Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3057-3064.doi: 10.3864/j.issn.0578-1752.2021.14.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Contribution of Carbon Sources in Sedimentary Soils Combining Carbon and Nitrogen Isotope with Stable Isotope Model

LI Na1,3(),SUN ZhanXiang2(),ZHANG YanQing1,LIU EnKe1,LI FengMing3,LI ChunQian3,LI Fei3   

  1. 1Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 101010
    2Liaoning Academy of Agricultural Sciences, Shenyang 110161
    3Liaoning Institute of Dry Land Agriculture and Forestry, Chaoyang 122000, Liaoning
  • Received:2020-12-06 Accepted:2021-02-19 Online:2021-07-16 Published:2021-07-26
  • Contact: ZhanXiang SUN E-mail:caulina@outlook.com;szx67@163.com

Abstract:

【Objective】To study the sources of deposited soil organic carbon (SOC) under different land use patterns in a typical small watershed in the brown soil hilly area of western Liaoning through eroded sedimentation, and to provide a scientific reference for the reasonable control of soil carbon loss caused by soil erosion in the small watershed. 【Method】Through field sampling of small watersheds in the hilly and gully area of western Liaoning, the sources of deposited soil carbon in the small watersheds were studied and their contribution was quantified. Using GIS and GPS technology to analyze the surface soil of 4 different land use types (cropland, forest, grassland, gully) in the small watershed and 3 locations of the check dam in the small watershed (S1 in front of the dam, S2 in the middle of the dam, S3 behind the dam) 0-100 cm soil profile was sampled to analyze the carbon source of the sedimentary soil based on a mixed carbon and nitrogen isotope model.【Result】Using13C and15N isotopic characteristics and their elemental composition qualitative and quantitative identification of soil organic carbon in eroded sediments in the hilly and gully area of western Liaoning was carried out. The SOC loss was primarily from cropland, accounting for 58.75%, followed by gully (25.49%), forest (9.2%), and grassland (6.49%). 【Conclusion】 The stable isotope SIAR mixing model, as a reliable "fingerprint" tool, could be successfully employed to estimate the contribution of various C sources within a complex ecosystem, The research results can provide theoretical references for soil protection and nutrient loss control in small watersheds affected by water erosion, and for maintaining the sustainability of the ecosystem.

Key words: soil organic carbon, soil erosion, constructed dam, sediments, stable isotope model

Table 1

Soil physical and chemical properties of different land use types"

土地利用类型
Land-use type
容重
Bulk density (g·cm-3)
pH 土壤含水量
Soil water content (%)
土壤质地 Soil texture (%)
黏粒Clay 粉粒 Silt 砂粒 Sand
林地 Forest 1.38±0.21a 7.74b 7.31±0.21ab 17.17bc 34.48c 48.1a
耕地Cropland 1.19±0.12c 7.86b 5.21±0.21a 15.66bc 40.31a 44.03b
草地Gralssland 1.27±0.05ab 8.2a 8.2±0.21ab 18.31b 40.63a 41.06bc
沟渠Gully 1.18±0.15c 8.0a 12.21±0.21c 26.31a 38.56abc 35.13c

Fig. 1

Bulk density and pH of different profiles of sedimentary soil S1: In front of the dam; S2: In the middle of the dam; S3: Behind the dam"

Table 2

Different land use types and sediments of isotopic characteristic values"

土地利用类型
Land use type
土壤有机碳
SOC (g·kg-1)
土壤总氮
TN (g·kg-1)
碳同位素比值
δ13C (‰)
氮同位素比值
δ15N (‰)
碳氮比
C/N ratio
林地 Forest 16.86±0.06a 2.33±0.06a -24.9±0.25a 1.25±0.06d 7.24bc
耕地Cropland 7.35±0.04b 0.52±0.04c -23.85±0.43b 3.05±0.05ab 14.14a
草地Grassland 6.43±0.09b 0.86±0.09bc -19.2±0.25c 2.63±0.03c 7.48b
沟谷Gully 4.21±0.07c 0.65±0.02c -24.9±0.4a 3.65±0.02a 6.48c
沉积物 Sediments 5.79±0.05abc 0.40±0.09c -25.2±0.3ab 2.92±0.02c 14.48a

