Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1164-1172.doi: 10.3864/j.issn.0578-1752.2019.07.004

Special Issue: SPECIAL FOCUS ON GRAPE RESEARCH

• SPECIAL FOCUS ON GRAPE RESEARCH • Previous Articles     Next Articles

The Effects of Different Training Systems and Shoot Spacing on the Fruit Quality of ‘Kyoho’ Grape

JI XiaoHao,LIU FengZhi,SHI XiangBin,WANG BaoLiang,LIU PeiPei,WANG HaiBo()   

  1. Fruit Research Institute, Chinese Academy of Agricultural Sciences/Ministry of Agriculture Key Laboratory of Germplasm Resources Utilization of Horticultural Crops/Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Xingcheng 125100, Liaoning
  • Received:2018-08-01 Accepted:2018-10-31 Online:2019-04-01 Published:2019-04-04
  • Contact: HaiBo WANG E-mail:haibo8316@163.com

Abstract:

【Objective】The aim of this study was to ascertain the effects of different training systems and shoot spacing on the fruit quality of Kyoho grape and provide the theoretical guidance for the canopy management of Kyoho grape. 【Method】 The experimental materials were six-year-old vines of Kyoho grape using Beta grape as rootstock. Two different training systems, including horizontal shoot positioning and Y-shaped training system, were applied. The distance between the shoots was 10 cm, 15 cm and 20 cm controlled by the rope, respectively. Fruit quality indexes, such as berry weight, soluble solids, titratable acid, vitamin C, anthocyanin and aroma, were determined at maturity stage. 【Result】 Berry weight, soluble solids, titratable acid and vitamin C contents were significantly correlated with the training systems, but not significantly correlated with the shoot spacing. The anthocyanin content was significantly correlated with training systems and shoot spacing. The total aroma content was significantly correlated with the training systems, but not significantly correlated with the shoot spacing. Among them, the content of aldehydes, alcohols and terpenes was consistent with the total aroma content, while the content of esters was only correlated with the shoot spacing. The Topsis comprehensive evaluation analysis was conducted for 9 indicators including berry weight, soluble solids, titratable acid, vitamin C, anthocyanin, ester, aldehyde, terpene and alcohol contents, and the result showed that horizontal shoot positioning training system combining with 15 cm shoot spacing scored the highest. 【Conclusion】 These data strongly suggested that horizontal shoot positioning training system combining with 15 cm shoot spacing was the most suitable for Kyoho grape production.

Key words: trainings system, shoot spacing, grape, fruit quality

Table 1

Effect of training system and shoot spacing on Kyoho berry parameters at harvest"

V-10 V-15 V-20 L-10 L-15 L-20
单粒重 Berry weight (g) 9.42±0.49ab 8.24±0.19a 9.42±0.36ab 9.74±0.22b 9.57±0.21b 10.57±0.81b
可溶性固形物含量 Soluble solid content (%) 16.8±0.36a 16.6±0.18a 16.3±0.46a 17.9±0.51b 17.6±0.40b 17.6±0.53b
可滴定酸含量 Titrable acidity (%) 0.55±0.03ab 0.54±0.02ab 0.60±0.06b 0.55±0.03ab 0.50±0.02a 0.52±0.03a
维生素C含量 Vitamin C content (mg·kg-1) 24.99±0.11bc 27.44±0.05d 23.20±0.10b 26.12±0.05cd 24.82±0.10a 21.09±0.03a
花青苷含量 Anthocyanin content (mg·g-1) 2.45±0.24ab 3.80±1.10bc 5.16±1.10c 1.47±0.35a 1.67±0.29a 2.00±0.14ab

Table 2

Correlation analysis between different treatments and fruit quality"

架式
Training system
新梢间距
Shoot spacing
单粒重
Berry weight
0.546* -0.053
可溶性固形物含量
Soluble solid content
0.712** 0.026
可滴定酸含量
Titrable acidity
-0.658** 0.662
维生素C含量
Vitamin C content
-0.525* -0.369
花青苷含量
Anthocyanin content
-0.867** 0.843**

