Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2367-2379.doi: 10.3864/j.issn.0578-1752.2023.12.011

• HORTICULTURE • Previous Articles     Next Articles

Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions

WANG ZhaoHui(), LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong(), WANG LiRong()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
  • Received:2022-08-25 Accepted:2022-12-28 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】 The molecular markers and bioinformatics were used to identify the genotypes and combinations of the F-M locus, transposon insertion in YUC11 promoter region, and 9 bp insert in NAC72 coding region by 189 peach germplasms, in order to provide the theoretical foundation for the mechanism of peach flesh formation and the selection of breeding parents.【Method】PCR amplification, KASP, and HRM were used to identify genotypes. Results of loci associated with the formation of flesh trait were further validated using bioinformatics by resequencing data in 189 peach germplasms.【Result】Two genes encoding endopolygalacturonase in F-M locus, designated PGM and PGF, are associated with peach texture. Through primer amplification, 159 (84%) PGM and 99 (52%) PGF were detected in 189 peach germplasms. Four haplotypes (H0, H1, H2, and H3) were found in F-M locus, while H0 and H1 were the major genotypes. The haplotype combination of non-melting flesh, melting flesh, free-stone melting flesh were H3H3 and H2H3, H0H0 and H0H1, H1H1 and H0H1, respectively. In addition, it was found that 18 germplasms contain homozygous transposon insertion. HRM results demonstrated that 45 germplasms were homozygous insertion (early ripening), 71 germplasms were heterozygous insertion (middle ripening), and 73 germplasms were no insertion (late ripening). But six germplasm genotypes were inconsistent with the phenotypes. The most frequent genotypic combinations at the three loci of non-melting flesh, melting flesh, and free-stone melting flesh were mmffHdHdI, MMffHdHdI, MMFFHdHdL, respectively.【Conclusion】The existence of four haplotypes at the F-M locus further was confirmed, 18 germplasms containing stony hard genotype were identified, a molecular marker for the identification of maturity date was developed, and genotype combinations of different germplasms at flesh-related loci were identified.

Key words: peach, flesh texture, genotype identification, genotype combinations

Table 1

Primers used for PCR"

名称
Code
引物序列
Primer sequence
退火温度
Annealing temperature (℃)
片段长度
Size (bp)
PGM-F ACTAACCCAACCAATTACTCAAACC 56 3066
PGM-R TGTCCTTAGTACTGGAGGGCAAAC
PGF-F AGGAGAAATTGGAGACGCCG 58 3353
PGF-R CGTCTTCCGGACATAATCTTACA
YUC-F TAAAGCCGCCCAAAAATAAA 58 600
YUC-R1 TGGGAAGGAAGAAAATAGTCACA
YUC-R2 ATTTTCAACTTTCCCGAGCA 58 448/3015
PGH0-F TACGACTACAAGCCAAGTCGG 56 591
PGH0-R ACTCCAGTTGCGCTGAAAGA
PGH2-F CATATTGAAGAACCAGCCA 56 1364
PGH2-R TGGTATATTGCATCGACGTG
PGH3-F AAAGATAGGAAGGGGGAAGG 56 524
PGH3-R GTTTGCACTGGGGGTTTTAGA

Fig. 1

Molecular markers of PGM and PGF detecting"

Fig. 2

PGM and PGF detected results of 189 peach germplasms M: Maker 5000; N: Blank control. A: Agarose assay for PGM F/R amplification in 189 germplasms; B: Agarose assay for PGF F/R amplification in 189 germplasms"

Fig. 3

Four major haplotypes at the F-M locus S: Short, and indicates the gene is incomplete compared to the reference genome. The dotted line is the location of the larger fragment SV"

Fig. 4

Haplotypes detection results at F-M locus A: Maker 2000; Lane 1, 2, 3 are H0 haplotype; Lane 4, 5, and 6 are H2 haplotype; Lane 7, 8, and 9 are H3 haplotype. From left to right represents Meijin, Xiweijin, 08-9-107, Zhenghuang 2, NJC83, Myojo, 08-9-106, Zhongyou 15, Zhongyou 16; B: Frequency of four haplotypes at F-M locus in 189 accessions"

Fig. 5

Gene structure and molecular markers of YUC11 A: YUC11 model and mutation sites; B: The resequencing data related to the stony hard SNP variant site; C: Resequencing data of YUC11 promoter region transposon insertion, the red box indicates clipped reads at the insertion site"

