Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4678-4687.doi: 10.3864/j.issn.0578-1752.2022.23.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Net Anthropogenic Nitrogen Inputs and Its Influencing Factors in Three Typical Watersheds of China

ZHANG TianPeng1(),YAN TieZhu1,JIN PingZhong2,LEI QiuLiang1,*(),LIAN HuiShu1,3,LI Ying1,4,5,LI XiaoHong1,OU HuiPing6,ZHOU JiaoGen7,DU XinZhong1,WU ShuXia1,LIU HongBin1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2Eryuan County Agricultural Environmental Protection Monitoring Station, Eryuan 671200, Yunnan
    3School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong
    4Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/State Key Laboratory of Resources and Environmental Information System, Beijing 100101
    5University of Chinese Academy of Sciences, Beijing 100049
    6Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
    7School of Urban and Environmental Sciences, Huaiyin Normal University, Huaian 223300, Jiangsu
  • Received:2021-10-21 Accepted:2021-12-29 Online:2022-12-01 Published:2022-12-06
  • Contact: QiuLiang LEI E-mail:ztp_yy220722@163.com;leiqiuliang@caas.cn

Abstract:

【Objective】 Net anthropogenic nitrogen input (NANI) is one of the important causes to non-point source pollution. In order to investigate the spatio-temporal characteristics and influencing factors of net anthropogenic nitrogen input, the key source areas were identified and the key sources in watersheds were analyzed, so as to provide data support for solving the problem of non-point source nitrogen pollution. 【Method】 Three watersheds were selected according to their characteristics, among which Xiangxi River watershed was a typical agriculture watershed, Erhai watershed was comprehensively promotion model of green agricultural development, and Taihu watershed was a typical urban centralized watershed. Based on the NANI model, the data was obtained through statistical yearbook and literature review to evaluate NANI of the three typical watersheds.【Result】 In terms of NANI intensity, the average value of NANI in the three typical watersheds was ranked as follows: Taihu watershed (13 241 kg·km-2·a-1), Xiangxi River watershed (2 183 kg·km-2·a-1), and Erhai watershed (1 582 kg·km-2·a-1). In terms of NANI sources, nitrogen application (Nfer) and food/feed nitrogen (Nim) were the largest sources of NANI, accounting for 58%-97%. The NANI contribution ranked in the order of nitrogen application, food/feed nitrogen input, nitrogen deposition input, and crop nitrogen fixation input. In terms of time, food/feed nitrogen input of Xiangxi River watershed decreased by 23 percentage points from 2010 to 2019, while nitrogen deposition increased by 34 percentage points. From 2010 to 2019, nitrogen application in NANI decreased by 86 percentage points in Erhai watershed. From 2010 to 2019, the input of food/feed nitrogen to NANI in Taihu watershed increased by 31 percentage points, while the input of crop nitrogen fixation and nitrogen deposition decreased by 14 and 12 percentage points, respectively. In terms of influencing factors, NANI was significantly correlated with urban population density in the three typical watersheds (P<0.05), and NANI increased with the increase of urban population density. The Xiangxi River watershed had a significant effect on the proportion of cultivated land and NANI fitting (P<0.05), but the Erhai watershed and Taihu watershed was not significant effect (P>0.05)..【Conclusion】 Zhaojun town, Xiakou town and Huangliang town in Xiangxi River watershed, Xiaguan town, Shangguan town and Fengyi town in Erhai watershed, and Zhangjiagang City, Xiucheng District in Jiaxing City, Gongshu District and Nanhui District in Taihu watershed were the key source areas of NANI. Fertilizer application was the main source of NANI in Xiangxi River watershed where is mainly agricultural. The input of food/feed nitrogen and fertilizer nitrogen were the main sources of NANI in Taihu watershed where is mainly urbanization. The green agricultural development model could significantly reduce net anthropogenic nitrogen input. Therefore, it was beneficial to control agricultural non-point source pollution by vigorously promoting agricultural green development measures and effectively reducing the input of feed and fertilizer in key source areas.

