Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2380-2394.doi: 10.3864/j.issn.0578-1752.2023.12.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Optimal Fermentation Technique of Radix puerariae Residues by Aspergillus niger for Dietary Fiber Modification and the Consequent Changes of Physicochemical and Functional Properties of Dietary Fibers

FU HuiZhen1,2(), DENG Mei2, ZHANG MingWei2, JIA XuChao2, DONG LiHong2, HUANG Fei2, MA Qin2, ZHAO Dong2, ZHANG RuiFen2()   

  1. 1 College of Food Science and Engineering, Hainan University, Haikou 570228
    2 Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610
  • Received:2022-09-25 Accepted:2023-04-04 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】 The objectives of the present study were to screen the microbial species suitable for modification of dietary fiber (DF) of Radix puerariae residues, to establish the optimum fermentation conditions, and to clarify the changes of microstructure, physicochemical and functional properties of Radix puerariae residues DF before and after fermentation modification.【Method】Aspergillus niger, Rhizopus oryzae, Trichoderma viride and Bacillus subtilis subsp were used to ferment Radix puerariae residues, respectively, and the most effective microbial strain was screened by comparing the SDF yield of Radix puerariae residues. The single factor experiments were carried out to screen the factors influencing DF modification. Then, the Box-Benhnken central composite experiment was designed to establish the optimum DF modification conditions of Radix puerariae residues with the SDF yield as the index of evaluation. The insoluble DF (IDF) and SDF of Radix puerariae residues before and after modification under optimal fermentation conditions were extracted by enzymatic hydrolysis method. The microstructures of IDF and SDF were observed by scanning electron microscope, and the physicochemical (water holding, oil holding, and water swelling capacity) and functional properties (adsorption capacity of glucose, sodium cholate and cholesterol) of IDF samples from unfermented and fermented Radix puerariae residues were analyzed.【Result】The fermentation of Radix puerariae residues, by A. niger, R. oryzae or T. viride all increased the SDF yield, and A. niger was the most effective species. However, the fermentation with B. subtilis subsp had no significant effects on the SDF yield. Therefore, A. niger was selected as the most suitable strain for Radix puerariae residues fermentation. The optimal fermentation condition determined by response surface optimization was as follows: The ratio of solid-liquid was 1:5.8 (m/v), the inoculation volume was 4.9% (v/v), the fermentation time was 100 h, and the fermentation temperature was 24.9 ℃. Under this condition, the yield of SDF increased from 6.34% to 13.75%, while the ratio of IDF/SDF decreased from 6.14 to 2.83. Both IDF and SDF extracted from fermented Radix puerariae residues by A. niger showed more porous microstructure than those from unfermented Radix puerariae residues. Fermentation of Radix puerariae residues increased the water holding and swelling capacity of its IDF by 20 percent approximately, while it showed no significant effects on the oil holding capacity. In addition, after fermentation, the adsorption capacity of IDF of Radix puerariae residues for glucose increased by 70%, and the adsorption capacity for cholesterol increased by 44% and 28% at pH 2.0 and pH 7.0, respectively. 【Conclusion】 A. niger could modify DF of Radix puerariae residues more effectively than other 3 microbial strains. Under the fermentation condition, the SDF yield of Radix puerariae residues increased by 2.17 times after modification by A. niger, and the physicochemical and functional properties of its IDF were also improved significantly.

Key words: Radix puerariae residues, Aspergillus niger, insoluble dietary fiber, soluble dietary fiber, physicochemical and functional properties

Table 1

Factors and levels in complete randomized design"

因素
Factor
水平Level
1 2 3 4 5
料液比 Solid-liquid ratio (g·mL-1) 1:2 1:4 1:6 1:8 1:10
接种量 Inoculation volume (%) 1 3 5 7 9
发酵时间 Fermentation time (h) 48 72 96 120 144
发酵温度 Fermentation temperature (℃) 20 25 30 35 40
pH 4.0 4.5 5.0 5.5 6.0

Table 2

Factors and levels in the response surface analysis"

因素
Factor
水平 Level
-1 0 1
料液比
Solid-liquid ratio (g·mL-1)
1:4 1:6 1:8
接种量
Inoculation volume (%)
3 5 7
发酵时间
Fermentation time (h)
72 96 120
发酵温度
Fermentation temperature (℃)
20 25 30