Fig. 6

The results of stony hard SNP variant site by KASP A: KASP results of 189 germplasms (part), green, red, and blue triangles represent genotype GG, GT, TT, respectively; B: Frequency distribution map of three genotypes in 189 germplasms"

Fig. 7

The detection results of YUC11 transposon insertion A: Amplification of 600 bp indicates transposon insertion; B: Amplification of 3015 bp band indicates transposon insertion; The lanes from 1 to 19: 08-9-106, Meijin, Xiweijin, Xiacui, Yumeyeong, Zhongyou 20, Zhongyou 15, Jingyu, Qin Wang, Huayu, Blank, Bairuyu, Blank, Zaoyu, Zhongyou 16, Daguoheitao, Fengbai, Zaohongburuan, negative control"

Fig. 8

The results of 189 germplasms by HRM A: HRM results of 189 germplasms (part), green, red, and blue triangles represent genotypes 0 bp/0 bp, 9 bp/9 bp, 9 bp/0 bp; B: The relationship between maturity date genotype and phenotype"

Table 2

Relationship between loci combination and phenotype"

表型 Phenotype 基因型出现个数 Number of genotype occurrences
溶质粘核 溶质离核 不溶质粘核 1 2 3 4
MMffHdHdI MMFFHdHdL MMFFHdHdL mmffHdHdL 12 2 22 11
MMFFHdHdE MmffHdhdI MMFfHdhdI mmffHdHdE 9 1 8 5
MMFfHdHdI MmffhdhdE MMFfHdHI mmffHdHdI 9 1 7 5
MMffHdHdL MMFFHdhdE MMFfHdHdL MmffHdHdE 8 1 5 3
MMFfHdHdE MMFFHdhdL MmFfHdHdL MMffHdHdI 4 1 5 3
MmFfHdhdE MMFfHdhdI MMFFhdhdI MMffHdHdL 4 1 4 2
MmffHdHdL MmFfHdHdI MMffHdHdL mmffhdhdE 4 1 3 2
MmffHdHdL MmFfHdHdL MmFfHdhdE MmffHdHdI 4 1 2 1
MMffhdhdI MMffHdHdE MmFfHdhdI MmffHdHdL 3 1 2 1
MmffHdHdI MMffHdhdI MMFFHdHdI MmffHdhdI 3 1 2 1
MmFfHdHdE MMffHdhdI MMFfhdhdE MMffHdhdI 3 1 1 1
MMFFHdHdI MMffhdhdL MmFfHdHdE MmFfHdHdI 2 1 1 1
MMffHdhdL MMFFhdhdL MMFfHdHdI 2 1 1
MMffhdhdE MMFFhdhdE 2 1
MmffHdHdE MmFfhdhdE 2 1
mmffHdHdE MMFfHdhdE 2 1
[1]
王力荣. 中国桃品种改良历史回顾与展望. 果树学报, 2021, 38(12): 2178-2195.
WANG L R. History and prospect of peach breeding in China. Journal of Fruit Science, 2021, 38(12): 2178-2195. (in Chinese)
[2]
LI Y, CAO K, LI N, ZHU G R, FANG W C, CHEN C W, WANG X W, GUO J, WANG Q, DING T Y, WANG J, GUAN L, WANG J X, LIU K Z, GUO W W, ARÚS P, HUANG S W, FEI Z, WANG L R. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Research, 2021, 31(4): 592-606.

doi: 10.1101/gr.261032.120 pmid: 33687945
[3]
孟君仁. 桃慢溶质性状调控机制初步研究[D]. 北京: 中国农业科学院, 2021.
MENG J R. Preliminary study on regulation mechanism of slow melting flesh characteristics in peach[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[4]
牛良, 曾文芳, 潘磊, 孟君仁, 鲁振华, 崔国朝, 王志强. 硬质桃研究现状及展望. 果树学报, 2020, 37(8): 1227-1235.
NIU L, ZENG W F, PAN L, MENG J R, LU Z H, CUI G C, WANG Z Q. Research status and perspective for stony-hard peach. Journal of Fruit Science, 2020, 37(8): 1227-1235. (in Chinese)
[5]
曾文芳, 王志强, 牛良, 潘磊, 丁义峰, 鲁振华, 崔国朝. 桃果实肉质研究进展. 果树学报, 2017, 34(11): 1475-1482.
ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11): 1475-1482. (in Chinese)
[6]
BAILEY J S, FRENCH A P. The inheritance of certain fruit and foliage characteristics in the peach[R]. Massachusetts Agricultur- al Experimental Station Bulletin,452,University of Massachu- setts, 1949.
[7]
LESTER D R, SHERMAN W B, ATWELL B J. Endopolygalacturonase and the melting flesh (M) locus in peach. Journal of the American Society for Horticultural Science, 1996, 121(2): 231-235.

