Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4912-4926.doi: 10.3864/j.issn.0578-1752.2022.24.010

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon

LI YuZe1(),ZHU JiaWei1,LIN Wei1,2,LAN MoYing1,XIA LiMing1,ZHANG YiLi1,LUO Cong1,HUANG Gui Xiang1,HE XinHua1()   

  1. 1College of Agriculture, Guangxi University/State Key Laboratory of Subtropical Agricultural Biological Resources Protection and Utilization/National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004
    2Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, Fujian
  • Received:2022-03-14 Accepted:2022-05-25 Online:2022-12-16 Published:2023-01-04
  • Contact: XinHua HE E-mail:1324700908@qq.com;honest66222@163.com

Abstract:

【Objective】Xiangshui lemon (Citrus limon (L.) Burm. F.) was used to study the expression of two RHF2A genes, and to screen and verify their interaction proteins by yeast two-hybrid technology and BiFC, so as to lay a foundation for further studying the molecular mechanism of RHF2A in the process of lemon self-incompatibility. 【Method】Two E3 ubiquitin ligase RHF2A (RING-H2 Zinc Finger2A) genes including RHF2A-1 and RHF2A-2 of Xiangshui lemon were screened from the transcriptome and ubiquitin modification group, and their full-length sequences were cloned. The sequence and protein structure of two RHF2A genes were analyzed by bioinformatics to predict the cis acting elements of their promoters. 35S-RHF2A-GFP fusion protein expression vector was constructed for subcellular localization analysis. The temporal and spatial expression patterns of two RHF2A were analyzed by real-time fluorescence quantitative PCR. The yeast two-hybrid bait vector was constructed to screen the interaction proteins from the lemon yeast library. The BiFC vector was constructed to verify the interaction of the target protein in onion living cells. 【Result】The RHF2A-1 and RHF2A-2 genes were obtained from ‘Xiangshui’ lemon, and the total length of ORF was 1 161 and 1 134 bp, respectively. NCBI domain prediction found that it had a Ring/U-box domain. Promoter analysis showed that there were POLLEN1LELAT52 and GTGANTG10 related to pollen specific expression elements. Tissue expression analysis showed that RHF2A-1 gene was specifically expressed in pollen and RHF2A-2 was specifically expressed in leaves; the results of temporal and spatial expression analysis showed that the expressed of RHF2A-1 in self-stigma tended to increase from the first day and reached the peak on the third day, which was more than 5 times that of hybrid stigma. Subcellular localization showed that RHF2A-1and RHF2A-2 were localized in the nucleus. The interaction protein predicted by Uniprot website showed that RHF2A could interact with KRP6, AT3G57370, UBA1, FBL17 and SK11proteins, and RHF2A gene was involved in biological processes such as self-incompatibility ubiquitination reaction pathway, gametophyte development regulation and pollen growth and development. 72 clones were screened by yeast two-hybrid technology. After sequencing and blast comparison, the repetitive clones were excluded. Finally, 20 candidate interaction proteins such as ABCF3 were obtained. Through one-to-one interaction verification and BiFC, it was determined that there was an interaction relationship between RHF2A-1 and ABCF3-2. 【Conclusion】The temporal and spatial expression of RHF2A-1 gene was consistent with the germination of pollen on pistil in the process of self-incompatibility; the interaction candidate proteins directly affecting pollen growth and development during the pollination were screened, which preliminarily proved that RHF2A-1 gene played an important role in the process of self-incompatibility.

Key words: lemon, RHF2A, gene cloning, spatiotemporal expression, yeast two hybrid technology

Table 1

PCR primer list"

