Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1113-1126.doi: 10.3864/j.issn.0578-1752.2023.06.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat

WANG XiaoXuan1,2(), ZHANG Min1,2, ZHANG XinYao1,2, WEI Peng1,2, CHAI RuShan1,2, ZHANG ChaoChun2,3, ZHANG LiangLiang1,2, LUO LaiChao1,2(), GAO HongJian1,2   

  1. 1 College of Resources and Environment, Anhui Agricultural University/Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention/Research Center of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Zone, Hefei 230036
    2 College of Resources and Environment, Anhui Agricultural University/Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, Hefei 230036
    3 College of Resource and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2022-02-11 Accepted:2022-03-29 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 Effects of different phosphorus (P) fertilizers application on soil P transformation as well as P uptake and utilization in wheat were investigated, so as to provide a theoretical basis for precise matching and efficient utilization of P fertilizer in soil - P fertilizer - crop system. 【Method】 The pot experiment was conducted in lime concretion black soil and red soil including six treatments: no P fertilizer (CK); application of calcium superphosphate (SSP), calcium magnesium phosphate (FMP), diammonium phosphate (DAP), calcium superphosphate (TSP) and ammonium polyphosphate (APP). The relationship between the P transformation in rhizosphere as well as non-rhizosphere soils with P accumulation in wheat at the jointing and anthesis stages was analyzed. 【Result】 Soil Olsen-P concentration increased by 194%-662% after application of P fertilizer in lime concretion black soil. Soil Olsen-P concentration in wheat rhizosphere soil followed the order: APP, TSP, DAP, FMP, SSP, and CK. The H2O-P and NaHCO3-Pi concentration was significantly increased, whereas the Residual-P concentration was significantly reduced after phosphate fertilizer application. Both H2O-P and NaHCO3-Pi concentration was positively correlated with soil Olsen-P. At the jointing stage, in comparison to that of the control, TSP and APP application increased NaHCO3-Pi concentration by 41.0 and 36.0 mg·kg-1, respectively. For the red soil, soil Olsen-P concentration in rhizosphere soil increased by 84%-791% as P fertilizer was applied. And soil Olsen-P concentration under DAP and TSP treatments was significantly higher than that under other P fertilizer treatments. The NaHCO3-Pi and NaOH-Pi concentration increased by 275.2%-848.3% and 26.9%-58.3%, respectively, which was positively correlated with rhizosphere soil Olsen-P concentration. After P fertilizer application, the most significant effects were found under DAP and TSP treatments. At the jointing stage, there was a significant positive correlation between shoot P accumulation and soil Olsen-P concentration in lime concretion black soil and red soil. When soil Olsen-P concentration increased by 1 mg·kg-1, shoot P accumulation increased by 0.87 and 0.37 mg/pot respectively in lime concretion black soil and red soil. In lime concretion black soil, shoot P accumulation significantly increased by 15.44%-50.9% compared with the control as different P fertilizers addition, and the APP and TSP significantly increased shoot P accumulation and utilization efficiency in shoot than other P fertilizers. After P fertilizer application in red soil, shoot P accumulation and grain yield of wheat increased by 123.7%-643.9% and 75.5%-337.2%, respectively. The grain yield, shoot P accumulation and P utilization efficiency under TSP treatments were significantly higher than that under other P fertilizer treatments. 【Conclusion】 In lime concretion black soil, the concentration of H2O-P and NaHCO3-Pi was significantly increased after application of APP and TSP. In red soil, the NaHCO3-Pi and NaOH-Pi concentration was significantly increased after the application of DAP and TSP. Therefore, in order to increase wheat P efficiency, APP or DAP was recommended as a proper fertilizer in lime concretion black soil, while DAP or TSP was recommended as a proper P fertilizer in red soil.