doi: 10.21273/JASHS.121.2.231
[8]
DIRLEWANGER E, COSSON P, BOUDEHRI K, RENAUD C, CAPDEVILLE G, TAUZIN Y, LAIGRET F, MOING A. Development of a second-generation genetic linkage map for peach[Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006, 3(1): 1-13.
[9]
GU C, WANG L, WANG W, ZHOU H, MA B Q, ZHENG H Y, FANG T, OGUTU C, VIMOLMANGKANG S, HAN Y P. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. Journal of Experimental Botany, 2016, 67(6): 1993-2005.

doi: 10.1093/jxb/erw021 pmid: 26850878
[10]
NAKANO R, KAWAI T, FUKAMATSU Y, AKITA K, WATANABE S, ASANO T, TAKATA D, SATO M, FUKUDA F, USHIJIMA K. Postharvest properties of ultra-late maturing peach cultivars and their attributions to melting flesh (M) locus: Re-evaluation of M locus in association with flesh texture. Frontiers in Plant Science, 2020, 11: 554158.

doi: 10.3389/fpls.2020.554158
[11]
YOSHIDA M. Genetical studies on the fruit quality of peach varieties. 3. Texture and keeping quality[R]. Bulletin of the Fruit Tree Research Station. Series A. Hiratsuka, 1976.
[12]
HAJI T, YAEGAKI H, YAMAGUCHI M. Inheritance and expression of fruit texture melting, non-melting and stony hard in peach. Scientia Horticulturae, 2005, 105(2): 241-248.

doi: 10.1016/j.scienta.2005.01.017
[13]
PAN L, ZENG W F, NIU L, LU Z H, LIU H, CUI G C, ZHU Y Q, CHU J F, LI W P, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66(22): 7031-7044.

doi: 10.1093/jxb/erv400
[14]
曾文芳, 丁义峰, 潘磊, 王小贝, 牛良, 鲁振华, 崔国朝, 王志强. 桃硬质性状可能源于PpYUC11基因启动子区域CACTA型转座子的插入. 果树学报, 2017, 34(10): 1239-1248.
ZENG W F, DING Y F, PAN L, WANG X B, NIU L, LU Z H, CUI G C, WANG Z Q. A CACTA transposable element in a PpYUC11 gene promoter is associated with the stony hard phenotype in peach. Journal of Fruit Science, 2017, 34(10): 1239-1248. (in Chinese)
[15]
TATSUKI M, SOENO K, SHIMADA Y, SAWAMURA Y, SUESADA Y, YAEGAKI H, SATO A, KAKEI Y, NAKAMURA A, BAI S L, MORIGUCHI T, NAKAJIMA N. Insertion of a transposon-like sequence in the 5’-flanking region of the YUCCA gene causes the stony hard phenotype. The Plant Journal, 2018, 96(4): 815-827.

doi: 10.1111/tpj.14070
[16]
孟君仁, 曾文芳, 邓丽, 潘磊, 鲁振华, 崔国朝, 王志强, 牛良. 桃若干重要性状的KASP分子标记开发与应用. 中国农业科学, 2021, 54(15): 3295-3307.

doi: 10.3864/j.issn.0578-1752.2021.15.013
MENG J R, ZENG W F, DENG L, PAN L, LU Z H, CUI G C, WANG Z Q, NIU L. Development and application of KASP molecular markers of some important traits for peach. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.15.013
[17]
孟君仁, 牛良, 邓丽, 潘磊, 鲁振华, 崔国朝, 王志强, 曾文芳. 控制桃粘/离核PG基因的BAC克隆筛选与序列分析. 中国农业科学, 2021, 54(20): 4396-4404. doi: 10.3864/j.issn.0578-1752.2021.20.013.

doi: 10.3864/j.issn.0578-1752.2021.20.013
MENG J R, NIU L, DENG L, PAN L, LU Z H, CUI G C, WANG Z Q, ZENG W F. Screening and sequence analysis of BAC clone contained PG gene controlling clingstone/freestone characteristic of peach. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404. doi: 10.3864/j.issn.0578-1752.2021.20.013. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.20.013
[18]
PIRONA R, EDUARDO I, PACHECO I, DA SILVA LINGE C, MICULAN M, VERDE I, TARTARINI S, DONDINI L, PEA G, BASSI D, ROSSINI L. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 2013, 13(1): 166.

