Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1744-1759.doi: 10.3864/j.issn.0578-1752.2023.09.011

• HORTICULTURE • Previous Articles     Next Articles

An Overview of the Worldwide Plum Breeding

LIU Shuo(), XU Ming, LIU JiaCheng, ZHANG QiuPing, MA XiaoXue, LIU Ning, ZHANG YuPing, ZHANG YuJun, ZHAO HaiJuan, LIU WeiSheng()   

  1. Liaoning Institute of Pomology, Yingkou 115009, Liaoning
  • Received:2022-05-25 Accepted:2023-03-01 Online:2023-05-01 Published:2023-05-10

Abstract:

Plum is a significant fruit tree worldwide, with the two main species being P. domestica and P. salicina. Chinese plum, originating from China, exhibits high genetic heterogeneity and abundant genetic variation in fruit traits. It is speculated that wild Chinese plums still exist in the Yangtze River basin. Throughout Chinese history, the plum cultivation and varieties were recorded by many secretaries of the Qin Dynasty, the Han Dynasty, the Jin Dynasty, the Northern Song Dynasty, and the Ming Dynasty. Similarly, in other countries, such as Greece, France, Finland, the Czech Republic, and Russia, there are written records of plum, describing its origin and 14 varieties. Plum was gradually introduced into the European continent during the Roman era, and numerous new varieties have since been cultivated to improve the fruit’s quality, commercial value, and meet market demand. There were currently 88 independently bred plum varieties in China that have passed variety approval and been officially published. Breeding traits of common concern include fruit size, peel color, polyphenols, soluble solids, fruit maturity, cold resistance, disease resistance, etc. Breeding methods range from traditional methods to molecular-assisted breeding, tissue culture, and transgenic breeding. Many excellent varieties with good fresh food quality, storage and transportation resistance, and adaptability have been bred through continuous improvement of breeding methods, promoting the development of the global plum industry. China is the world’s largest plum producer, accounting for 54.94% of total production and 74.75% of total cultivation area worldwide. The rich natural resources of plum in China provide solid material and diversity guarantee for germplasm exploration and breeding application. To further strengthen the international advantages of plum germplasm resources and cultivation areas in China, and to enhance the core competitiveness of national breeding, this study reviewed the global history process of plum breeding and improvement, including the origin, dissemination, early cultivation history of plum in the world, recent research on the main breeding traits, and commercial breeding strategies for modern plum.

Key words: plum, breeding, variety, strategy

Fig. 1

Morphological diversity of leaf, fruit and shoot in different plum species Picture of P. ussriensis fruit provided by Liu Hairong; The P. maritima fruit image is quoted from Wikipedia, author: Aznaturalist, Image copyright in accordance with the Creative Commons Attribution-Share Alike 3.0 license"

Table 1

Main institutions, breeders and breeding objectives of plum breeding in Europe[14,24]"

国家
Country
育种单位
Breeding center
育种者
Breeder
育种目标
Objective
育种开始
时间
Start of breeding
杂交种
Number of seedling
优系
Number of selection
品种数
Total number of cultivars
塞尔维亚
Serbia
Cacak水果研究所
Fruit Research Institute Cacak
D. Ogasanovic
N. Milosevic
‘Pozegaca’品种果实大小
成熟期抗PPV病毒改良育种
Improvement of old cv.
Pozegaca (size, ripening
time, resistance to PPV)
1965 28000 239 14
德国
Germany
霍恩海姆大学
University Hohenheim, Stuttgart
盖森海姆研究站
Research Station Geisenheim
W. Hartmann
M. Neumuller
H. Jacob
果实品质超敏反应抗PPV病毒育种
Fruit quality PPV resistance hypersensitivity
1980
1985
2005
10000
30000
4500
300
150
5
14
14
-
法国
France
法国农业科学院(波尔多)
INRA, Bordeaux
R. Bernhard
R. Renaud
果实品质转基因抗PPV病毒
育种
Fruit quality PPV resistance by transgenic plants
1950 - - 6
意大利
Italy
博洛尼亚大学
University Bologna
佛罗伦萨大学
University Firenze
佛利大学
University Forli
私人项目 Private project
S. Sansavini
E. Bellini
V. Nancetti
A. Liverani
鲜食消费品质抗PPV病毒
Quality, fresh consumption,
resistance to PPV
1968
1970
1985
1991
2000
4200
6500
14450
130
95
45
63
7
6
1
6
英国
United
Kingdom
东茂林试验站
Research Station East Malling
K Tobutt
R. Jones
T. Laxton
晚花抗霜冻抗PPV病毒育种
Late blooming, frost resistance, PPV resistance
1913 - - 3
保加利亚
Bulgaria
德里亚诺沃水果种植研究所
Fruit Growing Institute Dryanovo
特洛扬水果种植研究所
Fruit Growing Institute Troyan
普罗夫迪夫水果种植研究所
Fruit Growing Institute Plovdiv
V. Bozhkova,
A. Zhivondov
晚花延长成熟期果实品质抗PPV病毒育种
Late blooming, extended
ripening period, fruit quality, resistance to PPV
1960
1960
1987
5256 62 11
拉脱维亚
Latvia
拉脱维亚国家水果种植研究所
Latvia State Institute of Fruit Growing
E. Kaufmane
I. Gravite
抗寒有活力早熟果实品质自花结实早熟育种
Winter hardiness, vigour,
precocity, fruit quality,
self-fertility, early ripening
1900 9100 122 9
白俄罗斯
Belarus
明斯克水果种植研究所
Institute for Fruit Growing,
Minsk
M. Vasiljeva,
Z. Kazlouskaya
果实品质抗霜冻育种
Fruit quality, frost resistance
1925 - - 15
摩尔多瓦
Moldova
基希讷乌(Chisinau)园艺和营养技术研究所
Research Institute for Horticulture and
Alimentary Technologies Chisinau
M. Pintea,
A. Juraveli
果实品质抗霜冻育种
Resistance to frost, fruit
quality
1946 - - 10
捷克
Czech Republic
Holovousy果树育种研究所
Research and Breeding Institute of Pomology Holovousy
J. Blazek 果实品质抗PPV病毒育种
Fruit quality, Sharka
tolerance
1988 3500 18 3
瑞典
Sweden
Balsgard农业科学大学
University of Agricultural
Sciences Balsgard
I. Hjalmarsson,
V. Trajkovski
短植株生长发育期果实品质
育种
Short period of vegetation,
fruit quality
1984 4400 - 12
挪威
Norway
Lofhus水果研究中心(Ullensvang)
Ullensvang Research Centre Division Njos,
Lofthus
S.H. Hjeltnes 果实品质贮藏能力育种
Good storage
1953
1991