Key words: lime concretion black soil, red soil, different phosphate fertilizer varieties, soil P pool transformation characteristics, phosphorus utilization efficiency, winter wheat

Table 1

Basic physical and chemical properties of the selected soils"

土壤类型
Soil types
有机质
OM (g·kg-1)
全氮
TN (g·kg-1)
碱解氮
AN (mg·kg-1)
有效磷
Olsen-P (mg·kg-1)
速效钾
AK (mg·kg-1)
pH
砂姜黑土 Lime concretion black soils 25.43 1.41 74.46 5.57 140.67 7.83
红壤 Red soils 4.58 0.47 25.20 1.10 78.33 5.88

Table 2

Effects of different varieties of phosphate fertilizers on soil Olsen-P concentration(mg·kg-1)"

土壤类型
Soil types
处理
Treatments
拔节期 Jointing 开花期 Anthesis 成熟期
Maturity
根际
Rhizosphere
非根际
Non-rhizosphere
根际
Rhizosphere
非根际
Non-rhizosphere
砂姜黑土
Lime concretion black soil
CK 4.23±0.79e 4.38±0.34b 4.43±0.18d 4.39±0.66c 4.91±0.46d
SSP 13.04±1.21d 12.78±2.09b 16.73±1.29bc 15.56±1.02b 14.44±0.54c
TSP 22.58±1.54b 13.26±1.98ab 18.15±2.28b 14.99±1.82b 18.74±1.54b
FMP 13.01±1.45d 15.18±2.01ab 14.24±0.92c 15.48±1.96b 15.78±0.78c
DAP 16.42±0.60c 12.66±0.47b 18.87±2.79ab 14.09±1.91b 18.27±0.52b
APP 32.24±1.16a 15.92±0.54a 22.16±2.32a 19.55±2.67a 21.81±2.37a
红壤
Red soil
CK 3.85±1.12d 1.49±0.49c 2.18±0.60c 3.82±0.62bc 3.25±0.13c
SSP 9.55±1.47c 3.93±0.37b 7.75±0.74b 4.94±0.66a 7.45±0.47a
TSP 12.39±0.61b 3.13±0.78b 19.22±3.11a 3.02±0.47c 7.09±0.94ab
FMP 7.99±0.56c 3.14±0.77b 6.2±1.13b 4.83±0.75ab 6.42±1.20ab
DAP 16.24±0.26a 5.73±0.67a 19.42±1.48a 5.54±0.62a 5.99±0.71b
APP 13.77±1.17b 6.83±0.65a 8.06±1.46b 5.82±0.17a 6.82±0.08ab
变异来源
Sources of variation
土壤Soil ** ** ** ** **
磷肥品种P ** ** ** ** **
土壤×磷肥品种 Soil×P ** ns ** ** **

Fig. 1

Effects of different varieties of phosphate fertilizers on soil P fraction concentration and percentage of soil P fractions A, B: Soil P fraction concentration at jointing stage in lime concretion black soils and red soils, respectively; C, D: Soil P fraction concentration at anthesis stage in lime concretion black soils and red soils, respectively; E, F: Percentage of soil P fractions at jointing stage in lime concretion black soils and red soils, respectively; G, H: Percentage of soil P fractions at anthesis in lime concretion black soil and red soil, respectively. Different letters indicate the significant differences among the treatments at 0.05 level"

Fig. 2

The correlations between rhizosphere soil P fraction concentration and Olsen-P concentration under application of phosphate fertilizers at the jointing stage of winter wheat *, ** and ns indicate P<0.05, P<0.01 and P>0.05, respectively. The same as Fig.3 and Fig.4"

Fig. 3

The correlations between rhizosphere soil P fraction concentration and Olsen-P concentration under application of phosphate fertilizers at the anthesis stage of winter wheat"

Table 3

Correlation coefficient and path coefficient between different soil P fractions and Olsen P in soil"