引物 Primer 引物序列 Primer sequence (5′-3′)
ClRHF2A-1 F: GATGGAGGAGGGCAAGAAAC; R: CAAAATCGCCAAACGTAGGA
ClRHF2A-2 F: GCAGGACCATCAGATTTCCA; R: CTGCTGTTGTTGTCCCTGGT
qRTClRHF2A-1 F: GCAAGTGATACTGACCTTGA; R: GACTAGCACCAGCAAGTGTA
qRTClRHF2A-2 F: CGTTGACTAGTTGCAGGCAT; R: CCTGTAACTCAAAGTCTCCCA
qRTClABCF1 F: GAAGTGCGGCTGATAAAGCT; R: GCACCCTATTGCAGTCAAGA
qRTClABCF3-1 F: GCGGCTGGATTACTGGATAAGT; R: CCAGCCGTTAGGAAAGTCCCAT
qRTClABCF3-2 F: GGAAGGCATTATGGGCTTGT; R: GCGCCATTGCTCTTTTCAGTATC
qRTClABCF4 F: CTGGTGTAGCCGCAAAGTCT; R: GGCGGCATCAATCTCTTCATCT
qRTClABCF5 F: CTCCTCCTTCTTCAGCACTT; R: GGCGCAGATGAAATACTCGAA
ClActin F: CGTATGAGCAAGGAAATCACAG; R: ATTGATCCTCCAATCCAAACAC

Fig. 1

RHF2A-1 and RHF2A-2 gene electropherogram"

Table 2

Analysis of physical and chemical properties of RHF2A-1 and RHF2A-2 proteins"

基因名称
Gene ID
分子式
Formula
脂肪系数
Aliphatic index
亲水性
GRAVY
分子质量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
RHF2A-1 C1754H2740N544O598S19 49.90 -0.706 41.63 5.86 58.24
RHF2A-2 C1715H2704N532O608S17 51.19 -0.807 41.05 5.10 65.95

Fig. 2

Gene phylogenetic tree of RHF2A amino acid"

Fig. 3

Location of genes on chromosomes and DNA structure diagram A: Gene mapping on chromosome; B: DNA structure diagram; Note: the cylinder represents exon and the horizontal line represents intron"

Fig. 4

Homeopathic element analysis of RHF2A-1 and RHF2A-2 promoters"

Fig. 5

Tissue expression pattern analysis of RHF2A-1 and RHF2A-2 genes Different lowercase letters represent significant difference at 0.05. The same as below"

Fig. 6

Analysis of temporal and spatial expression patterns of RHF2A-1 and RHF2A-2 genes A. B and C are the temporal and spatial expression patterns of genes in stigma, style and ovary"

Fig. 7

Subcelluar location of RHF2A-1 and RHF2A-2 proteins in Allium cepa L. (Bar=100μm)"

Fig. 8

Verification of autoactivation of RHF2A-1 and RHF2A-2 protein"

Table 3

The candidate proteins interacted with RHF2A-1"