2720

15
2
-
罗马尼亚
Romania
Pitesti水果种植研究所
Research Institute for Fruit
Growing, Pitesti
Valcea水果种植研究站
Fruit Growing Research
Station, Valcea
Bistrita水果种植研究站
Research Station for Fruit
Growing, Bistrita
M. Butac
M. Botu
I. Zagrai
‘Tuleu gras’品种的果实品质PPV抗性成熟季节延长自花结实改良育种
Improvement of old cvs.
Tuleu gras, Grase romanesti, Vinete romanesti; fruit quality, PPV resistance, ripening season extension, self-fertility
1950 125000 350 38
匈牙利
Hungary
Ujfeherto水果种植研究与推广中心
Research and Extension Centre for Fruit
Growing, Ujfeherto
T. Lakatos
T. Jakubowski
E. ˙ Zurawicz
J. Dominikowski
果实品质加工育种
Fruit quality, processing
波兰
Poland
Skierniewice园艺研究所
Research Institute of Horticulture,
Skierniewice
E. Rozpara
Z. Grzyb
J. Szyma´nski
果实品质产量抗PPV病毒育种
PPV Resistance, fruit quality, Productivity
俄罗斯
Russia
北高加索地区园艺和葡萄栽培研究所、
克拉斯诺达尔克里姆斯克实验育种站、
克里姆斯克远东实验站、巴甫洛夫斯克、
圣彼得堡Maicop、实验站Maicop、
克拉斯诺达尔地区伏尔加格勒实验站、
克拉斯诺斯洛博茨克
North-Caucasus Zonal Horticulture and
Viticulture Research Institute, Krasnodar Krymsk Experiment Breeding Station, Krymsk Far East Experiment Station, Pavlovsk, St. Petersburg Maicop Experiment Station Krasnodar Region Volgograd Experiment Station, Krasnoslobodsk
R. S. Zaremuk
E. M. Alekhina
G. Eremin
抗寒果实品质和产量育种
Winter hardiness, fruit quality, productivity
总计Total 240726 1586 170

Table 2

Main strains or serotypes of plum pox virus"

分离株
Strain
病毒最初发生地
Virus original country
主要寄主
Main host
说明
Note
PPV-D(狄德罗)
PPV-D (Dideron)
法国
France
杏、桃、李
Apricot, Peach, Plum
PPV-D是欧洲西部传播最严重的分离株,也在智利和美国(宾夕法尼亚州)发生。该分离株不通过种子传播,且蚜虫-载体效率较低
The PPV-D isolate is widely spread throughout western Europe, as well as in Chile and the United States (specifically in Pennsylvania). This isolate is not transmitted through seeds, and its efficiency in being carried by aphids is low
PPV-M(马库斯)
PPV-M (Markus)
希腊
Greece
李、杏、樱桃
Plum, Apricot, Cherry
PPV-M是欧洲南部,东部和南部最常见的分离株。菌株传播迅速并且很难消除。该菌株通过蚜虫迅速传播
PPV-M is the most prevalent isolate found in southern, eastern, and southeastern Europe. This strain has a rapid spread rate and is notoriously difficult to eradicate due to its persistent nature. It is primarily spread through aphids, leading to an increased risk of transmission
PPV-Rec(重组)
PPV-Rec (Recombinant)
捷克
Czech
杏、李(包括樱桃李、黑刺李)、樱桃
Apricot, Plum (including cherry plum, black thorn plum), Cherry
可能是PPV-M和PPV-D分离株发生了同源重组,导致其在欧洲东部地区广泛传播,且具有高致病性和强的蚜虫传播能力
There is a strong possibility that homologous recombination between isolates of PPV-M and PPV-D has occurred. This strain is particularly prevalent in countries and regions of Eastern Europe, and possesses high pathogenicity and a strong ability to be transmitted by aphids
PPV-EA(埃尔阿马尔)
PPV-EA (El Amar)
埃及
Egypt
李、桃
Plum, Peach
该病毒株在北非地区普遍存在,与PPV-M分离株具有相似的特征 This strain is commonly found in North Africa and shares similar characteristics with the PPV-M isolate
PPV-C(樱桃)
PPV-C (Cherry)
摩尔多瓦
Moldova
樱桃
Cherry
它在欧洲东部流行
This strain is widespread in Eastern Europe
PPV-CR(俄国樱桃)
PPV-CR (Cherry, Russian)
俄罗斯
Russia
酸樱桃
Sour cherry
它是发生在俄罗斯地区的第二种适应于樱桃的PPV分离株,PPV-C之后出现
This strain, which originated in Russia, is the second isolate after PPV-C that has adapted to infect cherry trees
PPV-W(威诺纳)
PPV-W (Winona)
加拿大(安大略)
Canada (Ontario)

