Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1760-1774.doi: 10.3864/j.issn.0578-1752.2023.09.012

• HORTICULTURE • Previous Articles     Next Articles

Determination and Analysis of Flavonoids Metabolites in Different Colors Cultivars and Blooming Stages of Prunus mume

WU SiHui(), ZHU HuanHuan, ZHANG JunWei, BAO ManZhu, ZHANG Jie()   

  1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University/ National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070
  • Received:2022-06-20 Accepted:2022-08-29 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】Flower color is an extremely important ornamental trait of Prunus mume (P. mume), and flavonoids are the main pigments in the petals of P. mume. However, there are few systematic studies on the composition of flavonoids and the relationship between flower color and flavonoids in P. mume. The study on flavonoids can provide a reference for the mechanism of flower color formation and the development of flavonoids resources in P. mume.【Method】In this study, the petals of four P. mume cultivars with representative flower color in the blooming stage and the key period of flower color change of two cultivars were selected as materials. The flower color phenotype of petals was measured with the Royal Horticultural Society Color Card (RHSCC) and colorimeter. Flavonoids in those petals of flowers were determined by high-performance liquid chromatography and mass spectrometric (HPLC-MS) detectors. Then, Duncan test and OPLS-DA were used to analyze the difference of metabolites among these four cultivars and the major blooming stages. 【Result】In total, 25 flavonoids were determined in P. mume. The main components of red Baixu Zhusha and purple-red Huqiu Wanfen were anthocyanins. But the contents of cyanidin and its derivatives between Baixu Zhusha and Huqiu Wanfen were different. In addition, from the big budding stage to the blooming stage, the red color of Baixu Zhusha gradually became lighter, and the contents of cyanidin-3-O-glucoside and peonidin-3-O-glucoside also gradually decreased. Yellow-green Bian Lv’e and pure white Sanlun Yudie were most enriched with quercetin and its derivatives. The contents of quercetin derivatives between Bian Lv’e and Sanlun Yudie were different. 【Conclusion】The flavonoid metabolic profiles differed among the different colored petal of P. mume, and flavonoids with medicinal value were distributed in all varieties. The difference in the contents of cyanidin and peonidin might be related to petal color differences of red P. mume. Quercetin derivatives might affect the color of yellow-green P. mume. In this study, the flavonoids metabolites of different color P. mume were identified and analyzed for the first time, and the differences in flower color P. mume varieties and the blooming process were preliminarily understood from the metabolic level. The results provided a reference for understanding the difference of flower color formation and development of flavonoid resources of P. mume.

Key words: Prunus mume, flower color, flavonoids, HPLC-Q-TOF-MS

Fig. 1

Flower color of P. mume A: Flower color of four P. mume cultivars at Blooming stage. B, C: Flower color of different developmental stages of P. mume Bian Lv’e and Baixu Zhusha. S1: Flower budding stage; S2: Early flowering stage; S3: Blooming stage. BXZS: Baixu Zhusha; HQWF: Huqiu Wanfen; SLYD: Sanlun Yudie; BLE: Bian Lv’e. The same as below"

Fig. 2

Cyanidin 3-O-glucoside LCMS chromatography mass spectrometry infographic in petals of P. mume A: Total ion flow chromatogram of Cyanidin 3-O-glucoside in petals. B: Primary mass spectrum of Cyanidin 3-O-glucoside in petals. C-E: LC-MS/MS Spectrum of Cyanidin 3-O-glucoside in petals at collision energies of 10 ev, 20 ev and 30 ev"

Table 1

Flower color parameters (L*, a*, b*) in four cultivars of P. mume"

品种 Cultivar 时期 Period RHSCC L* a* b*
变绿萼
Bian Lv’e
S1 Yellow group 4B 62.37±2.20c -4.40±0.47f 16.59±0.79a
S2 Yellow group 4D 67.35±3.14b -2.33±0.65e 11.71±2.96b
S3 Yellow group 4D 67.63±3.06b -2.89±0.23ef 7.40±0.67c
白须朱砂
Baixu Zhusha
S1 Red group 53A 13.77±2.39g 36.64±1.83a 3.89±0.71d
S2 Red group 53C 37.38±4.88e 33.62±1.79b -3.71±0.66e
S3 Red group 54A 26.67±4.30f 31.61±2.76c -3.92±0.93e
虎丘晚粉 Huqiu Wanfen S3 Red-purple group 62B 51.70±1.09d 20.48±0.60d -5.96±0.10f
三轮玉蝶 Sanlun Yudie S3 White group nn155C 74.86±1.51a -3.04±0.31ef 7.25±0.54c