Fig. 1

Effect of fermentation with different microbials on SDF yield of Radix puerariae residues The different lowercase letters indicate significant differences in the same strain at different fermentation time points (P<0.05). The same as below"

Fig. 2

Effects of different factors on SDF yield of Radix puerariae residues fermented by A. niger"

Table 3

Experimental design and results of response surface"

序号 Number A B C D Y
1 1:8 5 72 25 8.62
2 1:8 3 96 25 9.90
3 1:4 5 96 30 9.89
4 1:6 3 120 25 10.89
5 1:4 3 96 25 10.23
6 1:6 5 72 20 8.96
7 1:6 7 96 30 10.51
8 1:6 5 120 20 11.33
9 1:6 7 72 25 9.13
10 1:6 3 96 20 10.32
11 1:6 5 120 30 9.60
12 1:6 3 72 25 9.96
13 1:6 5 96 25 13.44
14 1:8 7 96 25 9.59
15 1:4 5 120 25 11.73
16 1:6 7 96 20 9.72
17 1:6 5 72 30 11.06
18 1:8 5 96 20 9.42
19 1:8 5 120 25 11.97
20 1:6 3 96 30 10.34
21 1:6 5 96 25 13.10
22 1:4 5 72 25 12.10
23 1:4 5 96 20 9.84
24 1:6 5 96 25 13.52
25 1:8 5 96 30 9.29
26 1:6 5 96 25 12.92
27 1:6 5 96 25 12.94
28 1:6 7 120 25 10.10
29 1:4 7 96 25 10.82

Table 4

Analysis of variance with regression model"

平方和 SS 自由度 Freedom 均方 MS F F value P P value
模型Model 51.69 14 3.69 10.39 <0.0001**
A 2.82 1 2.82 7.94 0.0137*
B 0.26 1 0.26 0.73 0.4059
C 2.79 1 2.79 7.86 0.0141*
D 0.1 1 0.1 0.28 0.6027
AB 0.2 1 0.2 0.57 0.4629
AC 3.46 1 3.46 9.73 0.0075**
AD 8.100×10-3 1 8.100×10-3 0.023 0.8822
BC 4.000×10-4 1 4.000×10-4 1.125×10-3 0.9737
BD 0.15 1 0.15 0.42 0.5289
CD 3.67 1 3.67 10.32 0.0063**
A2 12.51 1 12.51 35.18 <0.0001**
B2 17.13 1 17.13 48.17 <0.0001**
C2 8.32 1 8.32 23.4 0.0003**
D2 20.52 1 20.52 57.72 <0.0001**
残差项 Residual 4.98 14 0.36
失拟项 Missing item 4.66 10 0.47 5.93 0.0506
纯误差 Pure error 0.31 4 0.08
总和 Total 56.67 28
相关系数 R2 0.9122

Fig. 3

Response surface and contour plots showing the interactive effects between factors on SDF yield of Radix puerariae residues fermented by A. niger A: solid-liquid ratio and fermentation time; B: fermentation temperature and fermentation time"

Table 5

Dietary fiber profiles and contents of Radix puerariae residues before and after fermentation by A. niger"

未发酵葛渣 Radix puerariae residues 发酵后葛渣 Fermented Radix puerariae residues
IDF (%) 38.92±1.39 (73.10±0.16) 38.95±1.54 (73.22±0.12)
SDF (%) 6.34±0.10 (80.55±0.62) 13.75±0.12** (80.42±0.45)
TDF (%) 45.26±1.49 52.70±1.54*
IDF/SDF 6.14±0.12 2.83±0.10*

Fig. 4

Microstructure of IDF (A, B) and SDF (C, D) of Radix pueraria residues before and after fermentation by A. niger"

Fig. 5

Physicochemical properties of IDF of Radix puerariae residues before and after fermentation by A. niger The same as below"

Fig. 6

Functional properties of IDF of Radix puerariae residues before and after fermentation by A. niger"