土壤类型
Soil types
磷形态
P fractions
相关系数
Correlation
coefficient
直接通径系数
Direct path
coefficient
间接通径系数 Indirect path coefficient
H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po HCl-P Residual-P
砂姜黑土
Lime concretion black soils
H2O-P 0.66** 0.52** 0.55 0 -0.19 0 -0.12 -0.09
NaHCO3-Pi 0.65** 0.98** 0.29 0 -0.54 -0.12 -0.1 0.03
NaHCO3-Po 0.29 -0.02 0.1 0.17 0.16 0.01 0.02 -0.16
NaOH-Pi 0.26 -0.69** 0.14 0.77 0.01 -0.03 -0.05 0.12
NaOH-Po -0.13 -0.12 0.02 0.16 0 -0.21 -0.01 0.04
HCl-P 0.33* -0.24* 0.27 0.37 0 -0.15 -0.01 0.08
Residual-P 0 0.14 -0.14 0.1 0.01 -0.24 -0.01 -0.06 0.01
红壤
Red soils
H2O-P 0.27 0.2 0.36 -0.1 -0.11 -0.05 -0.05 0.01
NaHCO3-Pi 0.85** 0.89** 0.08 -0.02 -0.18 0.09 -0.03 0.01
NaHCO3-PO 0.24 0.2 -0.11 -0.08 0 0.19 0.06 -0.01
NaOH-Pi 0.77** -0.21 0.10 0.75 0 0.15 -0.03 0.01
NaOH-PO 0.58** 0.30* -0.03 0.26 0.12 -0.1 0.03 -0.01
HCl-P -0.01 -0.09 0.11 0.26 -0.13 -0.06 -0.11 0.01
Residual-P 0.16 0.02 0.07 0.3 -0.08 -0.05 -0.07 -0.03

Table 4

Effects of different varieties of phosphate fertilizers on plant phosphorus accumulation, grain yield, phosphate fertilizer use efficiency and phosphate fertilizer partial productivity"

土壤类型
Soil types
处理
Treatments
植株磷素累积量
Plant P accumulation (mg/pot)
产量
Grain yield (g/pot)
磷肥利用效率
PUE (%)
磷肥偏生产力
PFPP (kg·kg-1)
砂姜黑土
Lime concretion black soil
CK 33.66±1.31 d 11.13±0.20 a - -
SSP 38.86±1.46 c 11.09±1.31 a 2.67±0.75 c 17.93±0.48 c
TSP 47.19±1.23 b 11.39±0.64 a 6.96±0.63 b 22.04±1.08 ab
FMP 40.01±0.84 c 12.75±1.07 a 3.26±0.43 c 24.78±1.80 a
DAP 39.82±0.93 c 10.36±0.88 a 3.17±0.48 c 19.99±1.73 bc
APP 50.79±1.45 a 9.86±0.36 a 8.81±0.75 a 18.94±0.82 bc
红壤
Red soil
CK 1.73±0.07 d 0.94±0.04 d - -
SSP 3.87±0.21 c 1.65±0.13 cd 1.01±0.11 c 3.35±0.13 c
TSP 12.87±0.51 a 4.11±0.33 a 5.73±0.26 a 6.56±0.13 a
FMP 7.49±0.78 b 1.78±0.16 c 2.97±0.40 b 3.27±0.15 c
DAP 8.12±0.75 b 3.73±0.15 a 3.29±0.39 b 5.33±0.59 b
APP 7.22±0.17 b 2.67±0.07 b 2.83±0.09 b 4.77±0.04 b

Fig. 4

The correlations between rhizosphere or non-rhizosphere soil Olsen-P concentration and plant phosphorus accumulation under application of different varieties of phosphate fertilizers At the jointing and anthesis stage, soil Olsen-P selected from rhizosphere soil, but soil Olsen-P selected from non-rhizosphere soil at maturity"

[1]
HOU E, LUO Y, KUANG Y, CHEN C, LU X, JIANG L, LUO X, WEN D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 2020, 11(1): 637. doi:10.1038/s41467-020-14492-w.