Key words: net anthropogenic nitrogen inputs (NANI), Xiangxi River watershed, Erhai watershed, Taihu watershed, urban population density

Table 1

Parameters and abbreviations"

简称
Abbreviation
全称
Full name
NANI 人类活动净氮输入量
Net anthropogenic nitrogen inputs
Nfer 化肥氮施入量 Fertilizer nitrogen input
Nim 食品/饲料氮输入量 Food/feed nitrogen input
Ncro 作物固氮量 Nitrogen fixation of crops
Ndep 大气氮沉降量 Atmospheric nitrogen deposition
Nhc 人类食品氮消费量 Food nitrogen consumption
Nlc 畜禽饲料氮消费量
Livestock and poultry feed nitrogen consumption
Ncp 作物氮生产量 Crop nitrogen production
Nlp 畜禽产品氮产量
Nitrogen production of livestock and poultry products
POP1 农村人口数量 Rural population
POP2 城镇人口数量 Urban population
AN 区域畜禽养殖数量
Number of regional livestock and poultry breeding
ANI 氮素摄入水平 Nitrogen intake levels
CP 作物含氮量 Nitrogen content of crops
PC 作物产量 Crop yield
ANO 畜禽排泄水平 Livestock and poultry excretion levels

Fig. 1

Diagram of NANI computational structure and nitrogen input for each source Xiangxi River watershed/Taihu watershed/Erhai watershed (Nitrogen inputs in 2019)"

Fig. 2

NANI spatial distribution of three watersheds"

Fig. 3

NANI source structure of three watersheds"

Fig. 4

Influence of population density and agriculture area ratio on NANI"

