Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4626-4639.doi: 10.3864/j.issn.0578-1752.2022.23.005

• PLANT PROTECTION • Previous Articles     Next Articles

Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis

ZHANG Jie(),JIANG ChangYue,WANG YueJin*()   

  1. College of Horticulture, Northwest Agriculture and Forestry University/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
  • Received:2022-06-28 Accepted:2022-08-08 Online:2022-12-01 Published:2022-12-06
  • Contact: YueJin WANG E-mail:jiee@nwafu.edu.cn;wangyj@nwsuaf.edu.cn

Abstract:

【Objective】 As the world’s main cultured varieties, Vitis vinifera has the advantages of high yield and good quality, however, the resistance of V. vinifera to disease is poor. Powdery mildew is a fungal disease that seriously endangers viticulture. The resources of Chinese wild grape are abundant, which can provide sufficient germplasm resources for disease-resistant breeding. This objective of this study is to screen grape transcription factor genes that regulate the resistance to powdery mildew, and to explore the mechanism of these genes regulating the resistance to powdery mildew, which can provide high-quality genetic resources for selection and breeding of grape disease-resistant varieties.【Method】 VqWRKY6 was cloned from Chinese wild Vitis quinquangularis ‘Shang-24’. The sequences were analyzed using DANMAN and MEGA-X software and subcellular localization analysis was adopted using Arabidopsis thaliana protoplasts by PEG-mediated transformation, which was performed for the location of transcriptional regulation. The yeast two-hybrid and bimolecular fluorescence complementation were adopted to prove that VqWRKY6 can interact with the transcription factor VqbZIP1 to form a transcriptional complex. Taking the leaves of the disease-susceptible grape ‘Cabernet Sauvignon’ as the material, the transient transformation mediated by Agrobacterium was performed in the leaves of ‘Cabernet Sauvignon’. After Uncinula necator inoculation on the leaves, the pathogenesis symptoms were observed, hyphal development progression was microscopically visualized with trypan blue staining, and reactive oxygen species (ROS) accumulation was visualized using DAB staining. The differences between grape leaves co-overexpressing of VqWRKY6 and VqbZIP1, overexpressing of VqWRKY6 alone, overexpressing of VqbZIP1 alone, and the control group were compared. The qRT-PCR was used to analyze the expression level of anti-disease genes under U. necator induction.【Result】 VqWRKY6 is located on grape chromosome 2, encodes 342 amino acids and belongs to the group Ⅲ subfamily of the WRKY family. VqWRKY6 exerts a transcriptional regulatory function in nucleus. The propagation rate of U. necator on the surface of ‘Cabernet Sauvignon’ leaves after co-overexpressing of VqWRKY6 and VqbZIP1 was significantly slower than that of leaves overexpressing of VqWRKY6 alone and overexpressing of VqbZIP1 alone, and the ROS content in the leaf tissues co-overexpressing of VqWRKY6 and VqbZIP1 was significantly higher than that of leaves overexpressing of VqWRKY6 alone and overexpressing of VqbZIP1 alone. In addition, the synergistic regulation of VqWRKY6 and VqbZIP1 could activate PR3 and PR4 of the jasmonate (JA) pathway, and the gene expression levels were significantly upregulated.【Conclusion】 The synergistic effect of VqWRKY6 and VqbZIP1 may improve the disease resistance of grape to powdery mildew by activating the JA pathway, promoting the production of ROS, enhancing the expression of disease-resistant genes to inhibit the growth of U. necator. VqWRKY6 and VqbZIP1 are important disease-resistant genetic resources, and ‘Shang-24’ is an important disease-resistant germplasm resource.