Plum
近年来,该毒株在拉脱维亚和乌克兰的李树上被发现,并传播至俄罗斯地区。与其他分离株相比,其遗传差异明显
In recent years, this strain has also been found on plum trees in Latvia and Ukraine, and has spread to Russia. It shows significant genetic differences from other isolates
PPV-An(Marcus祖先)
PPV-An (Ancestor Marcus)
阿尔巴尼亚
Albania
李、杏、樱桃
Plum、Apricot、Cherry
该分离株的全基因组序列符合PPV的进化假说,表明它是PPV-M分离株的祖先
The full-length genome sequence of this isolate supports the evolutionary hypothesis of PPV, indicating that it is the ancestor of the PPV-M isolate
PPV-T(土耳其)
PPV-T (Turkey)
土耳其
Turkey

Apricot
由HC-Pro基因重组事件产生
Recombination events have occurred in the HC-Pro gene
PPV-CV(伏尔加樱桃)
PPV-CV (Cherry, Volga)
俄罗斯
Russia
酸樱桃
Sour cherry
它的3'末端基因组序列与已知的分离株高度不同
Its 3' end genome sequence differs significantly from known isolates

Fig. 2

Guoxin plum cultivars and its flesh"

[1]
刘威生, 章秋平, 马小雪, 张玉萍, 刘家成, 张玉君, 刘硕, 刘宁, 徐铭. 新中国果树科学研究70年: 李. 果树学报, 2019, 36(10): 1320-1338.
LIU W S, ZHANG Q P, MA X X, ZHANG Y P, LIU J C, ZHANG Y J, LIU S, LIU N, XU M. Fruit scientific research in New China in the past 70 years: Plum. Journal of Fruit Science, 2019, 36(10): 1320-1338. (in Chinese)
[2]
HEDRICK U P, ALDERMAN W H, DORSEY M J, TAYLOR O M, WELLINGTON R. The Plums of New York. Albany J. B. Lyon Company, State Printers, 1911.
[3]
联合国粮农组织数据库OL. 2020. 2022-12-23.
Food and Agriculture Organization of the United Nations Database FAOSTAT OL. 2020. 2022-12-23.
[4]
VAVILOV N. Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. Ninth International Horticultural Congress Report, 1930.
[5]
ZHEBENTYAYEVA T, SHANKAR V, SCORZA R, CALLAHAN A, RAVELONANDRO M, CASTRO S, DEJONG T, SASKI C A, DARDICK C. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research, 2019, 6: 12.

doi: 10.1038/s41438-018-0090-6
[6]
RYBIN W A. Spontaneous and experimentally produced hybrids between blackthorn and cherry plum and the descent problem of the cultivated plum. Planta, 1936, 25: 22-58.

doi: 10.1007/BF01909303
[7]
LIN P, SHI L. The discovery and distribution of Ili wild Prunus domestica (P. communis Fritsch) in Xinjiang// Proceedings of International Symposium on Horticultural Germplasm, Cultivated and Wild, 1989: 282-286.
[8]
LIN S H, PU F S, ZHANG J H, GAO X Y, LI X J. Observation on chromosomes numbers of Prunus. China Fruits, 1991, 2: 8-10.
[9]
LIU W S, LIU D C, ZHANG A, FENG C, YANG J M, YOON J, LI S H. Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. Journal of the American Society for Horticultural Science, 2007, 132(5): 619-628.

doi: 10.21273/JASHS.132.5.619
[10]
张加延, 周恩. 中国果树志-李卷. 北京: 中国林业出版社, 1998: 17-23.
ZHANG J Y, ZHOU E. China Fruit-Plant Monographs, Plum Flora. Beijing: China Forestry Publishing House, 1998: 17-23. (in Chinese)
[11]
YOSHIDA M. The origin of fruits. 2: Plums. 1987, 42(2): 49-53.
[12]
JANICK J, MOORE J N. Fruit Breeding, Volume 1, Tree and Tropical Fruits. Fruit Breeding, 1996: 559-607.
[13]
HARTMANN W, NEUMÜLLER M. Plum Breeding//Breeding Plantation Tree Crops:Temperate Species. New York, NY: Springer New York, 2008.
[14]
AL-KHAYRI J M, JAIN S, JOHNSON D. Advances in Plant Breeding Strategies:Fruits. Cham: Springer, 2018: 165-215.
[15]
RIMPIKA, SHARMA D. Advances in breeding of peach, plum and apricot. Prunus-Recent Advances. Intech Open, 2022.
[16]
BURBANK L. How this ‘Miracle’ came to be. Sunset Magazine, 1903-1904(12): 35-36.
[17]
BURBANK L, WHITSON J, JOHN R, WILLIAMS H S, SOCIETY L B. Luther Burbank:His Methods and Discoveries and Their Practical Application. New York, N.Y.; London: Luther Burbank Press, 1914.
[18]
JANICK J. Luther Burbank: plant breeding artist, horticulturist, and legend. HortScience, 2015, 50(2): 153-156.

doi: 10.21273/HORTSCI.50.2.153
[19]
CALLAHAN A, DARDICK C, TOSETTI R, LALLI D, SCORZA R. 21st century approach to improving burbank’s ‘stoneless’ plum. HortScience, 2015, 50(2): 195-200.

doi: 10.21273/HORTSCI.50.2.195
[20]
BRUCE L T, DOUGAL M R, MICHAEL N, MARCO A D, LIU W S. Plum. Fruit breeding, 2012, 15: 571-621.
[21]
HOWARD W L. Luther Burbank’s plant contributions//Berkeley, Cal.: Agricultural Experiment Station, 1945.
[22]
CROW J F. Plant breeding giants: Burbank, the artist; vavilov, the scientist. Genetics, 2001, 158(4): 1391-1395.

doi: 10.1093/genetics/158.4.1391
[23]
OKIE W R, RAMMING D W. Plum breeding worldwide. HortTechnology, 1999, 9(2): 162-176.