[1]
蔡沙, 何建军, 施建斌, 隋勇, 陈学玲, 蔡芳, 王少华, 梅新. 葛渣可溶性膳食纤维酶法制备工艺的研究. 湖北农业科学, 2017, 56(24): 4863-4868, 4874.
CAI S, HE J J, SHI J B, SUI Y, CHEN X L, CAI F, WANG S H, MEI X. Studies on the enzymatic extraction of soluble dietary fiber from pueraia roots residues. Hubei Agricultural Sciences, 2017, 56(24): 4863-4868, 4874. (in Chinese)
[2]
GAN J P, XIE L, PENG G Y, XIE J H, CHEN Y, YU Q. Systematic review on modification methods of dietary fiber. Food Hydrocolloids, 2021, 119: 106872.

doi: 10.1016/j.foodhyd.2021.106872
[3]
HE Y Y, LI W, ZHANG X Y, LI T T, REN D F, LU J. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace. Journal of Food Science and Technology, 2020, 57(4): 1421-1429.

doi: 10.1007/s13197-019-04177-8 pmid: 32180638
[4]
YE G D, WU Y N, WANG L P, TAN B, SHEN W Y, LI X N, LIU Y X, TIAN X H, ZHANG D Q. Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran. LWT-Science and Technology, 2021, 149: 111996.
[5]
龙伟. 葛渣膳食纤维的制备及其应用[D]. 南昌: 江西中医药大学, 2020.
LONG W. Preparation and application of dietary fiber from Pueraria lobata residue[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2020. (in Chinese)
[6]
LIN D R, LONG X M, HUANG Y C, YANG Y M, WU Z J, CHEN H, ZHANG Q, WU D T, QIN W, TU Z C. Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT-Science and Technology, 2020, 123: 109059.
[7]
梅新, 涂艳华, 何建军, 施建斌, 张金木, 陈学玲, 蔡芳, 王少华, 蔡沙. 葛渣膳食纤维的过氧化氢改性工艺研究. 湖北农业科学, 2016, 55(24): 6553-6556.
MEI X, TU Y H, HE J J, SHI J B, ZHANG J M, CHEN X L, CAI F, WANG S H, CAI S. Study on hydrogen peroxide modification technology of dietary fiber from Pueraria lobata residue. Hubei Agricultural Sciences, 2016, 55(24): 6553-6556. (in Chinese)
[8]
CHEN J J, HUANG H R, CHEN Y, XIE J H, SONG Y M, CHANG X X, LIU S Q, WANG Z P, HU X B, YU Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT-Food Science and Technology, 2020, 131: 109818.

doi: 10.1016/j.lwt.2020.109818
[9]
CHU J X, ZHAO H Z, LU Z X, LU F X, BIE X M, ZHANG C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry, 2019, 294: 79-86.

doi: 10.1016/j.foodchem.2019.05.035
[10]
ZHAO G H, ZHANG R F, DONG L H, HUANG F, TANG X J, WEI Z C, ZHANG M W. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT-Food Science and Technology, 2018, 87: 450-456.

doi: 10.1016/j.lwt.2017.09.016
[11]
ZHENG Y J, WANG X Y, TIAN H L, LI Y, SHI P Q, GUO W Y, ZHU Q Q. Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Research International, 2021, 147: 110565.

doi: 10.1016/j.foodres.2021.110565
[12]
DENG M, LIN Y S, DONG L H, JIA X C, SHEN Y L, LIU L, CHI J W, HUANG F, ZHANG M W, ZHANG R F. Physicochemical and functional properties of dietary fiber from pummelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars. Food Bioscience, 2021, 40: 100890.

doi: 10.1016/j.fbio.2021.100890
[13]
陈文伟, 蒋家新, 贾振宝, 孙志芳, 胡志卓. 中心组合设计优化绿茶色素提取研究. 食品科技, 2008, 33(7): 186-189.
CHEN W W, JIANG J X, JIA Z B, SUN Z F, HU Z Z. Optimization of extractimg pigment from green tea by central composite design process. Food Science and Technology, 2008, 33(7): 186-189. (in Chinese)