Table 2

HPLC-ESI-MS analysis of main flavonoids in petals of four P. mume cultivars"

化合物名称
Compound name
正模式质荷比
[M+H]+(m/z)
正模式离子碎片质荷比
MS/MS (m/z)
保留时间
Rt (min)
矢车菊素3-O-葡萄糖苷
Cyanidin 3-O-glucoside
449.1071 10 ev: 287.0536 6.0
20 ev: 287.0537
30 ev: 287.0538
矢车菊素3-芸香糖苷
Cyanidin-3-rutinoside
595.1629 10 ev: 287.0551 6.2
20 ev: 287.0549
30 ev: 287.0550
矢车菊素3-芸香糖苷5-葡萄糖苷
Cyanidin 3-rutinoside 5-glucoside
757.2196 10 ev: 303.0409,755.2402 7.8
20 ev: 303.0416,755.2425
30 ev: 303.0430,755.2341
山奈素
Kaempferide; Kaempferol 4'-methyl ether
301.0524 30 ev: 72.0798,202.0611,286.0480 7.6
山奈酚-3-O葡萄糖苷
Kaempferol-3-O-glucoside
449.1071 10 ev: 287.0559 8.3
20 ev: 287.0559
30 ev: 287.0557
山奈酚
Kaempferol
287.0545 10 ev: 149.0202, 287.0547 5.3
20 ev: 137.0215, 231.0650, 287.0544
30 ev: 69.0002, 213.0538, 287.0542
山奈酚-3-O-芸香糖苷
Kaempferol-3-O-rutinoside
593.1539 30 ev: 285.0431 8.9
芍药花素-3-O-葡萄糖苷
Peonidin-3-O- glucoside
463.1195 10 ev: 301.0711 6.6
槲皮素
Quercetin
303.0499 10 ev: 153.01 8.5
20 ev: 229.05, 153.01
槲皮素异构体
Quercetin isomer
303.0486 10 ev: 303.0434 7.8
20 ev: 303.043, 301.0641, 286.0394
30 ev: 303.0454, 258.0450
槲皮素-3,7-双葡萄糖苷
Quercetin-3,7-diglucoside
627.1858 10 ev: 151.0314, 319.0741, 481.1279, 625.3231 7.5
20 ev: 151.0334, 319.0736, 463.1130, 625.3202
30 ev: 71.0443, 151.0331, 303.0426, 437.1963, 648.3270
槲皮素-3-O-芸香糖苷
Quercetin-3-O-rutinoside
611.1534 10 ev: 94.1824, 301.0704, 463.1231, 609.1819 6.3
20 ev: 205.3925, 301.0708, 463.1223, 609.1810
30 ev: 141.9134, 301.0709, 463.1199, 609.1809
异鼠李素
Isorhamnetin; Quercetin 3'-methyl ether