doi: 10.21273/HORTTECH.9.2.162
[24]
BUTAC M, BOZHKOVA V, ZHIVONDOV A, MILOSEVIC N, BELLINI E, NENCETTI V, BLAZEK J, BALSEMIN E, LAFARQUE B, KAUFMANE E, GRAVITE I, VASILJEVA M, PINTEA M, JURAVELI A, WEBSTER T, HJALMARSSON I, TRAJKOVSKI V, HJELTNES S H. Overview of plum breeding in Europe. Acta Horticulturae, 2013, 981: 91-98.
[25]
BELLINI E, NENCETTI V, NATARELLI L. New selections of yellow Japanese plum obtained in Florence at the dofi. Acta Horticulturae, 2010, 874: 321-326.
[26]
BLAŽEK J, PIŠTĚKOVÁ I. Initial results from the evaluation of plum cultivars grown in a very dense planting. Acta Horticulturae, 2012, 968: 99-108.
[27]
BUTAC M, ZAGRAI I, BOTU M. Breeding of new plum cultivars in Romania. Acta Horticulturae, 201, 874: 51-58.
[28]
JACOB H. Plum breeding worldwide//Symposium on Plum of Serbia. 2006: 15.
[29]
KNIGHT V H, EVANS K M, SIMPSON D W, TOBUTT K R. Report on a desktop study to investigate the current world resources in Rosaceous fruit breeding programmes. East Malling Research, 2005.
[30]
HJELTNES S H, NORNES L. ROGNLI O A. Inheritance of some fruit characters in plum (Prunus domestica)// IX International Symposium on Plum and Prune Genetics, Breeding and Pomology, 2008: 45-50.
[31]
SHERMAN W B, TOPP B L, LYRENE P M. Breeding low-chill Japanese-type plums for subtropical climates. Acta Horticulturae, 1992, 317: 149-154.
[32]
SARKHOSH A, OLMSTEAD M A. Growing plums in florida: HS895/HS250, rev. 1/2016. EDIS, 2020, 2016(2): 12.
[33]
YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Rosa’. Bulletin-National Institute of Fruit Tree Science, 1995.
[34]
YAMAGUCHI M, YOSHIDA M, KYOTANI H, NAKAMURA Y, NISHIMURA K, HAJI T, MIYAKE M. New Japanese plum cultivar ‘Honey Heart’. Bulletin-National Institute of Fruit Tree Science, 1999: 15-30.
[35]
JUN J H, CHUNG K H, KANG S J, KWACK Y B, PARK K S, YUN H K, JEONG S B. ‘Honey Red’, an early maturing Japanese plum. Journal of the American Pomological Society, 2008, 62: 27-29.
[36]
NAKASU B H, BASSOLS M, FELICIANO A J. Temperate fruit breeding in Brazil. Fruit Varieties Journal, 1981, 35: 114-122.
[37]
DUCROQUET J P, DALBÓ M A. SCS 409 Camila e SCS 410 Piuna-Novascultivares de ameixeira com resistência à escaldadura das folhas. Agropecuária Catarinense, 2007, 20: 67-70.
[38]
TOPP B L, RUSSELL D M. Breeding early ripening Japanese plums. Acta Horticulturae, 1989, 240: 27-30.
[39]
TOPP B L, RUSSELL D M. ‘Queensland bellerosa’ plum. HortScience, 1990, 25(7): 814.

doi: 10.21273/HORTSCI.25.7.814
[40]
TOPP B L, RUSSELL D M. ‘Queensland earlisweet’ cherry plum. HortScience, 1990, 25(6): 713.

doi: 10.21273/HORTSCI.25.6.713
[41]
张艳波, 王雪松, 崔龙, 陈蕾, 李锋. 抗寒李新品种‘福禄’. 园艺学报, 2021, 48(6): 1265-1266.