Table 3

Effects of training system and shoot spacing on Kyoho berry volatile aroma"

保留时间Retention time (min) 组分含量 Constituent content (ng·g-1 FW) 组分名称
Aroma component
V-10 V-15 V-20 L-10 L-15 L-20
2.215 1344.41±294.13a 1174.55±113.31a 1287.89±86.25a 1042.11±47.52a 1387.36±154.17a 1236.74±63.24a 乙酸乙酯
Ethyl acetate
5.229 543.26±88.27c 411.65±75.78bc 416.43±44.61bc 175.45±36.34a 200.82±23.16a 277.23±54.1ab 丁酸乙酯
Ethyl butyrate
6.826 53.84±11.83c 40.13±11.72bc 47.78±10.32c 11.81±3.35a 39.8±2.28bc 23.3±2.56ab 2-丁烯酸乙酯
Ethyl 2-butenoate
7.056 839.51±60.72d 723.92±92.77cd 517.88±31.86bc 212.56±63.38a 140.9±6.32a 329.62±137.45ab 2-己烯醛
2-Hexenal
7.791 127.42±13.14cd 138.79±24.8d 120.28±22.61cd 47.27±10.97a 72.29±3.9ab 93.12±5.75bc 甲酸己酯
Hexyl formate
9.342 9.17±3.99abc 6.7±0.69ab 12.69±1.54c 4.71±1.57a 11.34±1.26bc 8±0.93abc 戊酸乙酯
Ethyl valerate
10.694 7.35±1.64ab 9.53±3.66b 5.59±1.41ab 3.93±1.36a 3.96±0.92a 3.65±0.78a α-蒎烯
α-Pinene
11.161 6.75±3.19ab 5.91±3.14ab 6.6±3.02ab 0.67±0.42a 9.13±3.56b 1.79±1.24ab 3-羟基丁酸乙酯
Ethyl 3-hydroxybutyrate
11.351 13.63±3.77c 5.67±1.22ab 8.75±0.74b 2.79±0.22a 6.83±0.6ab 4.11±0.5a 惕各酸乙酯
Ethyl phthalate
12.339 7.95±1.71b 7.48±0.76b 8.57±0.59b 4.53±0.46a 4.35±0.45a 4.3±0.32a 苯甲醛
Benzaldehyde
13.075 3.56±0.38c 5.59±0.47d 3.06±0.09bc 2.6±0.28ab 2.02±0.2a 1.98±0.09a β-蒎烯
β-Pinene
13.724 3.56±1.38b 6.23±0.47c 5.22±0.66bc 1.52±0.08a 1.73±0.2a 1.57±0.06a 1-辛烯-3-醇
1-Octene-3-ol
14.341 12.18±1.85b 15.21±0.96c 12.94±1.13bc 10.36±1.15b 4.49±0.16a 11.63±0.11b 己酸
Caproic acid
14.72 4.62±0.91c 5.17±0.99c 2.59±0.25b 0.39±0.21a 1.4±0.19ab 1.4±0.03ab 2,4-庚二烯醛
2,4-Heptadienal
14.989 162.43±18bc 103.28±25.18ab 240.46±16.12d 92.47±39.22a 197.58±8.88ab 170.57±24.69c 己酸乙酯
Ethyl hexanoate
15.986 6.06±2.11cd 4.98±1.08bc 3.99±0.44bc 0.68±0.1a 8.12±0.48d 2.4±0.11ab 乙酸己酯
Hexyl acetate
16.12 11.89±2.08d 10.46±0.63cd 7.08±0.77bc 3.54±0.59a 7.6±1.81bc 5.4±0.58ab 2-己烯-1-醇乙酸酯
2-Hexen-1-ol acetate
16.413 7.8±2.97b 8.59±2.17b 3.64±2.26a 2.32±0.57a 3.39±0.86a 2.69±0.04a 柠檬烯
Limonene
16.635 0.87±0.05b 1±0.03c 1.28±0.23c 0.45±0.01a 1.17±0.26c 0.53±0.09a 桉油精
Eucalyptol
16.99 1.74±0.15bc 3.38±0.61d 2.51±0.38cd 1.34±0.05ab 3.13±0.53d 0.7±0.09a 苯甲醇