[1] TONG Y D, ZHAO Y, ZHEN G C, CHI J, LIU X H, LU Y R, WANG X J, YAO R H, CHEN J Y, ZHANG W.Nutrient loads flowing into coastal waters from the main rivers of China (2006-2012). Scientific Reports, 2015, 5: 16678. doi:10.1038/srep16678.
doi: 10.1038/srep16678 pmid: 26582206
[2] 生态环境部. 2020中国生态环境状况公报[R]. 2021.
Ministry of Ecology and Environment. 2020 China Ecology and Environment State Bulletin[R]. 2021. (in Chinese)
[3] 裴亮, 王理明, 于国强. 农业非点源污染研究的现状及应用新进展. 水利水电技术, 2010, 41(12): 58-61. doi:10.13928/j.cnki.wrahe.2010.12.018.
doi: 10.13928/j.cnki.wrahe.2010.12.018
PEI L, WANG L M, YU G Q. Status of study on agricultural non-point source pollution and new progress of its application. Water Resources and Hydropower Engineering, 2010, 41(12): 58-61. doi:10.13928/j.cnki.wrahe.2010.12.018. (in Chinese)
doi: 10.13928/j.cnki.wrahe.2010.12.018
[4] 生态环境部办公厅. 第二次全国污染源普查公报[R]. 2020.
General Office of the Ministry of Ecology and Environment. The Second National Census of Pollution Sources[R]. 2020. (in Chinese)
[5] 冯爱萍, 吴传庆, 王雪蕾, 王洪亮, 周亚明, 赵乾. 海河流域氮磷面源污染空间特征遥感解析. 中国环境科学, 2019, 39(7): 2999-3008. doi:10.19674/j.cnki.issn1000-6923.2019.0354.
doi: 10.19674/j.cnki.issn1000-6923.2019.0354
FENG A P, WU C Q, WANG X L, WANG H L, ZHOU Y M, ZHAO Q. Spatial character analysis on nitrogen and phosphorus diffuse pollution in Haihe River Basin by remote sensing. China Environmental Science, 2019, 39(7): 2999-3008. doi:10.19674/j.cnki.issn1000-6923.2019.0354. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2019.0354
[6] 王雪蕾, 王新新, 朱利, 马友华, 吴传庆, 王强, 冯爱萍, 陈敏鹏. 巢湖流域氮磷面源污染与水华空间分布遥感解析. 中国环境科学, 2015, 35(5): 1511-1519. doi:10.3969/j.issn.1000-6923.2015.05.031.
doi: 10.3969/j.issn.1000-6923.2015.05.031
WANG X L, WANG X X, ZHU L, MA Y H, WU C Q, WANG Q, FENG A P, CHEN M P. Spatial analysis on diffuse pollution and algal bloom characteristic with remote sensing in Chao Lake Basin. China Environmental Science, 2015, 35(5): 1511-1519. doi:10.3969/j.issn.1000-6923.2015.05.031. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2015.05.031
[7] 高伟, 高波, 严长安, 刘永. 鄱阳湖流域人为氮磷输入演变及湖泊水环境响应. 环境科学学报, 2016, 36(9): 3137-3145. doi:10.13671/j.hjkxxb.2015.0779.
doi: 10.13671/j.hjkxxb.2015.0779
GAO W, GAO B, YAN C G, LIU Y. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its’ effect on water quality of lake. Acta Scientiae Circumstantiae, 2016, 36(9): 3137-3145. doi:10.13671/j.hjkxxb.2015.0779. (in Chinese)
doi: 10.13671/j.hjkxxb.2015.0779
[8] 卢少勇, 张萍, 潘成荣, 彭书传, 刘晓晖. 洞庭湖农业面源污染排放特征及控制对策研究. 中国环境科学, 2017, 37(6): 2278-2286. doi:10.3969/j.issn.1000-6923.2017.06.036.
doi: 10.3969/j.issn.1000-6923.2017.06.036
LU S Y, ZHANG P, PAN C R, PENG S C, LIU X H. Agricultural non-point source pollution discharge characteristic and its control measures of Dongtinghu Lake. China Environmental Science, 2017, 37(6): 2278-2286. doi:10.3969/j.issn.1000-6923.2017.06.036. (in Chinese)
doi: 10.3969/j.issn.1000-6923.2017.06.036
[9] 崔超. 三峡库区香溪河流域氮磷入库负荷及迁移特征研究[D]. 北京: 中国农业科学院, 2016.
CUI C. Characteristics of nitrogen and phosphorus loadings into receiving water body and migration in Xiangxi River basin, Three Gorges reservoir region[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[10] 谢丽纯, 陈建耀. 近10 a来珠江三角洲地区氮收支演变及区域差异分析. 自然资源学报, 2014, 29(2): 237-248.
XIE L C, CHEN J Y. Nitrogen budgets of the Pearl River Delta and its regional differences during the past decade. Journal of Natural Resources, 2014, 29(2): 237-248. (in Chinese)
[11] QIU W W, ZHONG Z B, LI Z L. Agricultural non-point source pollution in China: evaluation, convergence characteristics and spatial effects. Chinese Geographical Science, 2021, 31(3): 571-584. doi:10.1007/s11769-021-1200-1.
doi: 10.1007/s11769-021-1200-1
[12] 王健, 尹炜, 叶闽, 雷阿林, 李思敏. 植草沟技术在面源污染控制中的研究进展. 环境科学与技术, 2011, 34(5): 90-94.
WANG J, YIN W, YE M, LEI A L, LI S M. Advance on grassed swales technology in non-point source pollution control. Environmental Science & Technology, 2011, 34(5): 90-94. (in Chinese)