doi: 10.16420/j.issn.0513-353x.2019-0934
ZHANG Y B, WANG X S, CUI L, CHEN L, LI F. A new cold resistant plum cultivar ‘fulu’. Acta Horticulturae Sinica, 2021, 48(6): 1265-1266. (in Chinese)
[42]
张艳波, 王雪松, 陈蕾, 崔龙, 李锋, 隋松兵, 张连喜. 抗寒李新品种‘公主红’的选育. 果树学报, 2022, 39(4): 689-691.
ZHANG Y B, WANG X S, CHEN L, CUI L, LI F, SUI S B, ZHANG L X. A new cold-resistant plum variety Gongzhu Hong. Journal of Fruit Science, 2022, 39(4): 689-691. (in Chinese)
[43]
何业华, 杨向晖, 郭翠红, 栾爱萍, 刘朝阳, 夏靖娴, 谢桃, 李楚豪, 曾志. 加工鲜食兼用李新品种‘兴华李’的选育. 果树学报, 2020, 37(10): 1597-1600.
HE Y H, YANG X H, GUO C H, LUAN A P, LIU C Y, XIA J X, XIE T, LI C H, ZENG Z. Breeding report of a new fresh-eating and processing plum cultivar ‘Xinghuali’ (Prunus salicina). Journal of Fruit Science, 2020, 37(10): 1597-1600. (in Chinese)
[44]
何业华, 杨向晖, 栾爱萍, 刘成明, 胡桂兵, 林顺权, 秦永华, 夏靖娴, 傅嘉欣, 赵杰堂, 高用顺, 张志珂, 温瑞明, 陈世凯, 罗学优, 池琼云, 卢仕威. 华南李新品种‘云开1号’. 园艺学报, 2020, 47(S2): 2892-2893.
HE Y H, YANG X H, LUAN A P, LIU C M, HU G B, LIN S Q, QIN Y H, XIA J X, FU J X, ZHAO J T, GAO Y S, ZHANG Z K, WEN R M, CHEN S K, LUO X Y, CHI Q Y, LU S W. A new plum cultivar ‘Yunkai 1’. Acta Horticulturae Sinica, 2020, 47(S2): 2892-2893. (in Chinese)
[45]
方波, 赵倩, 黄明, 唐君, 蔡智勇, 张勋, 刘家红, 谭平. 巫山脆李新品种‘宛青’的选育. 果树学报, 2020, 37(7): 1106-1109.
FANG B, ZHAO Q, HUANG M, TANG J, CAI Z Y, ZHANG X, LIU J H, TAN P. ‘Wanqing’, a new late-maturing plum cultivar of Prunus salicina Lindl. Wushancuili. Journal of Fruit Science, 2020, 37(7): 1106-1109. (in Chinese)
[46]
周伟, 何才智, 张乃华, 蒲昌权, 汪小伟, 朱根长, 万崇东, 张洪伟, 李丽, 程兰, 何才宏. 李新品种‘晚霜脆李’的选育及栽培技术. 中国果业信息, 2019, 36(3): 55-57.
ZHOU W, HE C Z, ZHANG N H, PU C Q, WANG X W, ZHU G C, WAN C D, ZHANG H W, LI L, CHENG L, HE C H. Breeding and cultivation techniques of a new plum variety ‘Late Frost Crispy Plum’. China Fruit News, 2019, 36(3): 55-57. (in Chinese)
[47]
熊伟, 向芳, 曾明, 王玉柱, 寇琳羚, 李兴婷, 李相进, 何桥, 刘健, 刘世仙, 陈培, 李伟. 李新品种‘巫溪晚脆李’的选育. 中国南方果树, 2020, 49(3): 92-96.
XIONG W, XIANG F, ZENG M, WANG Y Z, KOU L L, LI X T, LI X J, HE Q, LIU J, LIU S X, CHEN P, LI W. Breeding of a new plum variety ‘Wuxi Late Crispy Plum’. South China Fruits, 2020, 49(3): 92-96. (in Chinese)
[48]
宋洪伟, 迟占文, 张艳波, 陶睿, 张冰冰. 寒地李属资源与品种选育. 北方园艺, 2008(6): 105-106.
SONG H W, CHI Z W, ZHANG Y B, TAO R, ZHANG B B. Resources and variety breeding of plum in cold region. Northern Horticulture, 2008(6): 105-106. (in Chinese)
[49]
关连捷, 李久成, 吕映霞. 寒地李树新品种: 绥李三号和绥棱红. 北方果树, 1987(S1): 60-61, 48.
GUAN L J, LI J C, Y X. New varieties of plum trees in cold region—Suili 3 hao and Suilinghong. Northern Fruits, 1987(S1): 60-61, 48. (in Chinese)
[50]
吴起运. 李新品种: 长李7号. 山西果树, 1991(1): 41.
WU Q Y. Changli No.7, a new plum variety. Journal of Fruit Resources, 1991(1): 41. (in Chinese)
[51]
吴起运. 李新品种: 长李17号. 北方果树, 1991(1): 41.
WU Q Y. Changli 17, a new plum variety. Northern Fruits, 1991(1): 41. (in Chinese)
[52]
李锋. 李抗寒优良新品种(系). 中国果树, 1993(1): 1-2, 5.
LI F. A new cold-resistant plum variety (line). China Fruits, 1993(1): 1-2, 5. (in Chinese)
[53]
曾烨, 牟蕴慧, 金殿义, 刘国华, 刘允中. 李新品种‘龙园秋李’. 中国果树, 1998(2): 26.
ZENG Y, MOU Y H, JIN D Y, LIU G H, LIU Y Z. A new plum variety ‘Longyuan Qiuli’. China Fruits, 1998(2): 26. (in Chinese)
[54]
刘硕, 徐铭, 张玉萍, 张玉君, 马小雪, 章秋平, 刘宁, 刘威生. 我国李育种研究进展、存在问题和展望. 果树学报, 2018, 35(2): 231-245.
LIU S, XU M, ZHANG Y P, ZHANG Y J, MA X X, ZHANG Q P, LIU N, LIU W S. Retrospect, problematical issues and the prospect of plum breeding in China. Journal of Fruit Science, 2018, 35(2): 231-245. (in Chinese)
[55]
唐世勇, 邢英丽, 王永杰, 才丰, 姜永峰. ‘岳寒红叶’李的选育. 北方园艺, 2007(11): 133-134.
TANG S Y, XING Y L, WANG Y J, CAI F, JIANG Y F. Breeding of Yuehan Hongye plum. Northern Horticulture, 2007(11): 133-134. (in Chinese)
[56]
李锋, 张冰冰, 计秀杰, 张艳波, 邢国杰. 抗寒紫叶李新品种‘长春彩叶李’. 园艺学报, 2007, 34(2): 534.
LI F, ZHANG B B, JI X J, ZHANG Y B, XING G J. A new variety of hardy purple-leaf plum ‘Changchun Caiye Li’. Acta Horticulturae Sinica, 2007, 34(2): 534. (in Chinese)
[57]
张艳波, 赵晨辉, 梁英海, 付立中, 李锋, 曹希俊, 计秀杰. 抗寒紫叶李新品种‘北国红’的选育. 北方园艺, 2013(12): 168-169.
ZHANG Y B, ZHAO C H, LIANG Y H, FU L Z, LI F, CAO X J, JI X J. A new variety breeding of hardy purple-leaf plum ‘Beiguohong’. Northern Horticulture, 2013(12): 168-169. (in Chinese)
[58]
陆致成, 李峰, 张静茹, 张艳波, 宋宏伟, 赵晨辉, 孙海龙. 鲜食观赏兼用李新品种‘一品丹枫’. 园艺学报, 2014, 41(12): 2547-2548.
LU Z C, LI F, ZHANG J R, ZHANG Y B, SONG H W, ZHAO C H, SUN H L. A new edible ornamental plum cultivar ‘Yipin Danfeng’. Acta Horticulturae Sinica, 2014, 41(12): 2547-2548. (in Chinese)
[59]
李怀玉, 方玉凤. 李实生后代变异与亲本选择. 北方园艺, 1990(4): 9-13.
LI H Y, FANG Y F. Variation of plum’s offspring and parental selection. Northern Horticulture, 1990(4): 9-13. (in Chinese)
[60]
孙伟, 高庆玉. 中国李自然杂交后代抗寒力、果实大小的遗传与变异. 东北农业大学学报, 2003, 34(3): 250-253.
SUN W, GAO Q Y. Inheritance of cold hardiness and fruit size in Chinese plum (Prunus salicina Lindl.). Journal of Northeast Agricultural University, 2003, 34(3): 250-253. (in Chinese)
[61]
SALAZAR J A, PACHECO I, SHINYA P, ZAPATA P, SILVA C, ARADHYA M, VELASCO D, RUIZ D, MARTÍNEZ-GÓMEZ P, INFANTE R. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina lindl.). Frontiers in Plant Science, 2017, 8: 476.
[62]
赵海娟, 刘宁, 张玉萍, 刘威生, 张玉君, 徐铭, 马小雪, 刘家成, 刘硕. 李果皮颜色遗传多样性及其成色因子研究进展. 果树学报, 2022, 39(8): 1479-1489.
ZHAO H J, LIU N, ZHANG Y P, LIU W S, ZHANG Y J, XU M, MA X X, LIU J C, LIU S. Research progress in genetic diversity and related factors of plum peel color. Journal of Fruit Science, 2022, 39(8): 1479-1489. (in Chinese)
[63]
方玉凤, 张风芳, 王官清, 李铎, 李松群, 李怀玉. 六号李、绥稜红李自然杂交后代某些性状的遗传. 沈阳农业大学学报, 1989, 20(1): 15-19.
FANG Y F, ZHANG F F, WANG G Q, LI D, LI S Q, LI H Y. Inheritance of some characters in naturally hybridized progeny from plum 6'X Sui Ling red plum. Journal of Shenyang Agricultural University, 1989, 20(1): 15-19. (in Chinese)
[64]
刘文东. 李树杂交后代亲子性状遗传变异规律. 中国林副特产, 2013(5): 96-97.
LIU W D. Genetic variation of parent-child traits in hybrid progeny of plum tree. Forest by-Product and Speciality in China, 2013(5): 96-97. (in Chinese)
[65]
VALDERRAMA-SOTO D, SALAZAR J, SEPÚLVEDA-GONZÁLEZ A, SILVA-ANDRADE C, GARDANA C, MORALES H, BATTISTONI B, JIMÉNEZ-MUÑOZ P, GONZÁLEZ M, PEÑA-NEIRA Á, INFANTE R, PACHECO I. Detection of quantitative trait loci controlling the content of phenolic compounds in an Asian plum (Prunus salicina L.) F1 population. Frontiers in Plant Science, 2021, 12: 679059.