317.0656 10 ev: 301.03, 285.03, 153.01 8.9
20 ev: 301.03, 153.01
槲皮素-3-芸香糖苷-5-葡萄糖苷
Quercetin-3-rutinoside 5-glucoside
757.2196 10 ev: 85.0219, 303.0416, 465.1002, 611.1565 7.8
20 ev: 129.0483, 303.0445, 465.0944
30 ev: 85.0244, 303.0469
槲皮素3-O-葡萄糖苷-7-O鼠李糖苷
Quercetin 3-O-glucoside-7-O-rhamnoside
611.1606 10 ev: 303.0483, 465.1007 8.3
30 ev: 85.0625, 303.0484
槲皮素3-O-葡萄糖-2′-O-鼠李糖苷
Quercetin 3-O-glucosyl-2′-O-rhamnoside
611.1546 10 ev: 609.1796, 303.0475, 465.1001 7.8
20eV: 463.1212, 303.0477
30ev: 303.0678, 301.0678
槲皮素7-O-葡萄糖苷
Quercetin 7-O-glucoside
465.1087 10ev: 465.1363, 303.0662 14.5
20ev: 303.0560
30ev: 303.0497, 169.0475
槲皮素-3-O-半乳糖苷
Quercetin-3-O-galactoside
465.1025 10ev: 303.05, 85.02; 8.5
20ev: 303.05, 85.02
L-苯丙氨酸
L-Phenylalanine
166.0869 10ev: 120.0806 1.6
20ev: 120.0806
30ev: 103.0541
柚皮苷查尔酮
Naringenin chalcone
273.0756 10ev: 147.04; 11.0
20ev: 147.04, 119.04
柚皮素
Naringenin
273.0759 10ev: 273.0750, 147.0436 13.2
20ev: 147.0434, 67.0178
30ev: 147.0427
表儿茶素
(-)-Epicatechin
291.0853 10ev: 139.0390, 207.0639 5.5
20ev: 139.0386, 207.0621
30ev: 139.0389, 207.0641
反式肉桂酸
Trans-Cinnamic acid
149.0247 10ev: 121.02; 18.3
20ev: 65.03, 93.03
芹菜素 7-O-葡萄糖苷
Apigenin 7-O-glucoside
433.1135 10ev: 72.0768, 271.0599, 433.1102 6.1
20ev: 82.6298, 202.0812, 271.0597,334.1545, 433.1174
30ev: 70.0605, 213.1108, 271.0592, 381.7757
山奈酚-3-O-鼠李糖苷
Kaempferol-3-O-rhamnoside
609.1741 10ev: 145.4769, 301.0702, 463.1191, 609.1807 7.7
20ev: 92.4395, 203.3603, 301.0692, 463.1283, 609.1791
30ev: 186.6128, 301.0693, 411.0933, 514.2045, 609.1769