编号
Number
基因描述
Gene description
分子功能
Molecular function
A1 S-腺苷甲硫氨酸合酶2
Adenosylmethionine synthase 2
影响水杨酸、油菜素内酯,种子萌发、花粉萌发、花粉管伸长,细胞壁
It affects salicylic acid, brassinolide, seed germination, pollen germination, pollen tube elongation and cell wall
A2 赤霉素受体GID1B Gibberellin receptor GID1B 具有可溶性赤霉素(GA)受体的功能 Functions as soluble gibberellin (GA) receptor
A3 异质核核糖核蛋白1
Heterogeneous nuclear ribonucleoprotein 1
参与前mRNA的处理
Involved in the packaging of pre-mRNA
A4 E3泛素蛋白连接酶RGLG2
E3 ubiquitin-protein ligase RGLG2
能够调节生长素转运蛋白丰度
Acting on the auxin transport proteins abundance
A5 bZIP转录因子17
bZIP transcription factor 17
转录激活剂参与盐和渗透应激反应
Transcriptional activator involved in salt and osmotic stress responses
A6 天冬氨酸蛋白酶A1 Aspartic proteinase A1 体外具有天冬氨酸蛋白酶活性 Possesses aspartic protease activity in vitro
A7 茎特异蛋白TSJT1 Stem-specific protein TSJT1
A8 L-抗坏血酸氧化酶同系物
L-ascorbate oxidase homolog
可能参与花粉管生长的氧化还原酶
Probable oxidoreductase that may be involved in pollen tube growth.
A9 水稻开花位点T1 Rice Flowering Locus T1 移动式促花信号,可诱导开花 Probable mobile flower-promoting signal (florigen)
A10 苹果酸脱氢酶
Malate dehydrogenase
可能参与器官间的中心代谢和氧化还原稳态
It may be involved in central metabolism and redox homeostasis between organs
A11 天冬氨酸蛋白酶
Aspartic proteinase
具有天冬氨酸蛋白水解活性,有助于花粉和胚珠的发育,包括生长的花粉管顶端细胞壁的构成
Displays aspartic proteolytic activity, contributes to pollen and ovule development, including the apical cell wall constitution of the growing pollen tubes
A12 FBA6 以氧化还原的方式与GAPC1结合到线粒体外膜,导致肌动蛋白的结合和捆绑
Associates with GAPC1 to the outer mitochondrial membrane, in a redox-dependent manner, leading to binding and bundling of actin
A13 RING-H2 finger protein ATL39 E2泛素结合酶 E2 ubiquitin binding enzyme
A14 E3 ubiquitin-protein ligase RNF14 E3泛素连接酶 E3 ubiquitin binding enzyme
A15 ABCF3转运蛋白
ABC transporter F family member 3
具有跨膜运输功能的转运蛋白,可能与S-RNase跨膜运输和盐胁迫有关
Transporters with transmembrane transport function may be related to transmembrane transport of S-RNase and salt stress
A16 AP-1 Complex subunit mu-2 在跨高尔基体网络和早期内体(TGN/EE)的蛋白质分类中起作用
Plays a role in protein sorting at the trans-Golgi network and early endosomes (TGN/EE)
A17 KH结构域蛋白HEN4
KH domain-containing protein HEN4
可能与花发育相关
It may be related to flower development
A18 SEC10b 参与极化细胞生长和器官形态发生。在胞质分裂过程中,参与了细胞板的形成、细胞板的成熟和新的原代细胞壁的形成
Involved in polarized cell growth and organ morphogenesis. During cytokinesis, involved in cell plate initiation, cell plate maturation and formation of new primary cell wall
A19 TBCC 参与微管蛋白的质量控制 Participate in the quality control of tubulin
A20 蛋白磷酸酶2C 56
Protein phosphatase 2C 56
脱落酸(ABA)信号通路的关键成分和抑制因子,调控大量ABA反应
Abscisic acid (ABA) is a key component and inhibitor of signaling pathway, which regulates a large number of ABA responses

Fig. 9

Postive clones on DDO or Q/X/A plates (A and B are the screening results of RHF2A-1 and RHF2A-2)"

Table 4

The candidate proteins interacted with RHF2A-2"

编号
Number
基因描述
Gene description
分子功能
Molecular function
B1 糖蛋白葡萄糖基转移酶
UDP-glucose:glycoprotein glucosyltransferase
B2 液泡相关蛋白13F
Putative vacuolar protein sorting-associated protein 13F
与水杨酸相关
Related to salicylic acid
B3 bZIP转录因子17
bZIP transcription factor 17
参与盐和渗透胁迫反应的转录激活因子
Transcriptional activators involved in salt and osmotic stress response
B4 生长素诱导蛋白PCNT115 Auxin-induced protein PCNT115 参与植物生长素调控 Participate in plant auxin regulation
B5 光系统II反应中心PSB28蛋白
Photosystem II reaction center PSB28 protein
参与植物光合作用 Participate in plant photosynthesis
B6 AP-1 complex subunit mu-2 参与细胞内蛋白质转运 Participate in intracellular protein transport
B7 30S核糖体蛋白3-1
30S ribosomal protein 3-1
可能是核糖体蛋白或核糖体相关蛋白
It may be ribosomal protein or ribosomal associated protein
B8 蛋白质LEO1同系物 Protein LEO1 homolog 参与调节开花时间 Participate in regulating flowering time
B9 泛素结合酶E2 Probable ubiquitin-conjugating
enzyme E2 C
E2泛素结合酶 E2 ubiquitin binding enzyme
B10 S-腺苷甲硫氨酸合酶 2
S-adenosylmethionine synthase 2
影响水杨酸、油菜素内酯,种子萌发、花粉萌发、花粉管伸长,细胞壁
It affects salicylic acid, brassinolide, seed germination, pollen germination, pollen tube elongation and cell wall

Fig. 10

Tissue expression pattern analysis of ABCF gene"

Fig. 11

Rotary verification of ClRHF2A 1interacting with ClABCF proteins"