Benzyl alcohol
17.473 18.19±7.43bc 26.77±7.81c 11.39±1.11ab 10.68±1.53ab 4.29±0.08a 6.48±0.68ab 苯乙醛
Phenylacetaldehyde
17.86 17.01±2.9bc 15.92±5.17bc 25.11±2.27c 9.93±6.4a 13.56±0.47ab 13.46±2.62ab 2-己烯酸乙酯
Ethyl 2-hexenoate
19.474 1.46±0.33c 1.49±0.1c 1.64±0.12c 0.81±0.1ab 0.99±0.06b 0.52±0.11c 2-辛烯-1-醇
2-Octene-1-ol
21.183 2.74±0.59c 2.36±0.53bc 2.91±0.42c 1.08±0.3a 2.32±0.05bc 1.33±0.12ab 2,4-己二烯酸乙酯
Ethyl 2,4-hexadienoate
21.523 9.65±1.64bc 6.36±2.48ab 7.54±0.19ab 3.91±1.31a 12.34±0.82c 5.01±0.85a 庚酸乙酯
Ethyl heptanoate
保留时间Retention time (min) 组分含量 Constituent content (ng·g-1 FW) 组分名称
Aroma component
V-10 V-15 V-20 L-10 L-15 L-20
21.776 5.53±0.59ab 8.94±0.57c 6.64±0.57b 5.99±0.45ab 5.32±0.06a 5.94±0.42ab 壬醛
Nonanal
22.211 18.54±1.28a 45.98±6.11b 42.62±5.16b 17.7±2.59a 9.83±1.31a 15.67±2.31a 苯乙醇
Phenylethanol
23.888 3.91±0.66c 4.5±0.33c 4.16±0.39c 2.33±0.3b 1.21±0.35a 2.16±0.13ab 苄基腈
Benzyl nitrile
26.379 2.72±0.19b 3.01±0.5bc 3.75±0.46c 1.7±0.36a 2.52±0.29ab 1.71±0.07a 萜品烯
Terpinene
27.32 0.44±0.06bc 0.69±0.12d 0.64±0.02cd 0.16±0.04a 1.63±0.1e 0.28±0.08ab 丁二酸二乙酯
Diethyl succinate
27.471 2.38±0.2b 4.49±0.57c 2.37±0.28b 0.2±0.07a 1.73±0.21b 0.25±0a 水杨酸甲酯
Methyl salicylate
27.629 2.49±1.34bc 1.9±0.26b 2.46±0.3bc 0.44±0.19a 3.76±0.24b 1±0.34a 4-辛烯酸乙酯
Ethyl 4-octenoate
28.246 12.29±4.49ab 16.94±7.36ab 12.36±1.29ab 9.43±3.14a 20.63±1.8b 10.06±3.1ab 辛酸乙酯
Ethyl octanoate
28.665 0.91±0.09a 1.31±0.23ab 1.08±0.09ab 0.92±0.15a 1.46±0.23b 0.9±0.15a 癸醛
Capraldehyde
30.279 2.56±0.83bc 1.83±0.38b 3.25±0.51c 0.28±0.04a 1.26±0.68ab 0.27±0.09a 香茅醇
Citronellol
31.165 18.29±1.55b 17.98±6.24b 17.33±0.6b 5.55±0.84a 5.56±1.08a 7.41±0.47a 苯乙酸乙酯
Phenylacetate
31.497 2.95±1.29b 1.75±0.43ab 2.33±0.31ab 1.03±0.35a 2.39±0.23ab 0.98±0.11a 2-辛烯酸乙酯
Ethyl trans-2-octenoate
34.811 1.45±0.31b 2.33±0.52c 1.37±0.18ab 1.34±0.11ab 2.98±0.31c 0.59±0.06a 壬酸乙酯
Ethyl pelargonate
40.079 0.72±0.22ab 1.18±0.28b 1.03±0.18b 0.34±0.06a 2.15±0.15c 0.39±0.07a 4-癸烯酸乙酯
Ethyl 4-decenoate
41.115 2.95±0.69ab 2.24±0.03a 4.24±0.57b 5.92±0.65c 2.63±0.42a 2.92±0.41ab 癸酸乙酯
Ethyl caprate
45.616 3.09±0.47bc 4.73±0.76cd 5.54±0.55d 1.29±0.32a 4.13±0.93cd 1.57±0.36ab 2,4-癸二烯酸乙酯
Ethyl 2,4-decadienoate