Table 3

Contents of flavonoids in the four P. mume cultivars (μg·g-1 DW)"

化合物
Compound
变绿萼 BLE 白须朱砂 BXZS 虎丘晚粉 HQWF 三轮玉蝶 SLYD
S1 S2 S3 S1 S2 S3 S3 S3
矢车菊素及其衍生物
Cyanidin & der
23.19433±6.9111d 25.09807±6.8230d 24.49049±7.3049d 321.5764±29.0342a 269.4438±18.2802b 253.556±30.1520b 160.8748±31.0443c 13.17457±0.1746d
矢车菊素3-O-葡萄糖苷
Cyanidin 3-O-glucoside
0.249347±0.0548d 0.139457±0.0678d 0.274866±0.1378d 93.93701±12.6386a 74.49009±4.3347b 60.89043±6.2950b 46.79961±23.4663bc 0.521509±0.1627d
矢车菊素3-芸香糖苷
Cyanidin-3-rutinoside
0.642434±0.2695d 0.558807±0.1495d 0.910013±0.3881d 211.0013±15.3996a 179.0807±13.4858b 178.6813±22.4044b 96.79291±13.8961c 0.62395±0.1091d
矢车菊素3-芸香糖苷
5-葡萄糖苷
Cyanidin 3-rutinoside
5-glucoside
22.30255±6.5177ab 24.3998±6.6175a 23.30561±6.8268ab 16.63812±0.9968abc 15.87305±0.7590bc 13.98424±1.9486c 17.28227±3.0547abc 12.02911±0.6131c
山奈酚及其衍生物
Kaempferol & der
12.039843±3.536734c 16.111499±5.237862abc 21.224891±6.160233ab 22.048986±1.369479a 15.385608±0.495482bc 17.051458±2.376146abc 10.810202±3.056987c 1.908766±0.399028d
山奈素
Kaempferide; Kaempferol
4'-methyl ether
0.016243±0.0048d 0.009454±0.0056d 0.02076±0.0055d 1.855746±0.0448a 1.146767±0.0355b 1.052439±0.2283b 0.693246±0.3230c 0.173516±0.1425d
山奈酚-3-O-葡萄糖苷
Kaempferol-3-O-glucoside
0.015771±0.0070d 0.01793±0.0065d 0.012593±0.0076d 1.253472±0.2721a 0.708758±0.0147b 0.573263±0.0665b 0.315604±0.0796c 0.018661±0.0050d
山奈酚-3-O-鼠李糖苷
Kaempferol-3-O-
rhamnoside
0.009559±0.004562d 0.019423±0.020323d 0.038939±0.030278d 0.987042±0.022245a 0.702135±0.118513b 0.487248±0.036127c 0.427012±0.077698c 0.036522±0.010289d
山奈酚-3-O-芸香苷
Kaempferol-3-O-
rutinoside
11.89954±3.481270 15.97536±5.185996 21.04374±6.104958 11.07224±0.700547 7.56201±0.302161 10.45844±1.243375 6.361733±2.840426 1.613098±0.428618
山奈酚 Kaempferol 0.098726±0.0431e 0.089327±0.0345e 0.108864±0.0826e 6.88048±0.6611a 5.265938±0.1937b 4.480064±0.8063c 3.012608±0.4844d 0.066971±0.0427e
芍药花素-3-O-葡萄糖苷
Peonidin-3-O- glucoside
0.420124±0.2741d 0.366318±0.1059d 0.517428±0.1684d 63.40979±1.9240a 44.75599±2.0250c 41.2506±5.9861c 49.74721±1.4274b 2.352412±0.2994d
槲皮素及其衍生物
Quercetin & der
200.374354±
57.008561ab
242.845297±
74.146893a
222.257814±
65.306397ab
228.546233±
7.007537a
200.196038±
10.677757ab
170.253340±
13.654091ab
193.904286±
11.710335ab
141.676222±
25.143431b
槲皮素 Quercetin 42.20025±12.2538ab 58.65711±17.8150a 47.3339±13.6162ab 42.06114±2.0141ab 31.96046±7.9260b 30.28114±4.9902b 35.11689±6.5489b 30.17527±9.7758b
槲皮素异构体
Quercetin isomer
6.555547±1.8943b 7.493562±2.2430b 7.033184±2.0142b 7.453166±0.3934b 7.634126±0.2950b 7.077829±0.7544b 15.66637±0.9024a 6.985342±0.8417b