doi: 10.1590/S0101-20612013005000013
[14]
谢欢, 涂宗财, 张露, 王辉, 阮传英. 黑曲霉发酵制备高可溶性膳食纤维豆渣工艺优化及其水合性质研究. 中国粮油学报, 2017, 32(4): 116-121, 132
XIE H, TU Z C, ZHANG L, WANG H, RUAN C Y. Process optimization of preparation of soluble dietary fiber bean dregs by Aspergillus niger and hydration properties. Journal of the Chinese Cereals and Oils Association, 2017, 32(4): 116-121, 132. (in Chinese)
[15]
张熙, 韩双艳. 黑曲霉发酵产酶研究进展. 化学与生物工程, 2016, 33(1): 13-16.
ZHANG X, HAN S Y. Research progress on fermentation production of enzyme by Aspergillus niger. Chemistry & Bioengineering, 2016, 33(1): 13-16. (in Chinese)
[16]
夏瑶瑶, 闫裕峰, 郎繁繁, 梁楷, 周景丽, 张旭姣, 田莉. 一种糯高粱曲制备工艺及利用糯高粱曲制备老陈醋的方法. CN114933946A, 2022-08-23.
XIA Y Y, REN Y F, LANG F F, LIANG J, ZHOU L J, ZHANG X J, TIAN L. A preparation process of waxy sorghum koji and a method for preparing aged vinegar by using waxy sorghum koji are provided. CN114933946A, 2022-08-23. (in Chinese)
[17]
胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性. 食品与发酵工业, 2020, 46(7): 161-166
HU P, YANG P, GUO T S. Change in physicochemical and processing properties of maize flour after solid fermentation with Lactobacillus plantarum and Rhizopus oryzae. Food and Fermentation Industries, 2020, 46(7): 161-166 (in Chinese)
[18]
XIE J Y, LIU S, DONG R H, XIE J H, CHEN Y, PENG G Y, LIAO W, XUE P Y, FENG L, YU Q. Bound polyphenols from insoluble dietary fiber of defatted rice bran by solid-state fermentation with Trichoderma viride: Profile, activity, and release mechanism. Journal of Agricultural and Food Chemistry, 2021, 69(17): 5026-5039.

doi: 10.1021/acs.jafc.1c00752
[19]
余强, 贾梦云, 谢明勇, 聂少平, 陈家俊. 一种脱脂米糠中的膳食纤维的改性方法. CN109601846B, 2022-06-14.
YU Q, JIA M Y, XIE M Y, NIE S P, CHEN J J. A modification method of dietary fiber in defatted rice bran. CN109601846B, 2022-06-14. (in Chinese)
[20]
余强, 陈家俊, 谢建华, 陈奕, 汪子沛, 宋一鸣, 常馨心. 一种茶渣可溶性膳食纤维重金属吸附剂的制备方法及其应用. CN109985606B, 2020-06-16.
YU Q, CHEN J J, XIE J H, CHEN Y, WANG Z P, SONG Y M, CHANG X X. A preparation method and application of tea residue soluble dietary fiber heavy metal adsorbent. CN109985606B, 2020-06-16. (in Chinese)
[21]
MALIK W A, JAVED S. Biochemical characterization of cellulase from Bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass. Frontiers in Bioengineering and Biotechnology, 2021, 9: 800265.

doi: 10.3389/fbioe.2021.800265
[22]
CHAN K Y, AU K S. Studies on cellulase production by a Bacillus subtilis. Antonie Van Leeuwenhoek, 1987, 53(2): 125-136.

doi: 10.1007/BF00419509
[23]
钟荣珍, 房义, 肖雄飞, 顾啟超. 一种干玉米秸秆与龙须菜混贮饲料的制备方法. CN114041532A, 2022-02-15.
ZHONG R Z, FANG Y, XIAO X F, GU Q C. A preparation method of mixed storage feed of dried corn stalks and Gracilaria lemaneiformis. CN114041532A, 2022-02-15. (in Chinese)
[24]
闵钟熳, 高路, 高育哲, 徐彩红, 邓雪雪, 肖志刚. 黑曲霉发酵法制备米糠粕可溶性膳食纤维工艺优化及其理化分析. 食品科学, 2018, 39(2): 112-118.