doi: 10.1038/s41467-020-14492-w pmid: 32005808
[2]
LAMBERS H, FINNEGAN P M, LALIBERTÉ E, PEARSE S J, RYAN M H, SHANE M W, VENEKLAAS E J. Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiology, 2011, 156(3): 1058-1066. doi:10.1104/pp.111.174318.

doi: 10.1104/pp.111.174318
[3]
崔荣国, 张艳飞, 郭娟, 郭振华, 肖宇评. 资源全球配置下的中国磷矿发展策略. 中国工程科学, 2019, 21(1): 128-132. doi:10.15302/J-SSCAE-2019.01.018.

doi: 10.15302/J-SSCAE-2019.01.018
CUI R G, ZHANG Y F, GUO J, GUO Z H, XIAO Y P. Development strategy of phosphate rock in China under global allocation of resources. Engineering Science, 2019, 21(1): 128-132. doi:10.15302/J-SSCAE-2019.01.018. (in Chinese)

doi: 10.15302/J-SSCAE-2019.01.018
[4]
中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the PRC. Statistical Yearbook of China. Beijing: China Statistics Press, 2021. (in Chinese)
[5]
程明芳, 何萍, 金继运. 我国主要作物磷肥利用率的研究进展. 作物杂志, 2010(1): 12-14. doi:10.16035/j.issn.1001-7283.2010.01.001.

doi: 10.16035/j.issn.1001-7283.2010.01.001
CHENG M F, HE P, JIN J Y. Advance of phosphate recovery rate in Chinese main crops. Crops, 2010(1): 12-14. doi:10.16035/j.issn.1001-7283.2010.01.001. (in Chinese)

doi: 10.16035/j.issn.1001-7283.2010.01.001
[6]
MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 2018, 427(1/2): 5-16. doi:10.1007/s11104-017-3362-2.

doi: 10.1007/s11104-017-3362-2
[7]
朱宏斌, 王晓波, 蒋光月, 房运喜, 郭志彬, 何传龙. 不同品种磷肥运筹对砂姜黑土玉米生长及产量的影响. 中国农学通报, 2014, 30(30): 209-212.

doi: 10.11924/j.issn.1000-6850.2014-1399
ZHU H B, WANG X B, JIANG G Y, FANG Y X, GUO Z B, HE C L. Influences of different varieties of phosphate management on corn growth and yield in Shajiang black soil. Chinese Agricultural Science Bulletin, 2014, 30(30): 209-212. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2014-1399
[8]
ZHAO Y N, LI R K, HUANG Y F, SUN X M, QIN W, WEI F F, YE Y L. Effects of various phosphorus fertilizers on maize yield and phosphorus uptake in soils with different pH values. Archives of Agronomy and Soil Science, 2022, 68(12): 1746-1754. doi:10.1080/03650340.2021.1926997.