Fig. 1

Analysis of the contents of four aroma substances Different letters in the same group indicate significant differences among treatments at P<0.05"

Table 5

Topsis comprehensive evaluation analysis"

样本
Treatments
D+ D- CI 名次
Ranking
V-10 0.1143 0.0912 0.4437 6
V-15 0.1308 0.1073 0.4506 4
V-20 0.1204 0.0978 0.4483 5
L-10 0.1166 0.1025 0.4679 3
L-15 0.1025 0.1264 0.552 1
L-20 0.1093 0.1245 0.5325 2
[1] REYNOLDS A G, HEUVEL J E V . Influence of grapevine training systems on vine growth and fruit composition: A review. American Journal of Enology and Viticulture, 2009,60(3):251-268.
doi: 10.1109/ICEMI.2009.5274122
[2] HOWELL G S, MILLER D P, EDSON C E, STRIEGLER R K . Influence of training system and pruning severity on yield, vine size, and fruit composition of vignoles grapevines. American Journal of Enology and Viticulture, 1991,42(3):191-198.
doi: 10.1016/0304-4238(91)90102-5
[3] REYNOLDS A G, WARDLE D A, NAYLOR A P . Impact of training system and vine spacing on vine performance and berry composition of Chancellor. American Journal of Enology and Viticulture, 1995,46(1):88-97.
doi: 10.1007/BF00221141
[4] REYNOLDS A G, WARDLE D A, NAYLOR A P . Impact of training system, vine spacing, and basal leaf removal on Riesling. Vine performance, berry composition, canopy microclimate, and vineyard labor requirements. American Journal of Enology and Viticulture, 1996,47(1):63-76.
doi: 10.1007/BF00223387
[5] REYNOLDS A G, WARDLE D A, CLIFF M A, KING M . Impact of training system and vine spacing on vine performance, berry composition, and wine sensory attributes of Riesling. American Journal of Enology and Viticulture, 2004,55(1):84-95.
doi: 10.3969/j.issn.1673-4785.201111001
[6] PETERLUNGER E, CELOTTI E, DA DALT G, STEFANELLI S, GOLLINO G, ZIRONI R . Effect of training system on Pinot noir grape and wine composition. American Journal of Enology and Viticulture, 2002,53(1):14-18.
doi: 10.1021/jf0108664
[7] BAEZA P, RUIZ C, CUEVAS E, SOTES V, LISSARRAGUE J . Ecophysiological and agronomic response of Tempranillo grapevines to four training systems. American Journal of Enology and Viticulture, 2005,56(2):129-138.
doi: 10.1016/S0065-2164(05)57008-4
[8] BORDELON B P, SKINKIS P A, HOWARD P H . Impact of training system on vine performance and fruit composition of Traminette. American Journal of Enology and Viticulture, 2008,59(1):39-46.
doi: 10.1016/j.scienta.2007.09.001
[9] JI T, DAMI I E . Characterization of free flavor compounds in Traminette grape and their relationship to vineyard training system and location. Journal of Food Science, 2008,73(4):262-267.
doi: 10.1111/j.1750-3841.2008.00736.x pmid: 18460120
[10] ZOECKLEIN B W, WOLF T K, PELANNE L, MILLER M K, BIRKENMAIER S S . Effect of vertical shoot-positioned, smart-dyson, and geneva double-curtain training systems on viognier grape and wine composition. American Journal of Enology and Viticulture, 2008,59(1):9-10.