Fig. 2

Mean SOC and δ13C for sediments at different depths (0-100 cm) and potential sources for the studied catchment "

Fig. 3

Source and contribution ratio of organic carbon in 0-100 cm soil profile in sedimentary area"

[1] 陆银梅, 李忠武, 聂小东, 黄斌, 马文明, 肖海兵. 红壤缓坡地径流与土壤可蚀性对土壤有机碳流失的影响. 农业工程学报, 2015, 31(19):135-141. DOI: 10.11975/j.issn.1002-6819.2015.19.019.
LU Y M, LI Z W, NIE X D, HUANG B, MA W M, XIAO H B. Effects of overland flow and soil erodibility on soil organic carbon loss in red soil sloping land. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19):135-141. DOI: 10.11975/j.issn.1002-6819. 2015.19.019. (in Chinese)
[2] SEBASTIAN D, ASMERETA B, ELISABET N, ZHENGANG W, MICAAEL S, PETER F. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews, 2016, 154:102-122. DOI: 10.1016/j.earscirev.2015.12.005.
doi: 10.1016/j.earscirev.2015.12.005
[3] LI Q, YU P J, LI G D, ZHOU D W, CHEN X Y. Overlooking soil erosion induces underestimation of the soil C loss in degraded land. Quaternary International, 2014, 349:287-290. DOI: 10.1016/j.quaint. 2014.05.034.
doi: 10.1016/j.quaint.2014.05.034
[4] SINGH P, DINESH K, BEN B. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 2018, 166:171-180. DOI: 10.1016/j.catena.2018.04.006.
doi: 10.1016/j.catena.2018.04.006
[5] LIU C, LI Z W, CHANG X F, HE J J, NIE X D, LIU L, XIAO H B, WANG D Y, PENG H, GUANG M. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Agriculture, Ecosystems and Environment, 2018, 253:11-22. DOI: 10.1016/j.agee.2017.10.028.
doi: 10.1016/j.agee.2017.10.028
[6] 王玉生. 太平沟小流域综合治理措施综述. 水土保持应用技术, 2018, 1(1):42-44.
WANG Y S. Summary of comprehensive management measures of Taipinggou small watershed. Technology of Soil and Water Conservation, 2018, 1(1):42-44. (in Chinese)
[7] 张帅, 许明祥, 张亚锋, 王超华, 陈盖. 黄土丘陵区土地利用变化对深层土壤有机碳储量的影响. 环境科学学报 2014, 34(12):3094-3101. DOI: 10.13671/j.hjkxxb.2014.0777.
ZHANG S, XU M X, ZHANG Y F, WANG C H, CHEN G. Effects of land use change on storage of soil organic carbon in deep soil layers in the hilly Loess Plateau region, China. Acta Scientiae Circumstantiae, 2014, 34(12):3094-3101. DOI: 10.13671/j.hjkxxb.2014.0777. (in Chinese)
[8] 刘琳. 黄土坡面有机碳迁移流失机制及模拟研究[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.
LIU L. The mechanisms of soil organic carbon (SOC) loss and its modeling[D]. Beijing: University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, the University of Chinese Academy of Sciences and Ministry of Education), 2018. (in Chinese )
[9] 姚毓菲. 黄土高原小流域侵蚀区和沉积区土壤碳氮分布与矿化特征[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2020.
YAO Y F. Distribution and mineralization of soil carbon and nitrogen in the erosion and deposition sites of small watersheds across China’s Loess Plateau[D]. University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2020. (in Chinese)
[10] YAN C, HUANG F, MICHAEL E E, SHANG A H, FORBES R W, ALICE C L. Testing the sediment fingerprinting technique using the SIAR model with artificial sediment mixtures. Journal of Soils and Sediments, 2020, 20(3):1771-1781. DOI: 10.1007/s11368-019-02545-7.
doi: 10.1007/s11368-019-02545-7
[11] STEVENSON B A, KELLY E F, MCDONALD E V, BUSACCA A J. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma, 2005, 124(1/2):37-47. DOI: 10.1016/j.geoderma.2004.03.006.
doi: 10.1016/j.geoderma.2004.03.006
[12] NORRA S, HANDLEY L L, BERNER A, STUBEN D. C13 and N15 natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. European Journal of Soil Science, 2005, 56(5):607-620. DOI: 10.1111/j.1365-2389.2005.00701.x.