doi: 10.3389/fpls.2021.679059
[66]
焦春雨, 陶可全, 于泽源, 沈铁恒. 中国李果实品质遗传倾向研究. 北方园艺, 1999(2): 23-25.
JIAO C Y, TAO K Q, YU Z Y, SHEN T H. Study on genetic tendency of fruit quality of China plum. Northern Horticulture, 1999(2): 23-25. (in Chinese)
[67]
DE MORI G, SAVAZZINI F, GEUNA F. Molecular tools to investigate Sharka disease in Prunus species. Applied Plant Biotechnology for Improving Resistance to Biotic Stress. Amsterdam: Elsevier, 2020: 203-223.
[68]
ATANASSOV D. Plum pox. A new virus disease. Annal of the University of Sofia Faculty Agriculture and Silvicultural, 1932, 11: 49-69.
[69]
HADIDI A, BARBA M, CANDRESSE T, JELKMANN W. Virus and Virus-Like Disease of Pome and stone Fruits. APS Press/American Phytopathological Society, 2011.
[70]
CAMBRA M CAPOTE N MYRTA A LLÁCER G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bulletin, 2006, 36(2): 202-204.

doi: 10.1111/epp.2006.36.issue-2
[71]
GARCÍA J A, GLASA M, CAMBRA M, CANDRESSE T. Plum pox virus and sharka: A model potyvirus and a major disease. Molecular Plant Pathology, 2014, 15(3): 226-241.

doi: 10.1111/mpp.12083 pmid: 24102673
[72]
NEUMÜLLER M, LANZL S, HARTMANN W, FEUCHT W, TREUTTER D. Towards an understanding of the inheritance of hypersensitivity resistance against the sharka virus in European plum (Prunus domestica L.): Generation of interspecific hybrids with lower ploidy levels. Acta Horticulturae, 2009, 814: 721-726.
[73]
RUBIO M, RODRÍGUEZ-MORENO L, BALLESTER A R, DE MOURA M C, BONGHI C, CANDRESSE T, MARTÍNEZ-GÓMEZ P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Molecular Plant Pathology, 2015, 16(2): 164-176.

doi: 10.1111/mpp.12169 pmid: 24989162
[74]
ZURIAGA E, SORIANO J M, ZHEBENTYAYEVA T, ROMERO C, DARDICK C, CAÑIZARES J, BADENES M L. Genomic analysis reveals MATH gene (s) as candidate (s) for plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). Molecular Plant Pathology, 2013, 14(7): 663-677.

doi: 10.1111/mpp.2013.14.issue-7
[75]
MARIETTE S, WONG JUN TAI F, ROCH G, BARRE A, CHAGUE A, DECROOCQ S, GROPPI A, LAIZET Y, LAMBERT P, TRICON D, NIKOLSKI M, AUDERGON J M, ABBOTT A G, DECROOCQ V. Genome-wide association links candidate genes to resistance to plum pox virus in apricot (Prunus armeniaca). The New Phytologist, 2016, 209(2): 773-784.