doi: 10.1016/SO065-2911(07)53004-3
[11] FRAGASSO M, ANTONACCI D, PATI S, TUFARIELLO M, BAIANO A, FORLEO L R, CAPUTO A R, NOTTE E L . Influence of training system on volatile and sensory profiles of primitivo grapes and wines. American Journal of Enology and Viticulture, 2012,63(4):477-486.
doi: 10.5344/ajev.2012.11074
[12] VILANOVA M, GENISHEVA Z, TUBIO M, ALVAREZ K, LISSARRAGUE J R, OLIVEIRA J M . Effect of Vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral training systems on the volatile composition of Albarino wines. Molecules, 2017,22(9):1500.
doi: 10.3390/molecules22091500 pmid: 28885582
[13] 申艳红, 姜涛, 陈晓静 . 葡萄架式、整形、修剪及特点. 中外葡萄与葡萄酒, 2007(4):29-32.
doi: 10.3969/j.issn.1004-7360.2007.04.008
SHEN Y H, JIANG T, CHEN X J . Grape training system, shaping, pruning and characteristic. Sino-Overseas Grapevine & Wine, 2007(4):29-32. (in Chinese)
doi: 10.3969/j.issn.1004-7360.2007.04.008
[14] 李晓梅, 唐晓萍, 董志刚, 谭伟, 于静, 王新平 . 葡萄生产上几种常见架式及其应用. 山西果树, 2015(2):36-38.
LI X M, TANG X P, DONG Z G, TAN W, YU J, WANG X P . Several common training systems and applications in grape production. Shanxi Fruits, 2015(2):36-38. (in Chinese)
[15] 赵海亮, 赵文东, 孙凌俊, 高圣华, 马丽, 刘晓菊 . 不同架式巨峰葡萄光合特性与叶绿素荧光参数研究. 西南农业学报, 2015,28(6):2691-2694.
doi: 10.16213/j.cnki.scjas.2015.06.063
ZHAO H L, ZHAO W D, SUN L J, GAO S H, MA L, LIU X J . Study on photosynthetic characteristics and chlorophyll fluorescence parameters of Kyoho grapes in different trellis. Southwest China Journal of Agricultural Sciences, 2015,28(6):2691-2694. (in Chinese)
doi: 10.16213/j.cnki.scjas.2015.06.063
[16] 单守明, 平吉成, 王振平, 冯美, 王文举, 张亚红 . 不同架式对设施葡萄光合特性及果实品质的影响. 山地农业生物学报, 2010,29(2):107-111.
doi: 10.3969/j.issn.1008-0457.2010.02.004
SHAN S M, PING J C, WANG Z P, FENG M, WANG W J, ZHANG Y H . The effect of different grape training structues on the photosynthetic character and fruit quality. Journal of Mountain Agriculture and Biology, 2010,29(2):107-111. (in Chinese)
doi: 10.3969/j.issn.1008-0457.2010.02.004
[17] 程建徽, 魏灵珠, 李琳, 袁金波, 吴江 . 2种架式下红地球葡萄果实着色与糖积累的比较. 浙江农业科学, 2011(3):504-508.
doi: 10.3969/j.issn.0528-9017.2011.03.016
CHENG J H, WEI L Z, LI L, YUAN J B, WU J . Comparison of fruit coloration and sugar accumulation under two training system of Red Globe grapes. Zhejiang Agricultural Sciences, 2011(3):504-508. (in Chinese)
doi: 10.3969/j.issn.0528-9017.2011.03.016
[18] 田益华, 奚晓军, 龚少华, 蒋爱丽 . 设施葡萄栽培架式对果实品质的影响. 河北林业科技, 2014(5/6):88-96.
doi: 10.3969/j.issn.1002-3356.2014.05.025
TIAN Y H, XI X J, GONG S H, JIANG A L . Effect of training system on grape fruit quality under protected cultivation. The Journal of Hebei Forestry Science and Technology, 2014(5/6):88-96. (in Chinese)
doi: 10.3969/j.issn.1002-3356.2014.05.025