Key words: Chinese wild Vitis quinquangularis, WRKY transcription factor, powdery mildew, transcriptional regulation

Table 1

Primers used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途 Use
VqWRKY6-GFP-F-Kpn I GGGGACGAGCTCGGTACCATGGACACTGGTTTGAAATGGCAG pC2300
VqWRKY6-GFP-R-Sal I GCTCACCATGGTGTCGACGGAGAAAAATCCTGGGGTAT AAA
VqbZIP1-GFP-F-Kpn I GGGGACGAGCTCGGTACCTGGCGTCGTCGAAGGTGAT pC2300
VqbZIP1-GFP-R-Sal I GCTCACCATGGTGTCGACCCACAGAACAGACTGCACT
VqWRKY6-BD-F-EcoR I CATATGGCCATGGAGGCGAATTCATGGACACTGGTTTGAAATGGCAG pGBKT7
VqWRKY6-BD-R-Sal I ATGCGGCCGCTGCAGGTCGACGGAGAAAAATCCTGGGGTATTAAA
VqbZIP1-AD-F-EcoR I GCCATGGAGGCCAGTGAATTCATGGCGTCGTCGAAGGTGATG pGADT7
VqbZIP1-AD-R-BamH I CTGCAGCTCGAGCTCGATGGATCCCCACAGAACAGACTGCACT
VqbZIP1-pSPYNE-F-Kpn I TCCGTCGACCTCGAGGGTACCATGGCGTCGTCGAAGGTGATG pSPYNE
VqbZIP1-pSPYNE-R-Kpn I CTCCTACCCGGGAGCGGTACCCCACAGAACAGACTGCACT
VqWRKY6-pSPYCE-F-Xho I GGGACTCTAGAGGATCTCGAGATGGACACTGGTTTGAAATGGCAG pSPYCE
VqWRKY6-pSPYCE-R-Kpn I ATCGTATGGGTACATGGTACCGGAGAAAAATCCTGGGGTATTAAA

Fig. 1

"

Fig. 2

Cloning and amino acid sequence analysis of VqWRKY6 from Chinese wild V. quinquangularis"

Fig. 3

Transcriptional activation and subcellular localization of VqWRKY6 from Chinese wild V. quinquangularis"

Fig. 4

Screening of transcription factor interactions in Chinese wild V. quinquangularis by yeast two-hybrid system"

Fig. 5

The interaction between VqWRKY6 and VqbZIP1 protein in Chinese wild V. quinquangularis was verified by bimolecular fluorescence complementation technology"

Fig. 6

Overexpression of VqWRKY6 and VqbZIP1 in grape leaves enhances the resistance to powdery mildew"

Fig. 7

Expression analysis of disease resistance genes in grape leaves overexpression of VqWRKY6 and VqbZIP1"