doi: 10.1111/ejs.2005.56.issue-5
[13] GARZON-GARCIA A, LACEBY P J, OLLEY M J, BUNNT S. Differentiating the sources of fine sediment, organic matter and nitrogen in a subtropical Australian catchment. Geoderma, 2005, 124(1/2):37-47. DOI: 10.1016/j.scitotenv.2016.09.219.
doi: 10.1016/j.geoderma.2004.03.006
[14] NORRA S, HANDLEY L L, BERNER Z, STUBEN D. C13 and N15 natural abundances of urban soils and herbaceous vegetation in Karlsruhe, Germany. European Journal of Soil Science, 2005, 56(5):607-620. DOI: 10.1111/j.1365-2389.2005.00701.x.
doi: 10.1111/ejs.2005.56.issue-5
[15] HILTON R G, GALY A, HOYIUS N, KAO S J, HORNG M J, CHEN J. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Global Biogeochemical Cycles, 2012, 26(3):1693-1705. DOI: 10.1029/2012GB004314.
[16] MEUSBURGER K, MABIT L, PARK J H, SANDOR T, ALEWELL C. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea. Biogeosciences, 2013, 10(8):5627-5638. DOI: 10.5194/bg-10-5627-2013.
doi: 10.5194/bg-10-5627-2013
[17] PARNELL A C, INGER R, BEARHOP S, JACKSON A L, RANDS S. Partitioning using stable isotopes: Coping with too much variation. PloS ONE, 2010, 3(5):e5672. DOI: 10.1371/journal.pone.0009672.
[18] YANG L, HAN J, XUE J, ZENG L, JIANG Y. Nitrate source apportionment in a subtropical watershed using Bayesian model. Science of the Total Environment, 2013(463/464):340-347. DOI: 10. 1016/j.scitotenv.2013.06.021.
[19] CRAVEN K F, EDWARDS R J, FLOOD R P. Source organic matter analysis of saltmarsh sediments using SIAR and its application in relative sea-level studies in regions of C4 plant invasion. Boreas, 2017, 46(4):642-654. DOI: 10.1111/bor.12245.
doi: 10.1111/bor.2017.46.issue-4
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1999.
BAO S D. Soil and Agrochemical Analysis. Beijing: China Agricultural Press, 1999. (in Chinese)
[21] 弥智娟. 黄土高原坝控流域泥沙来源及产沙强度研究[D]. 杨凌: 西北农林科技大学, 2014.
NI Z J. Sediment source and sediment yield intensity in check dam controlled watershed of loess plateau[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[22] LU L, CHENG H G, PU X, WANG J T, CHENG Q D, LIU X L. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China. Agricultural Ecosystem and Environment, 2016, 222:48-59. DOI: 10.1016/j.agee.2015.12.033.
doi: 10.1016/j.agee.2015.12.033
[23] 李忠武, 陆银梅, 聂小东, 马文明, 肖海兵. 基于坡面径流输沙模型的湘中红壤丘陵区土壤有机碳流失模拟研究. 湖南大学学报(自然科学版), 2015, 42(12):115-124.
LI Z W, LU Y M, NIE X D, MA W M, XIAO H B. Simulating study of the loss of soil organic carbon based on the modal of sediment transport by slope runoff in the hilly red soil region of central Human Province. Journal of Hunan University (Natural Sciences), 2015, 42(12):115-124. (in Chinese)
[24] 张雪, 李忠武, 申卫平, 郭旺, 陈晓琳, 张越男, 黄金权. 红壤有机碳流失特征及其与泥沙径流流失量的定量关系. 土壤学报, 2012, 49(3):465-473.
ZHANG X, LI Z W, SHEN W P, GUO W, CHEN X L, ZHANG Y N, HUANG J Q. Characteristics of loss of organic carbon in red soil and their quantitative relationships with sediment and runoff generation. Acta Pedologica Sinica, 2012, 49(3):465-473. (in Chinese)
[25] KUMA R, MUKES H, KUNDU K, GHORAI A K, MITRA S. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in Inceptisols of eastern Indo-Gangetic Plain. Soil and Tillage Research, 2018, 178:108-117. DOI: 10.1016/j.still.2017.12.025.
doi: 10.1016/j.still.2017.12.025
[26] WANG Y X, FANG N F, TONG L S, SHI Z H. Source identification and budget evaluation of eroded organic carbon in an intensive agricultural catchment, Agricultural. Ecosystem and Environment, 2017, 247:290-297. DOI: 10.1016/j.agee.2017.07.011.