[19] 赵妮, 郁松林, 赵宝龙, 于坤, 董明明, 杨夕 . 日光温室中不同架式对葡萄光合特性及果实品质的影响. 新疆农业科学, 2016,53(11):2023-2032.
doi: 10.6048/j.issn.1001-4330.2016.11.008
ZHAO N, YU S L, ZHAO B L, YU K, DONG M M, YANG X . Effects of different training systems on photosynthesis and berry quality of grapes in solar greenhouses. Xinjiang Agricultural Sciences, 2016,53(11):2023-2032. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2016.11.008
[20] 赵新节, 孙玉霞, 刘波, 王晓, 束怀瑞 . 不同架式栽培的玫瑰香葡萄成熟期挥发性物质的变化. 园艺学报, 2005,32(1):87-90.
doi: 10.3321/j.issn:0513-353X.2005.01.019
ZHAO X J, SUN Y X, LIU B, WANG X, SHU H R . Changes of volatile compounds in ‘Muscat Hambourg’ for various trellis systems during maturity. Acta Horticulturae Sinica, 2005,32(1):87-90. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2005.01.019
[21] 贾杨, 廖康, 骆强伟, 孙锋, 马微, 牛莹莹, 江振斌 . 无核白葡萄不同栽培架式叶幕微气候及产量品质差异分析. 新疆农业科学, 2016,53(7):1210-1216.
doi: 10.6048/j.issn.1001-4330.2016.07.005
JIA Y, LIAO K, LUO Q W, SUN F, MA W, NIU Y Y, JIANG Z B . Analysis on the canopy microclimate and yield and quality of the different grape cultivation trellis in Turpan. Xinjiang Agricultural Sciences, 2016,53(7):1210-1216. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2016.07.005
[22] 马静茹, 郁松林, 崔瑜 . 不同栽培架式对设施弗雷无核葡萄产量及品质的影响. 新疆农垦科技, 2015(5):17-18.
MA J R, YU S L, CUI Y . Effect of training systems on yield and fruit quality of Flame Seedless under protected cultivation. Xinjiang Farmland Science & Technology, 2015(5):17-18. (in Chinese)
[23] 文旭, 容新民, 边凤霞, 王富霞, 张勇 . 不同架式对紫香无核葡萄生长结果的影响. 中国果树, 2015(2):32-35.
WEN X, RONG X M, BIAN F X, WANG F X, ZHANG Y . Effect of training systems on vine performance and fruit quality of Zixiang Seedless grape. China Fruits, 2015(2):32-35. (in Chinese)
[24] 史祥宾, 刘凤之, 程存刚, 王孝娣, 王宝亮, 郑晓翠, 王海波 . 不同叶幕形对设施葡萄叶幕微环境、叶片质量及果实品质的影响. 应用生态学报, 2015,26(12):3730-3736.
SHI X B, LIU F Z, CHENG C G, WANG X D, WANG B L, ZHENG X C, WANG H B . Effects of canopy shapes of grape on canopy microenvironment, leaf and fruit quality in greenhouse. Chinese Journal of Applied Ecology, 2015,26(12):3730-3736. (in Chinese)
[25] 张军贤, 张振文 . 架式与新梢留量对赤霞珠葡萄酒中单体酚的影响. 中国农业科学, 2010,43(18):3784-3790.
doi: 10.3864/j.issn.0578-1752.2010.18.012
ZHANG J X, ZHANG Z W . Effects of trellis system and shoot density on free phenol of wine from Vitis viniferal L. cv. Cabernet Sauvignon. Scientia Agricultura Sinica, 2010,43(18):3784-3790. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2010.18.012
[26] XU X Q, CHENG G, DUAN L L, JIANG R, PAN Q H, DUAN C Q, WANG J . Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chemistry, 2015,181:198-206.
doi: 10.1016/j.foodchem.2015.02.082 pmid: 25794740
[27] LIU L Y, NAN L J, ZHAO X H, WANG Z X, NAN H L, LI H . Effects of two training systems on sugar metabolism and related enzymes in cv. Beibinghong (Vitis amurensis Rupr.). Canadian Journal of Plant Science, 2015,95:987-998.