Fig. 12

A BiFC assay involving Allium cepa L. was completed to detect the interaction between RHF2A-1 and ABCF3-2 (Bar=100μm)"

[1] 张树伟. 香水柠檬无籽成因和相关基因的分离与鉴定[D]. 南宁: 广西大学, 2014.
ZHANG S W. Causes of Seedless Forming and Identifiction of Seedless Related Genes from ‘Xiangshui’ lemon[D]. Nanning: Guangxi University, 2014. (in Chinese)
[2] 梁梅. 柑橘自交不亲和相关基因鉴定及其演化[D]. 武汉: 华中农业大学, 2019.
LIANG M. Gene identification and evolution of self-incompatibility of citrus[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[3] LIN W, ZHANG S W, DING F, HE X H, LUO C, HUANG G X, D M, WANG Q, YANG Z Y, SU L, HU G B. Two Genes (ClS1 and ClF-box) Involved the Self-Incompatibility of “Xiangshui” Lemon (Citrus Limon (L.) Burm. F.). Plant Molecular Biology Reporter, 2019, 37(1/2): 50-62.
doi: 10.1007/s11105-019-01135-8
[4] 钱泽勇, 张会龙, 荆晓姝, 申泽丹, 邓澍荣, 赵瑞, 沈昕, 陈少良. 胡杨Ring finger E3连接酶PeRH2提高烟草耐旱机制研究. 基因组学与应用生物学, 2015, 34(3): 454-463.
QIAN Z Y, ZHANG H L, JING X S, SHEN Z D, DENG S R, ZHAO R, SHEN X, CHEN S L. Overexpression of ring finger E3-1igase Gene PeRH2 from Populus euphratica in tobacco enhances drought tolerance in transgenic plants. Genomics and Applied Biology, 2015, 34(3): 454-463. (in Chinese)
[5] XU R Q, LI Q Q. A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Molecular Biology, 2003, 53(1/2): 37-50.
doi: 10.1023/B:PLAN.0000009256.01620.a6
[6] 刘敬婧. 拟南芥RING-finger家族成员RHF1a和RHF2a的功能研究[D]. 北京: 北京大学, 2007.
LIU J J. Two novel RING-finger proteins RHFla and RHF2a are essential for cell cycle progression during gametophyte development in Arabidopsis [D]. Beijing: Peking University, 2007. (in Chinese)
[7] LIU J J, ZHANG Y Y, QIN G J, TSUGE T, SAKAGUCHI N, LUO G, SUN K T, SHI D Q, AKI S, ZHENG N Y, AOYAMA T, OKA A, YANG W C, UMEDA M, XIE Q, GU H Y, QU L J. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell. 2008, 20(6): 1538-1554.
doi: 10.1105/tpc.108.059741
[8] BU Q Y, Li H M, ZHAO Q Z, JIANG H L, ZHAI Q Z, ZHANG J, WU X Y, SUN J Q, XIE Q, WANG D W, LI C Y. The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiology, 2009, 150(1): 463-481.
doi: 10.1104/pp.109.135269
[9] LI H M, JIANG H L, BU Q Z, ZHAO Q Y, SUN J Q, XIE Q, LI C Y. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiology, 2011, 156(2): 550-563.
doi: 10.1104/pp.111.176214 pmid: 21478367
[10] INDRIOLO E, GORING D R. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Frontiers in Plant Science, 2014, 5: 181.
doi: 10.3389/fpls.2014.00181 pmid: 24847339
[11] SAMUEL M A, MUDGIL Y, SALT J N, DELMAS F, RAMACHANDRAN S, CHILELLI A, GORING D R. Interactions between the S-Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis. Plant Physiology, 2008, 147(4): 2084-2095.
doi: 10.1104/pp.108.123380 pmid: 18552232
[12] 李慧敏, 罗琼, 肖君, 李少梅, 刘华英, 秦新民. 沙田柚RING-H2 finger基因的生物信息学分析. 生物信息学, 2017, 15(3): 149-155.
LI H M, LUO Q, XIAO J, LI S M, LIU H Y, QIN X M. Bioinformatics analysis of RING H2 finger gene from Citrus grandis var. Shatianyu Hort. Chinese Journal of Bioinformatics, 2017, 15(3): 149-155. (in Chinese)
[13] 唐文武, 莫灿坤, 吴秀兰. 无籽沙糖桔E3泛素连接酶U-box基因的克隆及表达分析. 江西农业大学学报, 2018, 40(2): 383-388.
TANG W W, MO C K, WU X L. Cloning and Expression Analysis of U-boxgene,an E3 Ubiquitin Ligase, in ‘Wuzhishatangju’ (Citrus reticulata Blanco). Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(2): 383-388. (in Chinese)