[13] 魏欣. 中国农业面源污染管控研究[D]. 杨凌: 西北农林科技大学, 2014.
WEI X. A novel framework for agricultural non-point source pollution management and control in China[D]. Yangling: Northwest A & F University, 2014. (in Chinese)
[14] LIAN H S, LEI Q L, ZHANG X Y, HAW Y, WANG H Y, ZHAI L M, LIU H B, HUANG J C, REN T Z, ZHOU J G, QIU W W. Effects of anthropogenic activities on long-term changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. Science of the Total Environment, 2018, 645: 1212-1220. doi:10.1016/j.scitotenv.2018.06.354.
doi: 10.1016/j.scitotenv.2018.06.354
[15] LI Y, YEN H, LEI Q L, QIU W W, LUO J F, LINDSEY S, QIN L H, ZHAI L M, WANG H Y, WU S X, LI W C, HU W L, LI H Z, LIU H B. Impact of human activities on phosphorus flows on an early eutrophic plateau: A case study in Southwest China. Science of the Total Environment, 2020, 714: 136851. doi:10.1016/j.scitotenv.2020.136851.
doi: 10.1016/j.scitotenv.2020.136851
[16] 李晓虹, 刘宏斌, 雷秋良, 严颢, 翟丽梅, 武淑霞, 王洪媛, 张亦涛, 李影. 人类活动净氮输入时空变化特征及其影响因素: 以香溪河流域为例. 中国环境科学, 2019, 39(2): 812-817. doi:10.19674/j.cnki.issn1000-6923.2019.0099.
doi: 10.19674/j.cnki.issn1000-6923.2019.0099
LI X H, LIU H B, LEI Q L, YEN H, ZHAI L M, WU S X, WANG H Y, ZHANG Y T, LI Y. Spatio-temporal characteristics and influential factors of net anthropogenic nitrogen input: A case study of Xiangxi River Watershed full text replacement. China Environmental Science, 2019, 39(2): 812-817. doi:10.19674/j.cnki.issn1000-6923.2019.0099. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2019.0099
[17] 张天鹏, 雷秋良, 秦丽欢, 李晓虹, 武淑霞, 夏颖, 张富林, 张亦涛, 刘宏斌. 香溪河流域人类活动净磷输入量及其影响因素. 中国环境科学, 2020, 40(11): 4957-4964. doi:10.19674/j.cnki.issn1000-6923.2020.0548.
doi: 10.19674/j.cnki.issn1000-6923.2020.0548
ZHANG T P, LEI Q L, QIN L H, LI X H, WU S X, XIA Y, ZHANG F L, ZHANG Y T, LIU H B. Net phosphorus input from human activities and its influencing factors in Xiangxi River Watershed. China Environmental Science, 2020, 40(11): 4957-4964. doi:10.19674/j.cnki.issn1000-6923.2020.0548. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2020.0548
[18] 关大伟, 李力, 岳现录, 马鸣超, 张武, 李俊. 我国大豆的生物固氮潜力研究. 植物营养与肥料学报, 2014, 20(6): 1497-1504. doi:10.11674/zwyf.2014.0620.
doi: 10.11674/zwyf.2014.0620
GUAN D W, LI L, YUE X L, MA M C, ZHANG W, LI J. Study on potential of biological nitrogen fixation of soybean in China. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1497-1504. doi:10.11674/zwyf.2014.0620. (in Chinese)
doi: 10.11674/zwyf.2014.0620
[19] 翟凤英, 何宇娜, 王志宏, 于文涛, 胡以松, 杨晓光. 中国城乡居民膳食营养素摄入状况及变化趋势. 营养学报, 2005, 27(3): 181-184. doi:10.3321/j.issn:0512-7955.2005.03.002.
doi: 10.3321/j.issn:0512-7955.2005.03.002
ZHAI F Y, HE Y N, WANG Z H, YU W T, HU Y S, YANG X G. The status and trends of dietary nutrients intake of Chinese population. Acta Nutrimenta Sinica, 2005, 27(3): 181-184. doi:10.3321/j.issn:0512-7955.2005.03.002. (in Chinese)
doi: 10.3321/j.issn:0512-7955.2005.03.002
[20] 陈天宝, 万昭军, 付茂忠, 张红, 张金灵, 杨朝武, 蒋小松. 基于氮素循环的耕地畜禽承载能力评估模型建立与应用. 农业工程学报, 2012, 28(2): 191-195. doi:10.3969/j.issn.1002-6819.2012.02.034.
doi: 10.3969/j.issn.1002-6819.2012.02.034
CHEN T B, WAN Z J, FU M Z, ZHANG H, ZHANG J L, YANG C W, JIANG X S. Modeling and application of livestock supporting capacity estimation of cropland based on nitrogen cycling in southwest China. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 191-195. doi:10.3969/j.issn.1002-6819.2012.02.034. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.02.034
[21] 董红敏, 朱志平, 黄宏坤, 陈永杏, 尚斌, 陶秀萍, 周忠凯. 畜禽养殖业产污系数和排污系数计算方法. 农业工程学报, 2011, 27(1): 303-308. doi:10.3969/j.issn.1002-6819.2011.01.049.
doi: 10.3969/j.issn.1002-6819.2011.01.049
DONG H M, ZHU Z P, HUANG H K, CHEN Y X, SHANG B, TAO X P, ZHOU Z K. Pollutant generation coefficient and discharge coefficient in animal production. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 303-308. doi:10.3969/j.issn.1002-6819.2011.01.049. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2011.01.049