doi: 10.1080/03650340.2021.1926997
[9]
郭大勇, 袁玉玉, 曾祥, 陈彬, 韦文敬, 崔毅, 原梦, 孙丽蓉. 石灰性土壤施用不同磷肥对玉米苗期生长和土壤无机磷组分的影响. 水土保持学报, 2021, 35(4): 243-249.
GUO D Y, YUAN Y Y, ZENG X, CHEN B, WEI W J, CUI Y, YUAN M, SUN L R. Effect of phosphorus fertilizer on maize growth and inorganic phosphorus fractions in a calcareous soil. Journal of Soil and Water Conservation, 2021, 35(4): 243-249. (in Chinese)
[10]
张连娅, 王瑞雪, 郑毅, 汤利. 不同形态磷肥对红壤玉米磷素吸收利用效率的影响. 玉米科学, 2019, 27(5): 158-163.
ZHANG L Y, WANG R X, ZHENG Y, TANG L. Effects of different forms of phosphate fertilizer on phosphorus uptake and utilization efficiency of maize in red soil. Journal of Maize Sciences, 2019, 27(5): 158-163. (in Chinese)
[11]
蔡远扬. 中国东南部酸性土壤区磷肥的施用效应研究[D]. 长春: 吉林大学, 2021.
CAI Y Y. Study on the effects of phosphate fertilizer application in the acid soil region of southeastern China[D]. Changchun: Jilin University, 2021. (in Chinese)
[12]
王一锟, 蔡泽江, 冯固. 不同磷肥调控措施下红壤磷素有效性和利用率的变化. 土壤学报, 2023, 60(1): 235-246.
WANG Y K, CAI Z J, FENG G. Effects of Different phosphorus application techniques on phosphorus availability in a rape system in a red soil. Acta Pedologica Sinica, 2023, 60(1): 235-246. (in Chinese)
[13]
GUO F, YOST R S, HUE N V, EVENSEN C I, SILVA J A. Changes in phosphorus fractions in soils under intensive plant growth. Soil Science Society of America Journal, 2000, 64(5): 1681-1689. doi:10.2136/sssaj2000.6451681x.

doi: 10.2136/sssaj2000.6451681x
[14]
孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, 2011, (2): 1-9. doi:10.3969/j.issn.1673-6257.2011.02.001.

doi: 10.3969/j.issn.1673-6257.2011.02.001
SUN G F, JIN J Y, SHI Y L. Research advance on soil phosphorous forms and their availability to crops in soil. Soils and Fertilizers Sciences in China, 2011(2): 1-9. doi:10.3969/j.issn.1673-6257.2011.02.001. (in Chinese)

doi: 10.3969/j.issn.1673-6257.2011.02.001
[15]
柴博, 李隆, 杨思存, 陈英, 王成宝, 姜万礼. 玉米/鹰嘴豆间作条件下不同施磷量对灌耕灰钙土无机磷组分的影响. 干旱地区农业研究, 2015, 33(1): 85-90.
CHAI B, LI L, YANG S C, CHEN Y, WANG C B, JIANG W L. Effects of different P applications on inorganic-P components in irrigated sierozems under maize/chickpea intercropping. Agricultural Research in the Arid Areas, 2015, 33(1): 85-90. (in Chinese)
[16]
吉冰洁, 李文海, 徐梦洋, 牛金璨, 张树兰, 杨学云. 不同磷肥品种在石灰性土壤中的磷形态差异. 中国农业科学, 2021, 54(12): 2581-2594. doi:10.3864/j.issn.0578-1752.2021.12.009.

doi: 10.3864/j.issn.0578-1752.2021.12.009
JI B J, LI W H, XU M Y, NIU J C, ZHANG S L, YANG X Y. Varying synthetic phosphorus varieties lead to different fractions in calcareous soil. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594. doi:10.3864/j.issn.0578-1752.2021.12.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.12.009
[17]
XU G, SHAO H B, ZHANG Y, JUNNA S. Nonadditive effects of biochar amendments on soil phosphorus fractions in two contrasting soils. Land Degradation & Development, 2018, 29(8): 2720-2727. doi:10.1002/ldr.3029.

doi: 10.1002/ldr.3029
[18]
向万胜, 黄敏, 李学垣. 土壤磷素的化学组分及其植物有效性. 植物营养与肥料学报, 2004, 10(6): 663-670.
XIANG W S, HUANG M, LI X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil. Plant Nutrition and Fertilizer Science, 2004, 10(6): 663-670. (in Chinese)
[19]
SUI Y B, THOMPSON M L, SHANG C. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Science Society of America Journal, 1999, 63(5): 1174-1180. doi:10.2136/sssaj1999.6351174x.