doi: 10.1016/j.agee.2017.07.011
[27] BWEHE A A, MARGRET T. Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry, 2016, 132(1/2):37-54. DOI: 10.1007/s10533-016-0286-5.
doi: 10.1007/s10533-016-0286-5
[28] EBABU K, TSUNEKAWA A, HAREGEWEYN N, ADGO E, MESHESHA D T, AKLOG D, MASUNAGA T 6, TSUBO M, SULTAN D, FENTA A A, YIBELTAL M. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Science of the Total Environment, 2019, 648:1462-1475. DOI: 10.1016/j.scitotenv.2018.08.273.
doi: 10.1016/j.scitotenv.2018.08.273
[29] WHITEHEAD D, SCHIPPER L A, PRONGER J, MOINET GABRIEL Y K, MUDGE P L, CALVELO P R, KRISCHBAUM M U F, MCNALLY S R, BRARE M H, CAMPS A M. Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, Ecosystems and Environment, 2018, 265:432-443. DOI: 10.1016/j.agee.2018.06.022.
doi: 10.1016/j.agee.2018.06.022
[30] NIE X D, LI Z W, HUANG J Q, LIU L, XIAO H B, LIU C, ZENG G M. Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition. Soil and Tillage Research, 2018, 175:82-90. DOI: 10.1016/j.still.2017.08.010.
doi: 10.1016/j.still.2017.08.010
[31] KRUSEKOPF C C. Diversity in land-tenure arrangements under the household responsibility system in China, China Economic Review, 2002, 13:297-312. DOI: 10.1016/S1043-951X(02)00071-8.
doi: 10.1016/S1043-951X(02)00071-8
[32] World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports 106. 2014, FAO, Rome, Italy.
[33] FU B, LIU Y, LU Y H, HE C S, ZENG Y, WU B F. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complex, 2011, 8:284-293. DOI: 10.1016/j.ecocom.2011.07.003.
doi: 10.1016/j.ecocom.2011.07.003
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[3] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[4] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[7] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[8] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[9] GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.
[10] LI JingYu,LI Qian,WU XuePing,WU HuiJun,SONG XiaoJun,ZHANG YongQing,LIU XiaoTong,DING WeiTing,ZHANG MengNi,ZHENG FengJun. Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool [J]. Scientia Agricultura Sinica, 2020, 53(18): 3729-3740.
[11] XU Meng,XU LiJun,CHENG ShuLan,FANG HuaJun,LU MingZhu,YU GuangXia,YANG Yan,GENG Jing,CAO ZiCheng,LI YuNa. Responses of Soil Organic Carbon Fractionation and Microbial Community to Nitrogen and Water Addition in Artificial Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690.
[12] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[13] JIA ShuHai, ZHANG JiaNan, ZHANG YuLing, DANG XiuLi, FAN QingFeng, WANG Zhan, YU Na, ZOU HongTao, ZHANG YuLong. Changes of the Characteristics of Soil Organic Carbon and Total Nitrogen After Conversation from Upland to Paddy Field in Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1252-1262.
[14] WANG XiaoLi, GUO Zhen, DUAN JianJun, ZHOU ZhiGang, LIU YanLing, ZHANG YaRong. The Changes of Organic Carbon and Its Fractions in Yellow Paddy Soils Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2017, 50(23): 4593-4601.
[15] YU ShuTing, ZHAO YaLi, WANG YuHong, LIU WeiLing, MENG ZhanYing, MU XinYuan, CHENG SiXian, LI ChaoHai. Improvement Effects of Rotational Tillage Patterns on Soil in the Winter Wheat-Summer Maize Double Cropping Area of Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2017, 50(11): 2150-2165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!