doi: 10.1186/1471-2229-13-166
[19]
余银梅. 桃果实成熟期调控基因PpNAC56PpNAC72的表达分析及功能初探[D]. 郑州: 河南农业大学, 2018.
YU Y M. Expression analysis and functional exploration of PpNAC56 and PpNAC72 related to peach fruit maturity date[D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese)
[20]
何雪娇, 郑涛, 苏金强, 陈振东. 改良CTAB法提取野牡丹科7种植物DNA. 热带农业科学, 2011, 31(10): 73-77.
HE X J, ZHENG T, SU J Q, CHEN Z D. DNA extraction of 7 species plants of Melastomaceae using modified CTAB method. Chinese Journal of Tropical Agriculture, 2011, 31(10): 73-77. (in Chinese)
[21]
殷豪, 王彩虹, 田义轲, 李节法, 王然, 戴洪义. 利用高分辨率熔解曲线(HRM)分析梨微卫星标记. 园艺学报, 2011, 38(8): 1601-1606.
YIN H, WANG C H, TIAN Y K, LI J F, WANG R, DAI H Y. Differentiation of microsatellites in pear by high resolution melting (HRM) analysis. Acta Horticulturae Sinica, 2011, 38(8): 1601-1606. (in Chinese)
[22]
WINGETT S W, ANDREWS S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 2018, 7: 1338.
[23]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[24]
LI H, HANDSAKER R E, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.

doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[25]
RAUSCH T, ZICHNER T, SCHLATTL A, STÜTZ A M, BENES V, KORBEL J O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 2012, 28(18): i333-i339.

doi: 10.1093/bioinformatics/bts378
[26]
THORVALDSDÓTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 2013, 14(2): 178-192.

doi: 10.1093/bib/bbs017 pmid: 22517427
[27]
CIRILLI M, GIOVANNINI D, CIACCIULLI A, CHIOZZOTTO R, GATTOLIN S, ROSSINI L, LIVERANI A, BASSI D. Integrative genomics approaches validate PpYUC11-like as candidate gene for the stony hard trait in peach (P. persica L. Batsch). BMC Plant Biology, 2018, 18(1): 1-12.

doi: 10.1186/s12870-017-1213-1
[28]
韩晴. 桃果肉质地和粘离核性状两个关键PpPG基因的表达和调控关系分析[D]. 北京: 中国农业科学院, 2019.
HAN Q. Expression and regulation relationship analysis of two key PpPG genes related to peach flesh texture and adhension traits[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[29]
SHI Y N, LI B J, SU G Q, ZHANG M X, GRIERSON D, CHEN K S. Transcriptional regulation of fleshy fruit texture. Journal of Integrative Plant Biology, 2022, 64(9): 1649-1672.

doi: 10.1111/jipb.13316
[30]
QIAN M, ZHANG Y K, YAN X Y, HAN M Y, LI J J, LI F, LI F R, ZHANG D, ZHAO C P. Identification and expression analysis of polygalacturonase family members during peach fruit softening. International Journal of Molecular Sciences, 2016, 17(11): 1933.

doi: 10.3390/ijms17111933
[31]
ZHANG W W, ZHAO S Q, ZHANG L C, XING Y, JIA W S. Changes in the cell wall during fruit development and ripening in Fragaria vesca. Plant Physiology and Biochemistry, 2020, 154: 54-65.

doi: 10.1016/j.plaphy.2020.05.028
[32]
ZHU N, ZHAO C N, WEI Y Q, SUN C D, WU D, CHEN K S. Biosynthetic labeling with 3-O-propargylcaffeyl alcohol reveals in vivo cell-specific patterned lignification in loquat fruits during development and postharvest storage. Horticulture Research, 2021, 8: 61.

doi: 10.1038/s41438-021-00497-z
[33]
王巍. 生长素应答基因PpIAA5-ARF8对桃果实成熟软化的调控作用[D]. 北京: 北京农学院, 2021.
WANG W. Auxin-responsive gene PpIAA-ARF8 on peach fruit ripening and softing[D]. Beijing: Beijing University of Agriculture, 2021. (in Chinese)
[34]
KUMAR R, KHURANA A, SHARMA A K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561-4575.