doi: 10.7506/spkx1002-6630-201802018
MIN Z M, GAO L, GAO Y Z, XU C H, DENG X X, XIAO Z G. Optimization of the preparation process for soluble dietary fiber from rice bran by Aspergillus niger fermentation and its physicochemical properties. Food Science, 2018, 39(2): 112-118. (in Chinese)

doi: 10.1111/jfds.1974.39.issue-1
[25]
孙婕, 尹国友, 王超, 王琦, 李文建, 张现青. 混合发酵法制备韭籽粕水溶性膳食纤维. 食品研究与开发, 2017, 38(11): 95-99.
SUN J, YIN G Y, WANG C, WANG Q, LI W J, ZHANG X Q. Preparation of soluble dietary fiber from Chinese leek seed meal by mixed fermentation. Food Research and Development, 2017, 38(11): 95-99. (in Chinese)
[26]
王宏勋, 王岩岩, 毛一兵, 张晓昱. 粉葛渣膳食纤维生物改性研究. 食品工业科技, 2007(7): 101-102, 106.
WANG H X, WANG Y Y, MAO Y B, ZHANG X Y. Study on bio-modification of dietary fibre from Radix puerariae residue. Science and Technology of Food Industry, 2007(7): 101-102, 106. (in Chinese)
[27]
吴丽萍, 孙虹, 朱婷婷, 陈佳钰, 蔡永久, 胡晓倩. 发酵毛竹笋制备水溶性膳食纤维工艺优化及功能特性研究. 中国调味品, 2021, 46(12): 42-48.
WU L P, SUN H, ZHU T T, CHEN J Y, CAI Y J, HU X Q. Study on process optimization and functional properties of soluble dietary fiber from fermented bamboo shoots. China Condiment, 2021, 46(12): 42-48. (in Chinese)
[28]
李伟伟, 曲俊雅, 周才琼. 真菌及乳酸菌联合发酵对豆渣膳食纤维及理化特性的影响. 食品与发酵工业, 2018, 44(11): 159-166
LI W W, QU J Y, ZHOU C Q. Effects of combined fermentation of fungi and lactic acid bacteria on dietary fiber and physicochemical properties of soybean dregs. Food and Fermentation Industries, 2018, 44(11): 159-166. (in Chinese)
[29]
刘俊红, 林青青, 刘瑞芳, 张苗玉, 王锟宇. 发酵法提取葡萄皮渣中可溶性膳食纤维的研究. 河南城建学院学报, 2022, 31(1): 75-79, 92.
LIU J H, LIN Q Q, LIU R F, ZHANG M Y, WANG K Y. Extraction of soluble dietary fiber from grape skin pomace by fermentation method. Journal of Henan University of Urban Construction, 2022, 31(1): 75-79, 92. (in Chinese)
[30]
王晓颖, 黄荣冰, 谭诗颖, 吴嘉良, 丘劲霖, 张素斌. 黑曲霉发酵法制备柚子皮可溶性膳食纤维的研究. 轻工科技, 2021, 37(12): 15-17, 38.
WANG X Y, HUANG R B, TAN S Y, WU J L, QIU J L, ZHANG S B. Studies on preparation of soluble dietary fiber from pomelo peel by Aspergillus niger fermentation. Light Industry Science and Technology, 2021, 37(12): 15-17, 38. (in Chinese)
[31]
阳晖, 卢凌霄, 王晴, 张川雨, 曹沁倩, 周先容. 发酵法制备萝卜硫素的工艺优化. 食品工业, 2021, 42(12): 218-223.
YANG H, LU L X, WANG Q, ZHANG C Y, CAO Q Q, ZHOU X R. Optimization of preparation of sulforaphane by fermentation. The Food Industry, 2021, 42(12): 218-223. (in Chinese)
[32]
罗文, 王晓力, 朱新强, 麻文姣, 王永刚, 孙启忠. 固态发酵豆渣和苹果渣复合蛋白饲料的研究. 粮食与饲料工业, 2017(2): 44-48.
LUO W, WANG X L, ZHU X Q, MA W J, WANG Y G, SUN Q Z. Production of compound protein feedstuff from bean dregs and apple pomace by solid-state fermentation. Cereal & Feed Industry, 2017(2): 44-48. (in Chinese)
[33]
PEL H J, DE WINDE J H, ARCHER D B, DYER P S, HOFMANN G, SCHAAP P J, TURNER G, DE VRIES R P, ALBANG R, ALBERMANN K, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25(2): 221-231.

doi: 10.1038/nbt1282
[34]
令博, 田云波, 吴洪斌, 明建. 微生物发酵法制取葡萄皮渣膳食纤维的工艺优化. 食品科学, 2012, 33(15): 178-182.
LING B, TIAN Y B, WU H B, MING J. Optimization of microbial fermentation of grape pomace for dietary fiber preparation. Food Science, 2012, 33(15): 178-182. (in Chinese)
[35]
LI Y X, NIU L, GUO Q Q, SHI L C, DENG X, LIU X B, XIAO C X. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT, 2022, 154: 112609.