doi: 10.4141/CJPS-2014-396
[28] 冀晓昊, 王海波, 张克坤, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 王志强, 刘凤之 . 不同颜色果袋对葡萄花青苷合成的调控. 中国农业科学, 2016,49(22):4460-4468.
doi: 10.3864/j.issn.0578-1752.2016.22.018
JI X H, WANG H B, ZHANG K K, WANG X D, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z . The grape anthocyanin biosynthesis regulation by different color fruit bags. Scientia Agricultura Sinica, 2016,49(22):4460-4468. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.018
[29] 张克坤, 王海波, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 刘凤之 . ‘瑞都香玉’葡萄果实挥发性成分在果实发育过程中的变化. 中国农业科学, 2015,48(19):3965-3978.
doi: 10.3864/j.issn.0578-1752.2015.19.018
ZHANG K K, WANG H B, WANG X D, SHI X B, WANG B L, ZHENG X C, LIU F Z . Evolution of volatile compounds during the berry development of ‘Ruidu Xiangyu’ grape. Scientia Agricultura Sinica, 2015,48(19):3965-3978. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.19.018
[30] JOSE T M, RODRIGO L, ANDREA V, ALVARO P N, EDMUNDO B, PATRICIO A J, JOSE A A . Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 2009,60(3):853-867.
doi: 10.1136/gut.2005.073262 pmid: 19129169
[31] 周建梅, 曹耀鹏, 贾名波, 邵小杰 . 山东不同产区巨峰葡萄香气物质分析. 中外葡萄与葡萄酒, 2013(2):16-20.
ZHOU J M, CAO Y P, JIA M B, SHAO X J . Analysis of aroma components in Kyoho grapes from different regions of Shandong. Sino-Overseas Grapevine & Wine, 2013(2):16-20. (in Chinese)
[32] 韩晓, 刘凤之, 谢计蒙, 王孝娣, 冀晓昊, 王海波 . 四种综合评价法对不同葡萄品种设施环境适应性的评价和比较. 植物生理学报, 2017,53(12):2235-2243.
HAN X, LIU F Z, XIE J M, WANG X D, JI X H, WANG H B . Comparision of four comprehensive evaluation methods in evaluating environmental adaptabilities of different grape cultivars. Plant Physiology Journal, 2017,53(12):2235-2243. (in Chinese)
[33] 韩晓, 刘凤之, 王孝娣, 史祥宾, 王宝亮, 郑晓翠, 王志强, 冀晓昊, 王海波 . 3种综合评价法在葡萄砧穗组合环境适应性中的应用. 果树学报, 2017,34(10):1349-1356.
doi: 10.13925/j.cnki.gsxb.20170086
HAN X, LIU F Z, WANG X D, SHI X B, WANG B L, ZHENG X C, WANG Z Q, JI X H, WANG H B . Comparison of three comprehensive evaluation methods to evaluate the grape rootstock-scion combination environmental adaptability. Journal of Fruit Science, 2017,34(10):1349-1356. (in Chinese)
doi: 10.13925/j.cnki.gsxb.20170086
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[6] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[7] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[8] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[9] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[10] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[11] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[12] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[13] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[14] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[15] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!