doi: 10.1111/nph.2016.209.issue-2
[76]
DECROOCQ S, CHAGUE A, LAMBERT P, ROCH G, AUDERGON J M, GEUNA F, CHIOZZOTTO R, BASSI D, DONDINI L, TARTARINI S, SALAVA J, KRŠKA B, PALMISANO F, KARAYIANNIS I, DECROOCQ V. Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to plum pox virus (PPV) in apricot. Tree Genetics & Genomes, 2014, 10(5): 1161-1170.
[77]
PASSARO M, GEUNA F, BASSI D, CIRILLI M. Development of a high-resolution melting approach for reliable and cost-effective genotyping of PPVres locus in apricot (P. armeniaca). Molecular Breeding, 2017, 37(6): 74.

doi: 10.1007/s11032-017-0666-0
[78]
ILARDI V, TAVAZZA M. Biotechnological strategies and tools for Plum pox virus resistance: Trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 2015, 6: 379.

doi: 10.3389/fpls.2015.00379 pmid: 26106397
[79]
LIMERA C, SABBADINI S, SWEET J B, MEZZETTI B. New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in Plant Science, 2017, 8: 1418.

doi: 10.3389/fpls.2017.01418 pmid: 28861099
[80]
GARCÍA-ALMODÓVAR R C, CLEMENTE-MORENO M J, DÍAZ- VIVANCOS P, PETRI C, RUBIO M, PADILLA I M G, ILARDI V, BURGOS L. Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell, Tissue and Organ Culture, 2015, 120(2): 791-796.

doi: 10.1007/s11240-014-0629-7
[81]
SIDOROVA T, PUSHIN A, MIROSHNICHENKO D, DOLGOV S. Generation of transgenic rootstock plum ((Prunus pumila L. ×P. salicina Lindl.) × (P. cerasifera Ehrh.)) using hairpin-RNA construct for resistance to the Plum pox virus. Agronomy, 2017, 8(1): 2.

doi: 10.3390/agronomy8010002
[82]
YAMANE H, TAO R, SUGIURA A. Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. Sordum). Plant Biotechnology, 1999, 16(5): 389-396.

doi: 10.5511/plantbiotechnology.16.389
[83]
BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl.). The Journal of Horticultural Science and Biotechnology, 2002, 77(6): 658-664.

doi: 10.1080/14620316.2002.11511553
[84]
BEPPU K, TAKEMOTO Y, YAMANE H, YAEGAKI H, YAMAGUCHI M, KATAOKA I, TAO R. Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science, 2003, 78(3): 315-318.
[85]
BEPPU K, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R. KATAOKA I. Analysis of S-RNase genes in self-compatible cultivars of Japanese plum, ‘Methley’, ‘Karari’ and ‘Kosyu’. Journal of the Japanese Society for Horticultural Science, 2004, 73(Suppl. 2): 253.
[86]
SAPIR G, STERN R, EISIKOWITCH D, GOLDWAY M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. The Journal of Horticultural Science and Biotechnology, 2004, 79(2): 223-227.

doi: 10.1080/14620316.2004.11511752
[87]
BEPPU K, KOMATSU N, YAMANE H, YAEGAKI H, YAMAGUCHI M, TAO R, KATAOKA I. Se-haplotype confers self-compatibility in Japanese plum (Prunus salicina Lindl.). The Journal of Horticultural Science and Biotechnology, 2005, 80(6): 760-764.

doi: 10.1080/14620316.2005.11512011
[88]
BEPPU K, SYOGASE K, YAMANE H, TAO R, KATAOKA I. Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se-RNase gene-specific PCR primers. The Journal of Horticultural Science and Biotechnology, 2010, 85(3): 215-218.
[89]
SUTHERLAND B G, ROBBINS T P, TOBUTT K R. Primers amplifying a range of Prunus S-alleles. Plant Breeding, 2004, 123(6): 582-584.

doi: 10.1111/pbr.2004.123.issue-6
[90]
SUTHERLAND B G, TOBUTT K R, ROBBINS T P. Molecular genetics of self-incompatibility in plums. Acta Horticulturae, 2004(663): 557-562.
[91]
VIEIRA E A, NODARI R O, DANTAS A C M, DUCROQUET J P H J, DALBÓ M, BORGES C V. Genetic mapping of Japanese plum. Cropp Breeding and Applied Biotechnology, 2005, 5(1): 29-37.

doi: 10.12702/1984-7033
[92]
CARRASCO B, GONZÁLEZ M, GEBAUER M, GARCÍA-GONZÁLEZ R, MALDONADO J, SILVA H. Construction of a highly saturated linkage map in Japanese plum (Prunus salicina L.) using GBS for SNP marker calling. PLoS ONE, 2018, 13(12): e0208032.

doi: 10.1371/journal.pone.0208032
[93]
ZHANG Q P, WEI X, LIU N, ZHANG Y P, XU M, ZHANG Y J, MA X X, LIU W S. Construction of an SNP-based high-density genetic map for Japanese plum in a Chinese population using specific length fragment sequencing. Tree Genetics & Genomes, 2020, 16(1): 18.
[94]
CALLAHAN A M, ZHEBENTYAYEVA T N, HUMANN J L, SASKI C A, GALIMBA K D, GEORGI L L, SCORZA R, MAIN D, DARDICK C D. Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and a de novo genome assembly of plum (Prunus domestica). Horticulture Research, 2021, 8: 8.

doi: 10.1038/s41438-020-00438-2
[95]
SCORZA R, CALLAHAN A, DARDICK C, RAVELONANDRO M, POLAK J, MALINOWSKI T, ZAGRAI I, CAMBRA M, KAMENOVA I. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum-From concept to product. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 115(1): 1-12.