[14] ZHANG S W, DING F, HE X H, LUO C, HUANG G X, HU Y. Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Molecular Genetics & Genomics: MGG, 2015, 290(1): 365-375.
[15] CHEN C J, XIA R, CHEN H, HE Y H. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. 2018.
[16] WANG Y H, HE X H, YU H X, MO X, FAN Y, FAN Z Y, XIE X J, LIU Y, LUO C. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC plant biology, 2021, 21(1): 407.
doi: 10.1186/s12870-021-03199-9
[17] LIN W, DO M, WEI M, HE X H, LIU Y, FAN Z Y, ZHANG S W, LUO C, HUANG G X, HU G B. ClPLD5, a phospholipase gene is involved in protection of cytoskeleton stability in pollen of self- imcompatible ‘Xiangshui’ Lemon (Citrus limon). Plant Cell, Tissue and Organ Culture, 2020, 143(1): 61-73.
doi: 10.1007/s11240-020-01896-1
[18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative pcr and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
[19] 刘海燕, 冯冬茹, 刘兵, 何炎明, 王宏斌, 王金发. 农杆菌介导的MpASR蛋白在洋葱表皮细胞的定位研究. 热带亚热带植物学报, 2009, 17(3): 218-222.
LIU H Y, FENG D R, LIU B, HE Y M, WANG H B, WANG J F. Studies on subcellular localization of MpASR in onion epidermal cells mediated by agrobacterium. Journal of Tropical and Subtropical Botany, 2009, 17(3): 218-222. (in Chinese)
[20] AN J P, WANG X F, ESPLEY R V, WANG K L, BI S Q, YOU C X, HAO Y J. An apple B-Box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant and Cell Physiology, 2020, 61(1): 130-143.
doi: 10.1093/pcp/pcz185
[21] 陈泠. Tritordeum花粉特异性启动子的克隆与研究[D]. 武汉: 华中科技大学, 2005.
CHEN L. Cloning and study of Tritordeum pollen specific promoter[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese)
[22] 孟冬. 苹果MdABCF转运S-RNase至花粉管影响自交不亲和反应[D]. 北京: 中国农业大学, 2014.
MENG D. Apple ABCF transport S-RNase into pollen tube effecting self-incompatibility[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[23] FILICHKIN S A, LEONARD J M, MONOGAKI A, LIU P P, NONGAKI H. A novel endo-β-Mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiology, 2004, 134(3):1080-1087.
doi: 10.1104/pp.103.035998
[24] 魏巍, 黄蔚, 姚玲娅, 葛晓春. 一个水稻花发育特异性启动子的克隆与活性分析. 复旦学报(自然科学版), 2014, 53(4): 529-534.
WEI W, HUANG W, YAN L Y, GE X C. Cloning and activity analysis of a rice floral development specific promoter. Journal of Fudan University (Natural Science Edition), 2014, 53(4): 529-534. (in Chinese)
[25] 李尉. 水稻OsWTF1和OsWTF2启动子功能分析[D]. 长沙: 湖南农业大学, 2010.
LI W. Function analysis of OsWTF1 and OsWTF2 promoters in rice[D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)
[26] WU J Z, QIN Y, ZHAO J. Pollen tube growth is affected by exogenous hormones and correlated with hormone changes in styles in Torenia fournieri L. Plant Growth Regulation, 2008, 55(2): 137-148.
doi: 10.1007/s10725-008-9268-5
[27] 许明, 白明义, 魏毓棠. 紫菜薹细胞质雄性不育系及其保持系在不同发育时期内源激素的变化. 西北农业学报, 2007, 16(3): 124-128.
XU M, BAI M Y, WEI Y T. Changes in endogenous hormone between B. campestris ssp. Chinensis var. purpurea Hort. CMS lines and their maintainer line at different development stages. Acta Agriculturae Boreali-occidentalis Sinica, 2007, 16(3): 124-128. (in Chinese)
[28] CHEN D, ZHAO J. Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiologia Plantarum, 2010, 134(1): 202-215.
doi: 10.1111/j.1399-3054.2008.01125.x