doi: 10.1093/jxb/eru277 pmid: 25028558
[35]
LIU Y D, TANG M F, LIU M C, SU D D, CHEN J, GAO Y S, BOUZAYEN M, LI Z G. The molecular regulation of ethylene in fruit ripening. Small Methods, 2020, 4(8): 1900485.

doi: 10.1002/smtd.v4.8
[36]
ZHOU L L, TANG R K, LI X J, TIAN S P, LI B B, QIN G Z. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22(1): 1-32.

doi: 10.1186/s13059-020-02207-9
[37]
BAI Q, HUANG Y, SHEN Y Y. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science, 2021, 11: 619953.

doi: 10.3389/fpls.2020.619953
[38]
ZHU F, JADHAV S S, TOHGE T, SALEM M A, LEE J M, GIOVANNONI J J, CHENG Y J, ALSEEKH S, FERNIE A R. A comparative transcriptomics and eQTL approach identifies SlWD40 as a tomato fruit ripening regulator. Plant Physiology, 2022, 190(1): 250-266.

doi: 10.1093/plphys/kiac200
[39]
WANG J F, TIAN S W, YU Y T, REN Y, GUO S G, ZHANG J, LI M Y, ZHANG H Y, GONG G Y, WANG M, XU Y. Natural variation in the NAC transcription factor NONRIPENING contributes to melon fruit ripening. Journal of Integrative Plant Biology, 2022, 64(7): 1448-1461.

doi: 10.1111/jipb.13278
[40]
GUO Z H, ZHANG Y J, YAO J L, XIE Z H, ZHANG Y Y, ZHANG S L, GU C. The NAM/ATAF1/2/CUC2 transcription factor PpNAC.A 59 enhances PpERF.A 16 expression to promote ethylene biosynthesis during peach fruit ripening. Horticulture Research, 2021, 8: 209.

doi: 10.1038/s41438-021-00644-6
[41]
王小贝. 桃ERFs和PpIAA1协同调控桃成熟软化的分子机制研究[D]. 武汉: 华中农业大学, 2019.
WANG X B. Study on the molecular mechanism of synergistic regulation of peach ripening and softening by ERFs and PpIAA1[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[42]
李金金. PpSEP1(SEPALLATA)在不同质地桃果实成熟软化过程中的调控机制[D]. 杨凌: 西北农林科技大学, 2016.
LI J J. Regulatory mechanism of the PpSEP1 (SEPALLATA) gene during fruit ripening and softening in melting and non-melting peachs[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[43]
李芳. NAP家族成员克隆及其在桃果实发育与成熟期间的表达特性研究[D]. 杨凌: 西北农林科技大学, 2016.
LI F. Cloning and expression characterization of NAP family members during development and ripening of peach[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[44]
HUANG B W, HU G J, WANG K K, FRASSE P, MAZA E, DJARI A, DENG W, PIRRELLO J, BURLAT V, PONS C, GRANELL A, LI Z G, VAN DER REST B, BOUZAYEN M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications, 2021, 12: 6892.

doi: 10.1038/s41467-021-27117-7 pmid: 34824241
[45]
MIGICOVSKY Z, YEATS T H, WATTS S, SONG J, FORNEY C F, BURGHER-MACLELLAN K, SOMERS D J, GONG Y H, ZHANG Z Q, VREBALOV J, VAN VELZEN R, GIOVANNONI J G, ROSE J K C, MYLES S. Apple ripening is controlled by a NAC transcription factor. Frontiers in Genetics, 2021, 12: 671300.

doi: 10.3389/fgene.2021.671300
[46]
郭健. 基于基因组结构变异发掘桃重要农艺性状关键基因[D]. 武汉: 华中农业大学, 2021.
GUO J. Identification of causal genes responsible for key agronomic traits based on genome structural variations in peach[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[47]
LI J J, LI F, QIAN M, HAN M Y, LIU H K, ZHANG D, MA J J, ZHAO C P. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. Plant Science, 2017, 257: 63-73.

doi: 10.1016/j.plantsci.2017.01.004
[48]
WANG W H, WANG Y Y, CHEN T, QIN G Z, TIAN S P. Current insights into posttranscriptional regulation of fleshy fruit ripening. Plant Physiology, 2022, 190(22): 921-930.

doi: 10.1093/plphys/kiac353
[1] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[2] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[3] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[4] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[5] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[8] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[9] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[10] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[11] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[12] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[13] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[14] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[15] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!