doi: 10.2136/sssaj1999.6351174x
[20]
穆晓慧, 李世清, 党蕊娟. 黄土高原石灰性土壤不同形态磷组分分布特征. 中国生态农业学报, 2008, 16(6): 1341-1347.
MU X H, LI S Q, DANG R J. Distribution of phosphorus fractionations in calcareous soils of the loess plateau. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1341-1347. (in Chinese)

doi: 10.3724/SP.J.1011.2008.01341
[21]
李宁, 王珊珊, 马丽丽, 刘耀辉, 修玉冰, 李新华, 项国栋, 胡冬南, 郭晓敏, 张文元. 两株高效溶磷菌的溶磷能力及其对玉米生长和红壤磷素形态的影响. 植物营养与肥料学报, 2021, 27(2): 275-283.
LI N, WANG S S, MA L L, LIU Y H, XIU Y B, LI X H, XIANG G D, HU D N, GUO X M, ZHANG W Y. Phosphate-solubilizing capacity of two bacteria strains and its effect on maize growth and the phosphorus fractions in red soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 275-283. (in Chinese)
[22]
徐晓峰, 米倩, 刘迪, 付森林, 王旭刚, 郭大勇, 周文利. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响. 中国生态农业学报(中英文), 2021, 29(11): 1857-1866.
XU X F, MI Q, LIU D, FU S L, WANG X G, GUO D Y, ZHOU W L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857-1866. (in Chinese)
[23]
王道中, 郭熙盛, 刘枫, 何传龙. 长期施肥对砂姜黑土无机磷形态的影响. 植物营养与肥料学报, 2009, 15(3): 601-606.
WANG D Z, GUO X S, LIU F, HE C L. Effects of long-term fertilization on inorganic phosphorus fractions in lime concretion black soil. Plant Nutrition and Fertilizer Science, 2009, 15(3): 601-606. (in Chinese)
[24]
张璐, 肖靖秀, 郑毅, 汤利. 不同品种磷肥施用对玉米根际土壤磷组分的影响. 云南农业大学学报(自然科学), 2021, 36(6): 1076-1082. doi:10.12101/j.issn.1004-390X(n).202006029.

doi: 10.12101/j.issn.1004-390X(n).202006029
ZHANG L, XIAO J X, ZHENG Y, TANG L. Effect of different varieties of phosphorus fertilizer application on the phosphorus component of maize rhizosphere soil. Journal of Yunnan Agricultural University, 2021, 36(6): 1076-1082. doi:10.12101/j.issn.1004-390X(n).202006029. (in Chinese)

doi: 10.12101/j.issn.1004-390X(n).202006029
[25]
熊子怡, 邱烨, 郭琳钰, 郭涛, 石纹豪. 聚磷酸铵在土壤中有效性的变化及其影响因素. 植物营养与肥料学报, 2020, 26(8): 1473-1480.
XIONG Z Y, QIU Y, GUO L Y, GUO T, SHI W H. The availability of ammonium polyphosphate in soil and the impacting factors. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1473-1480. (in Chinese)
[26]
陈波浪, 盛建东, 蒋平安, 刘永刚. 磷肥种类和用量对土壤磷素有效性和棉花产量的影响. 棉花学报, 2010, 22(1): 49-56. doi:10.3969/j.issn.1002-7807.2010.01.008.

doi: 10.3969/j.issn.1002-7807.2010.01.008
CHEN B L, SHENG J D, JIANG P A, LIU Y G. Effect of applying different forms and rates of phosphoric fertilizer on phosphorus efficiency and cotton yield. Cotton Science, 2010, 22(1): 49-56. doi:10.3969/j.issn.1002-7807.2010.01.008. (in Chinese)

doi: 10.3969/j.issn.1002-7807.2010.01.008
[27]
许德军, 钟本和, 张志业, 许德华, 王辛龙. 水溶性聚磷酸铵的制备及应用研究进展. 化工进展, 2021, 40(1): 378-385. doi:10.16085/j.issn.1000-6613.2020-0506.