[1] 贺普超, 王跃进, 王国英, 任治邦, 和纯成. 中国葡萄属野生种抗病性的研究. 中国农业科学, 1991, 24(3): 50-56.
HE P C, WANG Y J, WANG G Y, REN Z B, HE C C. The studies on disease-resistance of Vitis wild species originated in China. Scientia Agricultura Sinica, 1991, 24(3): 50-56. (in Chinese)
[2] ARMIJO G, SCHLECHTER R, AGURTO M, MUNOZ D, NUNEZ C, ARCE-JOHNSON P. Grapevine pathogenic microorganisms: Understanding infection strategies and host response scenarios. Frontiers in Plant Science, 2016, 7: 382.
doi: 10.3389/fpls.2016.00382 pmid: 27066032
[3] DÉLYE C, LAIGRET F, CORIO-COSTET M F. A mutation in the 14 α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 1997, 63(8): 2966-2970.
doi: 10.1128/aem.63.8.2966-2970.1997
[4] DONALD T M, PELLERONE F, ADAM-BLONDON A F, BOUQUET A, THOMAS M R, DRY I B. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics, 2002, 104(4): 610-618.
pmid: 12582665
[5] TAKSONYI P, KOCSIS L, MÁTYAS K K, TALLER J. The effect of quinone outside inhibitor fungicides on powdery mildew in a grape vineyard in Hungary. Scientia Horticulturae, 2013, 161: 233-238.
doi: 10.1016/j.scienta.2013.06.031
[6] WANG Y, LIU Y, P H. E, CHEN J, LAMIKANRA O, LU J. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis, 1995, 34(3): 159-164.
[7] XU W, MA F, LI R, ZHOU Q, YAO W, JIAO Y, ZHANG C, ZHANG J, WANG X, XU Y, WANG Y. VpSTS29/STS 2 enhances fungal tolerance in grapevine through a positive feedback loop. Plant, Cell and Environment, 2019, 42(11): 2979-2998.
doi: 10.1111/pce.13600
[8] EULGEM T. Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science, 2005, 10(2): 71-78.
doi: 10.1016/j.tplants.2004.12.006
[9] RYU H S, HAN M, LEE S K, CHO J I, RYOO N, HEU S, LEE Y H, BHOO S H, WANG G L, HAHN T R, JEON J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Reports, 2006, 25(8): 836-847.
doi: 10.1007/s00299-006-0138-1
[10] EULGEM T, SOMSSICH I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371.
pmid: 17644023
[11] NAOUMKINA M A, HE X Z, DIXON R A. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 2008, 8: 132.
doi: 10.1186/1471-2229-8-132
[12] RIECHMANN J L, RATCLIFFE O J. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology, 2000, 3(5): 423-434.
pmid: 11019812
[13] 楚宗丽, 张睿男, 李亮杰, 孙君艳, 王付娟, 周强, 仝胜利. 小麦WRKY转录因子的鉴定及其在胚性愈伤组织形成中的表达分析. 麦类作物学报, 2021, 41(12): 1469-1478.
CHU Z L, ZHANG R N, LI L J, SUN J Y, WANG F J, ZHOU Q, TONG S L. Identification of wheat WRKY transcription factor and its expression analysis in embryonic callus formation. Journal of Triticeae Crops, 2021, 41(12): 1469-1478. (in Chinese)
[14] SRIVASTAVA R, KUMAR S, KOBAYASHI Y, KUSUNOKI K, TRIPATHI P, KOBAYASHI Y, KOYAMA H, SAHOO L. Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and mung bean. Scientific Reports, 2018, 8(1): 16971.
doi: 10.1038/s41598-018-34920-8 pmid: 30451872
[15] GOFF S A, RICKE D O, LAN T H, PRESTING G G, WANG R, DUNN M, GLAZEBROOK J, SESSIONS A, OELLER P, VARMA H, et al.A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92-100.
doi: 10.1126/science.1068275
[16] GUO C L, GUO R R, XU X Z, GAO M, LI X Q, SONG J Y, ZHENG Y, WANG X P. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. Journal of Experimental Botany, 2014, 65(6): 1513-1528.
doi: 10.1093/jxb/eru007
[17] CHUJO T, MIYAMOTO K, OGAWA S, MASUDA Y, SHIMIZU T, KISHI-KABOSHI M, TAKAHASHI A, NISHIZAWA Y, MINAMI E, NOJIRI H, YAMANE H, OKADA K. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLoS ONE, 2014, 9(6): e98737.
doi: 10.1371/journal.pone.0098737