[29] ZHANG S W, HUANG G X, FENG D, HE X H, PAN J C. Mechanism of seedlessness in a new lemon cultivar ‘Xiangshui’ [Citrus limon (L.) Burm. F.]. Sexual Plant Reproduction, 2012, 25(4): 337-345.
doi: 10.1007/s00497-012-0201-8
[30] MENG D, GU Z Y, WANG A D, YUAN Q, LI T Z. Apple MdABCF assists in the transportation of S-RNase into pollen tubes. The Plant Journal: For Cell and Molecular Biology 2014, 78(6): 990-1002.
doi: 10.1111/tpj.12524
[31] 吕换男, 马聚泽, 郝艳, 左波, 黄佳, 王海静, 武军凯. ‘鸭梨’及其自交亲和性芽变‘金坠梨’花粉ABC转运蛋白家族分析. 河北科技师范学院学报, 2019, 33(2): 1-11.
LÜ H N, MA J Z, HAO Y, ZUO B, HUANG J, WANG H J, WU J K. Proteomic analysis of ABC transporters from self-incompatible ‘Yali‘ and its spontaneous self-compatible mutant ‘Jinzhuili’. Journal of Hebei Normal University of Science & Technology, 2019, 33(2):1-11. (in Chinese)
[32] 贺丹, 张佼蕊, 何松林, 刘红利, 王政, 刘艺平. 芍药属远缘杂交不亲和PlABCF3基因克隆及表达分析. 华北农学报, 2020, 35(6): 81-89.
doi: 10.7668/hbnxb.20191499
HE D, ZHANG J R, HE S L, LIU H L, WANG Z, LIU Y P. Cloning and expression analysis of distant hybridization incompatibility PlABCF3 gene from paeonia. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 81-89. (in Chinese)
doi: 10.7668/hbnxb.20191499
[33] CHOI H, JIN J Y, CHOI S, HWANG J U, KIM Y Y, SUH M C, LEE Y. An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. The Plant journal: For Cell and Molecular Biology, 2011, 65(2): 181-193.
doi: 10.1111/j.1365-313X.2010.04412.x
[34] CECCHETTI V, BRUNETTI P, NAPOLI N, FATTORINI L, ALTAMURA M M, COSTANTINO P, CARDARELLI M. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. Journal of Integrative Plant Biology, 2015, 57(12): 1089-1098.
doi: 10.1111/jipb.12332
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[3] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[4] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[5] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[6] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[7] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[8] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[9] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[10] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[11] LIU Chao, WANG LingLi, WU Di, DANG JiangBo, SHANG Wei, GUO QiGao, LIANG GuoLu. Molecular Cloning of Leaf Developmental Gene EjGRF5, Its Promoter and Expression Analysis in Different Ploidy Loquat (Eriobotrya japonica (Thunb.) Lindl.) [J]. Scientia Agricultura Sinica, 2018, 51(8): 1598-1606.
[12] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[13] LI Xin, GU XiaoChuan, LONG HaiBo, PENG Huan, HUANG WenKun, PENG DeLiang. Identification and Expression Analysis of a New Pectate Lyase Gene Ha-pel-1 from Heterodera avenae [J]. Scientia Agricultura Sinica, 2017, 50(19): 3723-3732.
[14] PAN GuangZhao, ZHANG Kui, LI ChongYang, ZHAO YuZu, SHEN Li, XU Man, SU JingJing, LIN Xi, CUI HongJuan. Identification, Expression, and Functional Analysis of Cathepsin L in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3236-3246.
[15] PAN Qi, LIU XuXu, PENG HaoRan, PU YunDan, ZHANG YongZhi, YE SiHan, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression Analysis of Solanum lycopersicum SYTA [J]. Scientia Agricultura Sinica, 2017, 50(15): 2936-2945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!