doi: 10.16085/j.issn.1000-6613.2020-0506
XU D J, ZHONG B H, ZHANG Z Y, XU D H, WANG X L. Research progress of preparation and application of water-soluble ammonium polyphosphate. Chemical Industry and Engineering Progress, 2021, 40(1): 378-385. doi:10.16085/j.issn.1000-6613.2020-0506. (in Chinese)

doi: 10.16085/j.issn.1000-6613.2020-0506
[28]
王小华, 闫宁, 张营, 贾莉莉, 郑磊. 聚磷酸铵对石灰性土壤有效磷含量和无机磷形态分布的影响. 西北农林科技大学学报(自然科学版), 2021, 49(10): 64-72.
WANG X H, YAN N, ZHANG Y, JIA L L, ZHENG L. Effect of ammonium polyphosphate application on available phosphorus content and inorganic phosphorus distribution in calcareous soils. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 64-72. (in Chinese)
[29]
王蕾, 邓兰生, 涂攀峰, 杨依彬, 龚林, 张承林. 聚磷酸铵水解因素研究进展及在肥料中的应用. 磷肥与复肥, 2015, 30(4): 25-27. doi:10.3969/j.issn.1007-6220.2015.04.011.

doi: 10.3969/j.issn.1007-6220.2015.04.011
WANG L, DENG L S, TU P F, YANG Y B, GONG L, ZHANG C L. Research progresses of hydrolysis factors of ammonium polyphosphate and its application in fertilizer. Phosphate & Compound Fertilizer, 2015, 30(4): 25-27. doi:10.3969/j.issn.1007-6220.2015.04.011. (in Chinese)

doi: 10.3969/j.issn.1007-6220.2015.04.011
[30]
陈小娟, 陈煜林, 林净净, 杨依彬, 胡克纬, 张承林. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响. 浙江农业学报, 2019, 31(10): 1681-1688. doi:10.3969/j.issn.1004-1524.2019.10.14.

doi: 10.3969/j.issn.1004-1524.2019.10.14
CHEN X J, CHEN Y L, LIN J J, YANG Y B, HU K W, ZHANG C L. Conversion dynamics and effectiveness of ammonium polyphosphate with different polymerization degrees to soil phosphorus. Acta Agriculturae Zhejiangensis, 2019, 31(10): 1681-1688. doi:10.3969/j.issn.1004-1524.2019.10.14. (in Chinese)

doi: 10.3969/j.issn.1004-1524.2019.10.14
[31]
曹莹菲, 张红, 刘克, 代允超, 吕家珑. 不同施肥方式对土壤磷素各组分含量的影响. 干旱地区农业研究, 2015, 33(5): 115-120. doi:10.7606/j.issn.1000-7601.2015.05.21.

doi: 10.7606/j.issn.1000-7601.2015.05.21
CAO Y F, ZHANG H, LIU K, DAI Y C, J L. Effects of different fertilization implementations on phosphors fraction of manural loessial soil. Agricultural Research in the Arid Areas, 2015, 33(5): 115-120. doi:10.7606/j.issn.1000-7601.2015.05.21. (in Chinese)

doi: 10.7606/j.issn.1000-7601.2015.05.21
[32]
HAN W Y, LI Y, YIN H. The influence of mechanical composition and mineral composition of calcareous soil on slope farmland on phosphorus fixation. Applied Sciences, 2021, 11(9): 3731. doi:10.3390/app11093731.

doi: 10.3390/app11093731
[33]
谢林花, 吕家珑, 张一平, 刘利花. 长期施肥对石灰性土壤磷素肥力的影响Ⅱ.无机磷和有机磷. 应用生态学报, 2004, 15(5): 790-794.
XIE L H, J L, ZHANG Y P, LIU L H. Influence of long-term fertilization on phosphorus fertility of calcareous soil Ⅱ. Inorganic and organic phosphorus. Chinese Journal of Applied Ecology, 2004, 15(5): 790-794. (in Chinese)
[34]
FANG Y Y, BABOURINA O, RENGEL Z, YANG X E, PU P M. Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. Plant Science, 2007, 173(2): 240-246. doi:10.1016/j.plantsci.2007.05.006.