槲皮素-3,7-双葡萄糖苷
Quercetin-3,7-
diglucoside
0.060759±0.041564c 0.251933±0.186512b 0.146210±0.067174bc 0.651130±0.016990a 0.629594±0.161718a 0.482118±0.144907a 0.053750±0.002803c 0.003918±0.002702c
槲皮素-3-O-芸香糖苷
Quercetin-3-O-rutinoside
0.212903±0.022909d 0.222162±0.097577d 0.356247±0.112679d 33.537172±1.631710a 23.542008±0.842671b 15.288866±3.932766c 16.317309±1.942946c 0.245465±0.009894d
异鼠李素
Isorhamnetin;Quercetin 3′-methyl ether
7.371176±2.2000b 8.068227±2.6434b 8.024497±2.2624b 15.14279±0.9453a 13.55353±0.3221a 10.07927±1.0379b 8.748217±1.1888b 15.68826±1.5345a
槲皮素-3-芸香糖苷-5-
葡萄糖苷
Quercetin-3-rutinoside 5-
glucoside
22.30255a±6.5177b 24.3998±6.6175a 23.30561±6.8268ab 16.63812±0.9968abc 15.87305±0.7590bc 13.98424±1.9486c 17.28227±3.0547abc 12.02911±0.6131c
槲皮素3-O-葡萄糖苷-
7-O-鼠李糖苷
Quercetin 3-O-glucoside-
7-O-rhamnoside
64.97899±17.4415ab 72.9125±23.7989ab 73.97492±21.8967a 57.18113±5.5179abc 57.79963±2.5607abc 46.23906±12.2725bcd 36.60222±7.8126cd 26.77078±6.4454d
槲皮素3-O-葡萄糖-
2′-O-鼠李糖苷
Quercetin 3-O-glucosyl-
2′-O-rhamnoside
14.02704±4.0676abc 15.54876±4.6518ab 14.55381±4.3332abc 10.90494±0.3330bcd 9.897494±0.5319cd 9.431123±1.2302cd 16.62659±1.1178a 7.637097±2.2670d
槲皮素7-O-葡萄糖苷
Quercetin 7-O-glucoside
0.042835±0.0132ab ab 0.111345±0.1015a 0.042843±0.0156ab 0.054035±0.0176ab 0.033442±0.0079b 0.027085±0.0049b 0.021169±0.0035b 0.029225±0.0052b
槲皮素-3-O-半乳糖苷
Quercetin-3-O-galactoside
42.62231±12.8750 55.17989±16.5587 47.48659±14.2470 44.92262±2.1676 39.27272±1.6622 37.3626±4.6147 47.4695±9.0405 42.11175±4.0862
L-苯丙氨酸
L-Phenylalanine
24.77084±7.4279a 16.19404±5.3306b 17.89174±6.1028ab 9.427442±0.5934b 11.22424±0.7072b 11.53852±1.9330b 17.87086±2.0441ab 11.51065±4.6518b
柚皮苷查尔酮
Naringenin chalcone
11.21684±3.4274a 6.953229±2.4991bc 7.454445±2.1761b 7.338072±0.2187bc 4.580403±1.1159bc 5.911066±1.9611bc 0.279398±0.0346d 3.375202±2.6888cd
柚皮素 Naringenin 12.65308±4.7083ab 14.15428±5.8258a 9.227665±2.7799abc 7.578553±0.4136bc 6.651657±0.2251c 5.794245±0.9580c 0.549027±0.1002d 0.236822±0.0358d
表儿茶素
(-)-Epicatechin
2.025451±0.9418bc 1.727742±0.6128ab 2.010675±0.5011a 2.570646±0.2547bc 1.810294±0.1534bc 0.971233±0.3021bc 4.634156±1.3968bc 1.918482±0.3843bc
反式肉桂酸
Trans-Cinnamic acid
3.480043±1.2166bc 4.841706±1.8355bc 6.098765±1.6982bc 3.544063±0.3825b 2.527856±0.1313bc 2.87155±1.2722c 3.778505±0.5008a 2.775261±0.1719bc
芹菜素 7-O-葡萄糖苷
Apigenin 7-O-glucoside
0.062301±0.010509d 0.118913±0.050070d 0.171347±0.097035d 0.964745±0.102368a 0.635227±0.035925b 0.500521±0.051291bc 0.356049±0.250628c 0.044238±0.018730d