doi: 10.1016/j.lwt.2021.112609
[36]
李静. 黑曲霉发酵制备香蕉皮可溶性膳食纤维研究. 中国食品添加剂, 2015(5): 137-141.
LI J. Study on extraction of soluble dietary fiber from banana peel with Aspergillus niger. China Food Additives, 2015(5): 137-141. (in Chinese)
[37]
CUI J, GU X, ZHANG Q H, OU Y J, WANG J Z. Production and anti-diabetic activity of soluble dietary fiber from apricot pulp by Trichoderma viride fermentation. Food & Function, 2015, 6(5): 1635-1642.
[38]
JIA M Y, CHEN J J, LIU X Z, XIE M, NIE S P, CHEN Y, XIE J H, YU Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids, 2019, 94: 468-474.

doi: 10.1016/j.foodhyd.2019.03.047
[39]
吴德智, 郭伟, 甘贵芳, 吴孟, 李小红. 发酵法制备葛根渣膳食纤维及其酥性饼干的研制. 食品与发酵工业, 2017, 43(7): 146-151.
WU D Z, GUO W, GAN G F, WU M, LI X H. Dietary fiber preparation by Pueraria residue fermentation and formula optimization of biscuit. Food and Fermentation Industries, 2017, 43(7): 146-151. (in Chinese)
[40]
JIANG G H, BAI X S, WU Z G, LI S J, ZHAO C, RAMACHANDRAIAH K. Modification of ginseng insoluble dietary fiber through alkaline hydrogen peroxide treatment and its impact on structure, physicochemical and functional properties. LWT-Food Science and Technolog, 2021, 150: 111956.
[41]
XIAO Z Q, YANG X Y, ZHAO W W, WANG Z Z, GE Q. Physicochemical properties of insoluble dietary fiber from pomelo (Citrus grandis) peel modified by ball milling. Journal of Food Processing and Preservation, 2022, 46(2): e16242.
[42]
SUN C C, WU X F, CHEN X J, LI X J, ZHENG Z, JIANG S W. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chemistry, 2020, 316: 126243.

doi: 10.1016/j.foodchem.2020.126243
[43]
田亚红, 常丽新, 贾长虹, 孟繁博. 黑曲霉发酵提取甘薯渣中水不溶性膳食纤维的工艺研究. 粮油食品科技, 2014, 22(4): 86-88.
TIAN Y H, CHANG L X, JIA C H, MENG F B. Study on extraction of insoluble dietary fiber from sweet potato residue by Aspergillus niger fermentation. Science and Technology of Cereals, Oils and Foods, 2014, 22(4): 86-88. (in Chinese)
[44]
WANG L, TIAN Y P, CHEN Y X, CHEN J. Effects of acid treatment on the physicochemical and functional properties of wheat bran insoluble dietary fiber. Cereal Chemistry, 2022, 99(2): 343-354.

doi: 10.1002/cche.v99.2
[45]
CHEN J L, GAO D X, YANG L T, GAO Y X. Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 2013, 54(2): 1821-1827.

doi: 10.1016/j.foodres.2013.09.025
[46]
YU G Y, BEI J, ZHAO J, LI Q H, CHENG C. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chemistry, 2018, 257: 333-340.

doi: 10.1016/j.foodchem.2018.03.037
[47]
HUA M, LU J X, QU D, LIU C, ZHANG L, LI S S, CHEN J B, SUN Y S. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Food Chemistry, 2019, 286: 522-529.

doi: S0308-8146(19)30182-7 pmid: 30827642
[48]
郑慧, 孙艳, 张眙曼, 李娅迪, 肖玥, 蒋益繁, 杨勇. 颗粒粒径对荷叶不溶性膳食纤维结构、理化及感官品质的影响. 天然产物研究与开发, 2022, 34(9): 1530-1538.
ZHENG H, SUN Y, ZHANG Y M, LI Y D, XIAO Y, JIANG Y F, YANG Y. Effects of particle size on the structure, physicochemical and sensory qualities of insoluble dietary fiber from lotus leaf. Natural Product Research and Development, 2022, 34(9): 1530-1538. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!