poultry Science, 2020, 99(12): 7202-7206.

doi: 10.1016/j.psj.2020.09.049 pmid: 33248637
[23]
PICARD DRUET D, VARENNE A, HERRY F, HÉRAULT F, ALLAIS S, BURLOT T, LE ROY P. Reliability of genomic evaluation for egg quality traits in layers. BMC Genetics, 2020, 21(1): 17.

doi: 10.1186/s12863-020-0820-2 pmid: 32046634
[24]
LI Y, GAO G L, LIN Y, HU S L, LUO Y, WANG G S, JIN L, WANG Q G, WANG J W, TANG Q Z, LI M Z. Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome- level goose genome. GigaScience, 2020, 9(10): 114.
[25]
LIKER A, SZÉKELY T. Mortality costs of sexual selection and parental care in natural populations of birds. International Journal of Organic Evolution, 2005, 59(4): 890-897.
[26]
WILLIAMS T D. Physiology, activity and costs of parental care in birds. The Journal of Experimental Biology, 2018, 221(Pt 17): jeb169433.

doi: 10.1242/jeb.169433
[27]
GYRUP C, OXVIG C. Quantitative analysis of insulin-like growth factor-modulated proteolysis of insulin-like growth factor binding protein-4 and -5 by pregnancy-associated plasma protein-A. Biochemistry, 2007, 46(7): 1972-1980.

pmid: 17249697
[28]
KORDUS R J, HOSSAIN A, CORSO M C, CHAKRABORTY H, WHITMAN-ELIA G F, LAVOIE H A. Cumulus cell pappalysin-1, luteinizing hormone/choriogonadotropin receptor, amphiregulin and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta- isomerase 1 mRNA levels associate with oocyte developmental competence and embryo outcomes. Journal of Assisted Reproduction and Genetics, 2019, 36(7): 1457-1469.

doi: 10.1007/s10815-019-01489-8
[29]
MAROULI E, GRAFF M, MEDINA-GOMEZ C, LO K S, WOOD A R, KJAER T R, FINE R S, LU Y C, SCHURMANN C, HIGHLAND H M, RÜEGER S, et al. Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542(7640): 186-190.

doi: 10.1038/nature21039
[30]
LEE J, ADELMANT G, MARTO J A, LEE D H. Dephosphorylation of DBC1 by protein phosphatase 4 is important for p53-mediated cellular functions. Molecules and Cells, 2015, 38(8): 697-704.

doi: 10.14348/molcells.2015.0066 pmid: 26194823
[31]
PARK J, LEE D H. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: A friend and a foe. BMB Reports, 2020, 53(4): 181-190.

pmid: 32192570
[32]
KLEMZ S, WALLACH T, KORGE S, ROSING M, KLEMZ R, MAIER B, FIORENZA N C, KAYMAK I, FRITZSCHE A K, HERZOG E D, STANEWSKY R, KRAMER A. Protein phosphatase 4 controls circadian clock dynamics by modulating CLOCK/BMAL1 activity. Genes & Development, 2021, 35(15/16): 1161-1174.

doi: 10.1101/gad.348622.121
[33]
POHOREC V, KRIŽANČIĆ BOMBEK L, SKELIN KLEMEN M, DOLENŠEK J, STOŽER A. Glucose-stimulated calcium dynamics in beta cells from male C57BL/6J, C57BL/6N, and NMRI mice: A comparison of activation, activity, and deactivation properties in tissue slices. Frontiers in Endocrinology, 2022, 13: 867663.

doi: 10.3389/fendo.2022.867663
[34]
AHMED M Y, AL-KHAYAT A, AL-MURSHEDI F, AL-FUTAISI A, CHIOZA B A, PEDRO FERNANDEZ-MURRAY J, SELF J E, SALTER C G, HARLALKA G V, RAWLINS L E, et al. A mutation ofEPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis. Brain, 2017: aww318.
[35]
ZEMUNIK T, BOBAN M, LAUC G, JANKOVIĆ S, ROTIM K, VATAVUK Z, BENCIĆ G, DOGAS Z, BORASKA V, TORLAK V, SUSAC J, ZOBIĆ I, RUDAN D A, PULANIĆ D, MODUN D, MUDNIĆ I, GUNJACA G, BUDIMIR D, HAYWARD C, VITART V, WRIGHT A F, CAMPBELL H, RUDAN I. Genome-wide association study of biochemical traits in Korcula Island, Croatia. Croatian Medical Journal, 2009, 50(1): 23-33.

doi: 10.3325/cmj.2009.50.23 pmid: 19260141
[36]
LIAUD N, HORLBECK M A, GILBERT L A, GJONI K, WEISSMAN J S, CATE J H D. Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genetics, 2019, 15(3): e1008057.

doi: 10.1371/journal.pgen.1008057
[37]
CHEN Q Y, DUAN J D, WU H Z, LI J B, JIANG Y L, TANG H, LI X Y, KANG L. Expression dynamics of gonadotropin-releasing hormone-I and its mutual regulation with luteinizing hormone in chicken ovary and follicles. General and Comparative Endocrinology, 2019, 270: 96-102.

doi: S0016-6480(17)30650-0 pmid: 30339806
[38]
GHANEM K, JOHNSON A L. Follicle dynamics and granulosa cell differentiation in the Turkey hen ovary. Poultry Science, 2018, 97(10): 3755-3761.

doi: 10.3382/ps/pey224 pmid: 29860415
[39]
TANIMOTO R, SEKII K, MOROHAKU K, LI J Z, PÉPIN D, OBATA Y. Blocking estrogen-induced AMH expression is crucial for normal follicle formation. Development, 2021, 148(6): dev197459.

doi: 10.1242/dev.197459
[40]
DE MATOS R. Calcium metabolism in birds. Veterinary Clinics of North America: Exotic Animal Practice, 2008, 11(1): 59-82.

doi: 10.1016/j.cvex.2007.09.005 pmid: 18165138
[41]
DESCALZO E, CAMARERO P R, SÁNCHEZ-BARBUDO I S, MARTINEZ-HARO M, ORTIZ-SANTALIESTRA M E, MORENO- OPO R, MATEO R. Integrating active and passive monitoring to assess sublethal effects and mortality from lead poisoning in birds of prey. The Science of the Total Environment, 2021, 750: 142260.

doi: 10.1016/j.scitotenv.2020.142260
[1] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[2] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[3] WANG JiangHao, WANG LiWei, ZHANG DongMin, GUO Rui, ZHANG QuanGuo, LI XingHua, WEI JianFeng, SONG Wei, WANG BaoQiang, LI RongGai. Molecular Marker Assisted Identification and Application of Maize Germplasms for Maize Rough Dwarf Disease Resistance [J]. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847.
[4] SHAO Zhen, DIAO YouXiang. Investigation and Analysis of Nucleic Acid Detection Results of Viral Viruses in Large-Scale Goose Farms [J]. Scientia Agricultura Sinica, 2023, 56(10): 2021-2034.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[7] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[8] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[9] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[10] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[11] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[12] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[13] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[14] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[15] YU JinCheng,LI Zhe,YU Ning,LIU Kuang,ZHAO Hui. Genetic Analysis of Sex-Linked Plumage Color Traits of Goose [J]. Scientia Agricultura Sinica, 2019, 52(5): 949-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!