doi: 10.1016/j.plantsci.2007.05.006
[35]
DRYSTEK E, MACDOUGALL A S. Granivory reduces biomass and lignin concentrations of plant tissue during grassland assembly. Basic and Applied Ecology, 2014, 15(2): 142-150. doi:10.1016/j.baae.2014.01.006.

doi: 10.1016/j.baae.2014.01.006
[36]
谢英荷, 洪坚平, 韩旭, 李廷亮, 栗丽, 冯国良, 孟会生, 田东方. 不同磷水平石灰性土壤Hedley磷形态生物有效性的研究. 水土保持学报, 2010, 24(6): 141-144.
XIE Y H, HONG J P, HAN X, LI T L, LI L, FENG G L, MENG H S, TIAN D F. Study on soil bioavailability of the hedley P forms in calcareous soil with different phosphorus level. Journal of Soil and Water Conservation, 2010, 24(6): 141-144. (in Chinese)
[37]
黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016, 49(6): 1132-1141. doi:10.3864/j.issn.0578-1752.2016.06.009.

doi: 10.3864/j.issn.0578-1752.2016.06.009
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi:10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.06.009
[38]
VENUGOPALAN M V, PRASAD R. Relative efficiency of ammonium polyphosphate and orthophosphates for wheat and their residual effects on succeeding cowpea fodder. Fertilizer Research, 1989, 20(2): 109-114. doi:10.1007/BF01055435.

doi: 10.1007/BF01055435
[39]
王庆仁, 孙建华, 刘全友, 童依平, 李继云. 3种溶解性磷肥对不同磷效率小麦品种肥效的试验研究. 生态农业研究, 2000, 8(3): 40-43.
WANG Q R, SUN J H, LIU Q Y, TONG Y P, LI J Y. Effect of three kinds of phosphate fertilizers with various solubilities on different wheat varieties with different phosphorus efficiencies. Eco-Agriculture Research, 2000, 8(3): 40-43. (in Chinese)
[40]
安志装, 介晓磊, 李有田, 白由路, 魏义长, 刘世亮. 不同水分和添加物料对石灰性土壤无机磷形态转化的影响. 植物营养与肥料学报, 2002, 8(1): 58-64.
AN Z Z, JIE X L, LI Y T, BAI Y L, WEI Y C, LIU S L. Effect of different water and material on inorganic phosphorus transformation in calcareous soil. Plant Nutrition and Fertilizer Science, 2002, 8(1): 58-64. (in Chinese)
[41]
高艳菊, 亢龙飞, 褚贵新. 不同聚合度和聚合率的聚磷酸磷肥对石灰性土壤磷与微量元素有效性的影响. 植物营养与肥料学报, 2018, 24(5): 1294-1302.
GAO Y J, KANG L F, CHU G X. Polymerization degree and rate of polyphosphate fertilizer affected the availability of phosphorus, Fe, Mn and Zn in calcareous soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1294-1302. (in Chinese)
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[3] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[4] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[5] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[6] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[7] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[8] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[9] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[10] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[11] MAO AnRan,ZHAO HuBing,YANG HuiMin,WANG Tao,CHEN XiuWen,LIANG WenJuan. Effects of Different Mulching Periods and Mulching Practices on Economic Return and Environment [J]. Scientia Agricultura Sinica, 2021, 54(3): 608-618.
[12] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
[13] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[14] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[15] WANG JinFeng,WANG ZhuangZhuang,GU FengXu,MOU HaiMeng,WANG Yu,DUAN JianZhao,FENG Wei,WANG YongHua,GUO TianCai. Effects of Nitrogen Fertilizer and Plant Density on Carbon Metabolism, Nitrogen Metabolism and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2021, 54(19): 4070-4083.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!