[22] 裴玮, 杜新忠, 雷秋良, 闫铁柱, 李影, 张天鹏, 陈玫君, 武淑霞, 刘宏斌. 河南省人类活动净氮输入量与参数影响研究. 中国环境科学, 2021, 41(9): 1-15.
PEI W, DU X Z, LEI Q L, YAN T Z, LI Y, ZHANG T P, CHEN M J, WU S X, LIU H B. Net anthropogenic nitrogen input from human activities and its impacts from parameters in Henan Province. China Environmental Science, 2021, 41(9): 1-15. (in Chinese)
[23] 韩黎阳, 黄志霖, 肖文发, 田耀武, 曾立雄, 吴东. 三峡库区兰陵溪小流域土地利用及景观格局对氮磷输出的影响. 环境科学, 2014, 35(3): 1091-1097. doi:10.13227/j.hjkx.2014.03.038.
doi: 10.13227/j.hjkx.2014.03.038
HAN L Y, HUANG Z L, XIAO W F, TIAN Y W, ZENG L X, WU D. Effects of land use and landscape pattern on nitrogen and phosphorus exports in Lanlingxi watershed of the Three Gorges reservoir area, China. Environmental Science, 2014, 35(3): 1091-1097. doi:10.13227/j.hjkx.2014.03.038. (in Chinese)
doi: 10.13227/j.hjkx.2014.03.038
[24] HAN Y G, FENG G, SWANEY D P, DENTENER F, KOEBLE R, OUYANG Y, GAO W. Global and regional estimation of net anthropogenic nitrogen inputs (NANI). Geoderma, 2020, 361: 114066. doi:10.1016/j.geoderma.2019.114066.
doi: 10.1016/j.geoderma.2019.114066
[25] 李影, 刘宏斌, 雷秋良, 胡万里, 王洪媛, 翟丽梅, 任天志, 连慧姝. 洱海流域乡镇尺度上人类活动对净氮输入量的影响. 环境科学, 2018, 39(9): 4189-4198. doi:10.13227/j.hjkx.201712079.
doi: 10.13227/j.hjkx.201712079
LI Y, LIU H B, LEI Q L, HU W L, WANG H Y, ZHAI L M, REN T Z, LIAN H S. Impact of human activities on net anthropogenic nitrogen inputs(NANI) at township scale in Erhai lake basin. Environmental Science, 2018, 39(9): 4189-4198. doi:10.13227/j.hjkx.201712079. (in Chinese)
doi: 10.13227/j.hjkx.201712079
[26] 何松娥. 测土配方施肥技术及其推广对策. 农业科技与信息, 2021(12): 62-63. doi:10.15979/j.cnki.cn62-1057/s.2021.12.023.
doi: 10.15979/j.cnki.cn62-1057/s.2021.12.023
HE S E. Soil testing formula fertilization technology and its promotion countermeasures. Agricultural Science-Technology and Information, 2021(12): 62-63. doi:10.15979/j.cnki.cn62-1057/s.2021.12.023. (in Chinese)
doi: 10.15979/j.cnki.cn62-1057/s.2021.12.023
[27] 张怡彬, 李俊改, 王震, 戴孚岳, 翟丽梅, 杨波, 王洪媛, 刘宏斌. 有机替代下华北平原旱地农田氨挥发的年际减排特征. 植物营养与肥料学报, 2021, 27(1): 1-11. doi:10.11674/zwyf.20292.
doi: 10.11674/zwyf.20292
ZHANG Y B, LI J G, WANG Z, DAI F Y, ZHAI L M, YANG B, WANG H Y, LIU H B. Substitution of chemical fertilizer with organic manure reduces ammonia volatilization in maize farmland in North China Plain. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 1-11. doi:10.11674/zwyf.20292. (in Chinese)
doi: 10.11674/zwyf.20292
[28] 华玲玲, 李文超, 翟丽梅, 崔超, 刘宏斌, 任天志, 张富林, 雷秋良. 三峡库区古夫河小流域氮磷排放特征. 环境科学, 2017, 38(1): 138-146. doi:10.13227/j.hjkx.201606210.
doi: 10.13227/j.hjkx.201606210
HUA L L, LI W C, ZHAI L M, CUI C, LIU H B, REN T Z, ZHANG F L, LEI Q L. Characteristics of nitrogen and phosphorus emissions in the gufu river small watershed of the Three Georges reservoir area. Environmental Science, 2017, 38(1): 138-146. doi:10.13227/j.hjkx.201606210. (in Chinese)
doi: 10.13227/j.hjkx.201606210
[29] 华玲玲, 张富林, 翟丽梅, 刘宏斌, 范先鹏, 王洪媛. 江汉平原水稻季灌排单元沟渠中氮磷变化特征及其环境风险. 环境科学, 2018, 39(6): 2715-2723. doi:10.13227/j.hjkx.201709157.
doi: 10.13227/j.hjkx.201709157
HUA L L, ZHANG F L, ZHAI L M, LIU H B, FAN X P, WANG H Y. Characteristics of nitrogen and phosphorus concentration dynamics in natural ditches under an irrigation-drainage unit in the Jianghan plain. Environmental Science, 2018, 39(6): 2715-2723. doi:10.13227/j.hjkx.201709157. (in Chinese)
doi: 10.13227/j.hjkx.201709157
[30] LIANG X, LAM S K, ZHANG X, OENEMA O, CHEN D L. Pursuing sustainable nitrogen management following the “5 Ps” principles: Production, People, Planet, Policy and Partnerships. Global Environmental Change, 2021, 70: 102346. doi:10.1016/j.gloenvcha.2021.102346.
doi: 10.1016/j.gloenvcha.2021.102346
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!