doi: 10.1007/s11240-013-0339-6
[96]
FANG Z Z, KUI L W, DAI H, ZHOU D R, JIANG C C, ESPLEY R V, DENG C, LIN Y J, PAN S L, YE X F. The genome of low-chill Chinese plum ‘Sanyueli’ (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Molecular Ecology Resources, 2022, 22(5): 1919-1938.

doi: 10.1111/men.v22.5
[97]
LIU C Y, FENG C, PENG W Z, HAO J J, WANG J T, PAN J J, HE Y H. Chromosome-level draft genome of a diploid plum (Prunus salicina). GigaScience, 2020, 9(12): giaa130.

doi: 10.1093/gigascience/giaa130
[98]
JO Y, LIAN S, CHO J K, CHOI H, CHU H, CHO W K. De novo transcriptome assembly of two different Prunus salicina cultivars. Genomics Data, 2015, 6: 262-263.

doi: 10.1016/j.gdata.2015.10.015
[99]
JO Y, CHOI H, LIAN S, CHO J K, CHU H, CHO W K. Identification of viruses infecting six plum cultivars in Korea by RNA-sequencing. PeerJ, 2020, 8: e9588.

doi: 10.7717/peerj.9588
[100]
KIM H Y, SAHA P, FARCUH M, LI B S, SADKA A, BLUMWALD E. RNA-seq analysis of spatiotemporal gene expression patterns during fruit development revealed reference genes for transcript normalization in plums. Plant Molecular Biology Reporter, 2015, 33(6): 1634-1649.

doi: 10.1007/s11105-015-0860-3
[101]
GONZÁLEZ M, MALDONADO J, SALAZAR E, SILVA H, CARRASCO B. De novo transcriptome assembly of ‘Angeleno’ and ‘Lamoon’ Japanese plum cultivars (Prunus salicina). Genomics Data, 2016, 9: 35-36.

doi: 10.1016/j.gdata.2016.06.010
[102]
FANG Z Z, ZHOU D R, YE X F, JIANG C C, PAN S L. Identification of candidate anthocyanin-related genes by transcriptomic analysis of ‘Furongli’ plum (Prunus salicina Lindl.) during fruit ripening using RNA-seq. Frontiers in Plant Science, 2016, 7: 1338.
[103]
FARCUH M, LI B S, RIVERO R M, SHLIZERMAN L, SADKA A, BLUMWALD E. Sugar metabolism reprogramming in a non- climacteric bud mutant of a climacteric plum fruit during development on the tree. Journal of Experimental Botany, 2017, 68(21/22): 5813-5828.

doi: 10.1093/jxb/erx391
[104]
PICCOLO E L, ARANITI F, LANDI M, MASSAI R, GUIDI L, ABENAVOLI M R, REMORINI D. Girdling stimulates anthocyanin accumulation and promotes sugar, organic acid, amino acid level and antioxidant activity in red plum: An overview of skin and pulp metabolomics. Scientia Horticulturae, 2021, 280: 109907.

doi: 10.1016/j.scienta.2021.109907
[105]
PETRI C, WEBB K, HILY J M, DARDICK C, SCORZA R. High transformation efficiency in plum (Prunus domestica L.): A new tool for functional genomics studies in Prunus spp. Molecular Breeding, 2008, 22(4): 581-591.

doi: 10.1007/s11032-008-9200-8
[106]
MANTE S, MORGENS P H, SCORZA R, CORDTS J M, CALLAHAN A M. Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Bio/Technology, 1991, 9(9): 853-857.
[107]
GONZALEZ-PADILLA I M, WEBB K, SCORZA R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Reports, 2003, 22(1): 38-45.

doi: 10.1007/s00299-003-0648-z
[108]
TIAN L N, WEN Y, JAYASANKAR S, SIBBALD S. Regeneration of Prunus salicina Lindl (Japanese plum) from hypocotyls of mature seeds. In Vitro Cellular & Developmental Biology - Plant, 2007, 43(4): 343-347.
[109]
RAVELONANDRO M, SCORZA R, POLAK J, CALLAHAN A, KRŠKA B, KUNDU J B, BRIARD P. ‘Honey Sweet’ plum-A valuable genetically engineered fruit-tree cultivar. Food and Nutrition Sciences, 2013, 4(6): 45-49.
[110]
SRINIVASAN C, DARDICK C, CALLAHAN A, SCORZA R. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS ONE, 2012, 7: E40715.

doi: 10.1371/journal.pone.0040715
[111]
刘威生. 最新李、杏新品种(系)简介. 果农之友, 2017(5): 4-6.
LIU W S. Brief introduction of the latest new plum and apricot varieties (lines). Fruit Growers’ Friend, 2017(5): 4-6. (in Chinese)
[112]
RUIZ D, COS J, NICOLÁS-ALMANSA M, EGEA J, GARCÍA F, CARRILLO A, RUBIO M, LÓPEZ D, SALAZAR J, GUEVARA A. New promising Japanese plum cultivars for warm areas from CEBAS-CSIC/IMIDA breeding programme. Acta Horticulturae, 2021, 1322: 55-60.
[1] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[2] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[3] YIN Chang, ZHU Mo, CHEN YanRu, TONG ShiFeng, ZHAO GuiPing, LIU Yang. Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data [J]. Scientia Agricultura Sinica, 2023, 56(15): 3032-3039.
[4] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
[5] CHEN Jie, CHEN Wei. The Genetic Basis of Flavonoid Contents in Wheat and Its Application in Functional Wheat Variety Breeding [J]. Scientia Agricultura Sinica, 2023, 56(13): 2431-2442.
[6] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[7] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[8] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[9] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[10] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[11] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[12] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[13] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[14] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[15] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!