Fig. 3

A heat map of correlation matrix of color parameters and 25 compounds from petals of P. mume Each square indicates Pearson’s correlation coefficient for a pair of data, and the intensity of blue and red colors in the heat map indicates the level of positive and negative correlation, respectively. * indicate significant correlation level (*: P<0.05; **: P<0.01)"

[1]
陈俊愉. 中国梅花. 海口: 海南出版社, 1996: 12-58.
CHEN J Y. Chinese Mei flowers. Haikou: Hainan Publishing House, 1996: 12-58. (in Chinese)
[2]
JIANG L B, ZHANG M, MA K F. Whole-genome DNA methylation associated with differentially expressed genes regulated anthocyanin biosynthesis within flower color Chimera of ornamental tree Prunus mume. Forests, 2020, 11(1): 90.

doi: 10.3390/f11010090
[3]
陈俊愉. 中国梅花品种图志. 北京: 中国林业出版社, 2010.
CHEN J Y. Atlas of plum blossom varieties in China. Beijing: China Forestry Publishing House, 2010. (in Chinese)
[4]
赵昶灵, 陈俊愉, 刘雪兰, 赵兴发, 刘全龙. 理化因素对梅花‘南京红须’花色色素颜色呈现的效应. 南京林业大学学报(自然科学版), 2004, 28(2): 27-32.
ZHAO C L, CHEN J Y, LIU X L, ZHAO X F, LIU Q L. Effects of physical and chemical factors on the color expression of the flower color pigment of Prunus mume sieb.et zucc. ‘Nanjing hongxu’ (Nanjing Red-bearded). Journal of Nanjing Forestry University, 2004, 28(2): 27-32. (in Chinese)
[5]
赵昶灵, 郭维明, 陈俊愉. 梅花‘南京红须’花色色素花色苷的分离与结构鉴定. 林业科学, 2006, 42(1): 29-36.
ZHAO C L, GUO W M, CHEN J Y. Isolation and structural identification of the anthocyanins from the flower color pigment of Prunus mume ‘Nanjing hongxu’ (Nanjing red-bearded). Scientia Silvae Sinicae, 2006, 42(1): 29-36. (in Chinese)
[6]
张芹. 梅花花青苷合成调控基因R2R3-MYB的鉴定及功能分析[D]. 北京: 北京林业大学, 2017.
ZHANG Q. Identification and functional analysis of the regulation gene R2R3-MYB for anthocyanin synthesis in Prunus mume[D]. Beijing: Beijing Forestry University, 2017. (in Chinese)
[7]
郑毓珍, 卢静华, 孙玉琦. HPLC法同时测定白梅花中6种黄酮类成分. 中成药, 2018, 40(9): 2007-2010.
ZHENG Y Z, LU J H, SUN Y Q. Simultaneous determination of six flavonoids in Prunus mume flowers by HPLC. Chinese Traditional Patent Medicine, 2018, 40(9): 2007-2010. (in Chinese)
[8]
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal: for Cell and Molecular Biology, 2008, 54(4): 733-749.

doi: 10.1111/j.1365-313X.2008.03447.x
[9]
HARBORNE J B, WILLIAMS C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55(6): 481-504.

doi: 10.1016/s0031-9422(00)00235-1 pmid: 11130659
[10]
WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.

doi: 10.1104/pp.126.2.485
[11]
CROZIER A, JAGANATH I B, CLIFFORD M N. Dietary phenolics: Chemistry, bioavailability and effects on health. Natural Product Reports, 2009, 26(8): 1001-1043.

doi: 10.1039/b802662a pmid: 19636448
[12]
SUN C D, LIU Y L, ZHAN L H, RAYAT G R, XIAO J B, JIANG H M, LI X, CHEN K S. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology, 2021, 117: 3-14.
[13]
BAILLY C. Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). Journal of Ethnopharmacology, 2020, 246: 112215.

doi: 10.1016/j.jep.2019.112215
[14]
KO B S, KIM D S, KANG S N, RYUK J A, PARK S. Prunus mume and Lithospermum erythrorhizon extracts synergistically prevent visceral adiposity by improving energy metabolism through potentiating hypothalamic leptin and insulin signalling in ovariectomized rats. Evidence-Based Complementary and Alternative Medicine, 2013, 2013: 750986.
[15]
HATTORI M, KAWAKAMI K, AKIMOTO M, TAKENAGA K, SUZUMIYA J, HONMA Y. Antitumor effect of Japanese apricot extract (MK615) on human cancer cells in vitro and in vivo through a reactive oxygen species-dependent mechanism. Tumori, 2013, 99(2): 239-248.

doi: 10.1177/030089161309900220
[16]
MITANI T, OTA K, INABA N, KISHIDA K, KOYAMA H A. Antimicrobial activity of the phenolic compounds of Prunus mume against enterobacteria. Biological & Pharmaceutical Bulletin, 2018, 41(2): 208-212.
[17]
SENEVIRATNE C J, WONG R W K, HÄGG U, CHEN Y, HERATH T D K, SAMARANAYAKE P L, KAO R. Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria. International Journal of Paediatric Dentistry, 2011, 21(4): 299-305.

doi: 10.1111/ipd.2011.21.issue-4
[18]
张清华, 张玲, 尚立霞, 邵成雷, 吴永霞. 白梅花的化学成分研究. 中药材, 2008, 31(11): 1666-1668.
ZHANG Q H, ZHANG L, SHANG L X, SHAO C L, WU Y X. Studies on the chemical constituents of flowers of Prunus mume. Journal of Chinese Medicinal Materials, 2008, 31(11): 1666-1668. (in Chinese)
[19]
陈明珠, 陈静, 黄幼霞, 程晶, 廖婉婷. 绿萼梅总黄酮对慢性应激抑郁模型大鼠抑郁行为的影响及机制研究. 中国药房, 2017, 28(13): 1758-1762.
CHEN M Z, CHEN J, HUANG Y X, CHENG J, LIAO W T. Study on the effects and mechanism of total flavonoids from Armeniaca mume on depression in chronic stress depression model rats. China Pharmacy, 2017, 28(13): 1758-1762. (in Chinese)
[20]
陈静, 陈明珠, 黄玉香, 程晶, 黄雅平. 绿萼梅总黄酮对慢性温和刺激所致抑郁大鼠神经内分泌和氧化应激的影响. 药学实践杂志, 2019, 37(3): 226-230.
CHEN J, CHEN M Z, HUANG Y X, CHENG J, HUANG Y P. Effects of total flavonoids from Armeniaca mume on neuroendocrine and oxidative stress of rats with depression induced by chronic mild stress. Journal of Pharmaceutical Practice, 2019, 37(3): 226-230. (in Chinese)
[21]
UTSUNOMIYA H, TAKEKOSHI S, GATO N, UTATSU H, MOTLEY E D, EGUCHI K, FITZGERALD T G, MIFUNE M, FRANK G D, EGUCHI S. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sciences, 2002, 72(6): 659-667.

pmid: 12467906
[22]
JO C, KIM B, LEE S, HAM I, LEE K, CHOI H Y. Vasorelaxant effect of Prunus mume (siebold) siebold & zucc. branch through the endothelium-dependent pathway. Molecules, 2019, 24(18): 3340.

doi: 10.3390/molecules24183340
[23]
GONG X P, TANG Y, SONG Y Y, DU G, LI J. Comprehensive review of phytochemical constituents, pharmacological properties, and clinical applications of Prunus mume. Frontiers in Pharmacology, 2021, 12: 679378.

doi: 10.3389/fphar.2021.679378
[24]
YUN Z, GAO H J, LIU P, LIU S Z, LUO T, JIN S, XU Q, XU J, CHENG Y J, DENG X X. Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. BMC Plant Biology, 2013, 13: 44.

doi: 10.1186/1471-2229-13-44 pmid: 23497220
[25]
WISHART D S, FEUNANG Y D, MARCU A, GUO A C, LIANG K, VÁZQUEZ-FRESNO R, SAJED T, JOHNSON D, LI C, KARU N, SAYEEDA Z, LO E, ASSEMPOUR N, BERJANSKII M, SINGHAL S, ARNDT D, LIANG Y, BADRAN H, GRANT J, SERRA- CAYUELA A, LIU Y F, MANDAL R, NEVEU V, PON A, KNOX C, WILSON M, MANACH C, SCALBERT A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research, 2018, 46(D1): D608-D617.
[26]
张芹, 徐宗大, 赵凯, 李晓伟, 张罗沙, 张启翔. 梅花花青素苷调控基因PmMYB1的分离及功能分析. 林业科学, 2018, 54(10): 64-72.
ZHANG Q, XU Z D, ZHAO K, LI X W, ZHANG L S, ZHANG Q X. Isolation and biological function analysis of anthocyanin regulatory gene PmMYB1 from Prunus mume. Scientia Silvae Sinicae, 2018, 54(10): 64-72. (in Chinese)
[27]
DIRETTO G, JIN X, CAPELL T, ZHU C F, GOMEZ-GOMEZ L. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS ONE, 2019, 14(2): e0212062.

doi: 10.1371/journal.pone.0212062
[28]
赵昶灵, 郭维明, 陈俊愉. 梅花花色色素种类和含量的初步研究. 北京林业大学学报, 2004, 26(2): 68-73.
ZHAO C L, GUO W M, CHEN J Y. Preliminary study on the categories and contents of the flower color pigments of Prunus mume Sieb. et Zucc. Journal of Beijing Forestry University, 2004, 26(2): 68-73. (in Chinese)
[29]
孟晗, 付灯祥, 吴艳梅, 金雪花. 花毛茛和银莲花花瓣中花青素苷组成及含量与其花色的关系. 园艺学报, 2020, 47(12): 2362-2372.
MENG H, FU D X, WU Y M, JIN X H. Relationship between the composition and content of anthocyanin in petals of Ranunculus asiaticus and Anemone cathayensis and their flower color. Acta Horticulturae Sinica, 2020, 47(12): 2362-2372. (in Chinese)
[30]
戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011.

doi: 10.3864/j.issn.0578-1752.2016.03.011
DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3): 529-542. doi: 10.3864/j.issn.0578-1752.2016.03.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.03.011
[31]
李辛雷, 王佳童, 孙振元, 王洁, 殷恒福, 范正琪, 李纪元. 金花茶和白色山茶及其3个杂交品种类黄酮成分与花色的关系. 园艺学报, 2019, 46(6): 1145-1154.

doi: 10.16420/j.issn.0513-353x.2018-0603
LI X L, WANG J T, SUN Z Y, WANG J, YIN H F, FAN Z Q, LI J Y. Flavonoid components and their effects on flower colors in Camellia nitidissima, white C. japonica and their three hybrid cultivars. Acta Horticulturae Sinica, 2019, 46(6): 1145-1154. (in Chinese)
[32]
ZHANG J F, QIU X J, TAN Q Y, XIAO Q M, MEI S Y. A Comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). Journal of Agricultural and Food Chemistry, 2020, 68: 14463-14470.

doi: 10.1021/acs.jafc.0c05031
[33]
赵昶灵. 几个梅花品种花色的时空变化、花色苷的分子结构和F3'H克隆的研究[D]. 南京: 南京农业大学, 2005.
ZHAO C L. Temporal and spatial changes of flower colors, molecular structure of anthocyanins and F3'H cloning of several plum cultivars[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
[1] HAO RuiJie, QIU Chen, GENG XiaoYun, JIA HaoTian, ZHANG YaJing, CHANG Jun, FENG XinXin. The Function of PmABCG9 Transporter Related to the Volatilization of Benzyl Alcohol in Prunus mume [J]. Scientia Agricultura Sinica, 2023, 56(13): 2574-2585.
[2] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[3] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[4] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[5] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[6] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[7] LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan. The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica [J]. Scientia Agricultura Sinica, 2019, 52(11): 1961-1969.
[8] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[9] LIU XiaoCong, ZENG Li, LIU GuoFeng, PENG YongZheng, TAO YiWei, ZHANG YaoYue, WANG MengRu. Cloning and Expression Analysis of Carotenoid Cleavage Dioxygenase 1 (CCD1) Gene in Tagetes erecta L.
 
[J]. Scientia Agricultura Sinica, 2017, 50(10): 1930-1940.
[10] WU Yan-qing, ZHAO Da-qiu, TAO Jun. Analysis of Codon Usage Pattern of Paeonia lactiflora Genes Regulating Flower Color and Its Influence Factors [J]. Scientia Agricultura Sinica, 2016, 49(12): 2368-2378.
[11] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[12] ZHANG Ling, XU Zong-da, TANG Teng-fei, ZHANG Hui, ZHAO Lan-yong. Analysis of Anthocyanins Related Compounds and Their Biosynthesis Pathways in Rosa rugosa ‘Zi zhi’ at Blooming Stages [J]. Scientia Agricultura Sinica, 2015, 48(13): 2600-2611.
[13] ZHENG Jie, ZHAO Qi-yang, ZHANG Yao-hai, JIAO Bi-ning. Simultaneous Determination of Main Flavonoids and Phenolic Acids in Citrus Fruit by Ultra Performance Liquid Chromatography [J]. Scientia Agricultura Sinica, 2014, 47(23): 4706-4717.
[14] LI Jun, ZHAO Ai-chun, UMUHOZA Diane, WANG Xi-ling, LIU Chang-ying, LU Cheng, YU Mao-de. Cloning and Function Analysis of a MaDFR Gene from Mulberry [J]. Scientia Agricultura Sinica, 2014, 47(22): 4524-4532.
[15] SU Dong-Xiao-1, 2 , ZHANG Rui-Fen-1, ZHANG Ming-Wei-1, HUANG Fei-1, 2 , WEI Zhen-Cheng-1, ZHANG Yan-1, TI Hui-Hui-1, DENG Yuan-Yuan-1, TANG Xiao-Jun-1. Separation and Purification of Polyphenol in Litchi Pulp by Macroporous Resin [J]. Scientia Agricultura Sinica, 2014, 47(14): 2897-2906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!