[18] WANG D, JIANG C Y, LIU W D, WANG Y J. The WRKY 53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. Journal of Experimental Botany, 2020, 71(10): 3211-3226.
doi: 10.1093/jxb/eraa097
[19] 吴凤颖, 刘梦琦, 王跃进. 中国野生毛葡萄芪合酶基因抗白粉病功能分析. 园艺学报, 2020, 47(2): 205-219.
WU F Y, LIU M Q, WANG Y J. Functional analysis of the stilbene synthase genes VqSTS12 and VqSTS25of the resistance to powdery mildew in Vitis quinquangularis. Acta Horticulture Sinica, 2020, 47(2): 205-219. (in Chinese)
[20] HU Y R, DONG Q Y, YU D Q. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science, 2012, 185/186: 288-297.
doi: 10.1016/j.plantsci.2011.12.003
[21] BIRKENBIHL R P, DIEZEL C, SOMSSICH I E. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology, 2012, 159(1): 266-285.
doi: 10.1104/pp.111.192641
[22] MENG Y, WISE R P. HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barely powdery mildew. Molecular Plant-Microbe Interactions, 2012, 25(11): 1492-1505.
doi: 10.1094/MPMI-04-12-0082-R
[23] BI M M, LI X Y, YAN X, LIU D, GAO G, ZHU P F, MAO H Y. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research, 2021, 8: 6.
doi: 10.1038/s41438-020-00436-4
[24] YIN W C, WANG X H, LIU H, WANG Y, NOCKER S, TU M X, FANG J H, GUO J Q, LI Z, WANG X P. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis. Horticulture Research, 2022, 9: uhab064.
doi: 10.1093/hr/uhab064
[25] CHRISTENSEN A B, CHO B H, NæSBY M, GREGERSEN P L, BRANDT J, MADRIZ-ORDEÑANA K, COLLINGE D B, THORDAL- CHRISTENSEN H. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3(3): 135-144.
doi: 10.1046/j.1364-3703.2002.00105.x pmid: 20569319
[26] VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006, 44: 135-162.
pmid: 16602946
[27] HE M Y, XU Y, CAO J L, ZHU Z G, JIAO Y T, WANG Y J, GUAN X, YANG Y Z, XU W R, FU Z F. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection. Protoplasma, 2013, 250(1): 129-140.
doi: 10.1007/s00709-012-0384-8
[28] 马辉. 中国野生华东葡萄VpR82H基因的克隆与功能分析[D]. 杨凌: 西北农林科技大学, 2014.
MA H. Molecular cloning and functional analysis of VpR82H gene in Chinese wild Vitis pseudoreticulata[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[29] 刘兵, 李梦媛, 张娜, 尚博兴, 刘国甜, 徐炎. 中国野生葡萄抗霜霉病相关基因VpPR4b及其启动子的克隆和功能分析. 园艺学报, 2021, 48(2): 265-275.
LIU B, LI M Y, ZHANG N, SHANG B X, LIU G T, XU Y. Cloning and functional analysis of the CDS and promoter of VpPR4b gene response to downy mildew in Chinese wild grape. Acta Horticulture Sinica, 2021, 48(2): 265-275. (in Chinese)
[30] MA F L, WANG L, WANG Y J. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. Planta, 2018, 248(1): 89-103.
doi: 10.1007/s00425-018-2883-0
[31] 姚文孔. 中国野生华东葡萄泛素连接酶基因VpPUB24功能研究[D]. 杨凌: 西北农林科技大学, 2017.
YAO W K. Function analyses of E3 ubiquitin ligase gene VpPUB24 from Chinese wild grape Vitis pseudoreticulata[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[32] YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2(7): 1565-1572.
doi: 10.1038/nprot.2007.199
[33] 王跃进, 贺普超, 张剑侠. 葡萄抗白粉病鉴定方法的研究. 西北农林科技大学学报, 1999, 27(5): 6-10.
WANG Y J, HE P C, ZHANG J X. Studies on the methods of resistance to Uncinula necator in Vitis. Journal of Northwest A&F University, 1999, 27(5): 6-10. (in Chinese)
[34] MICALI C, GÖLLNER K, HUMPHRY M, CONSONNI C, PANSTRUGA R. The powdery mildew disease of Arabidopsis: A paradigm for the interaction between plants and biotrophic fungi//The Arabidopsis Book. The American Society of Plant Biologists, 2008, 6: e0115.
[35] LEVINE A, TENHAKEN R, DIXON R, LAMB C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79(4): 583-593.
doi: 10.1016/0092-8674(94)90544-4
[36] JIANG J J, MA S H, YE N H, JIANG M, CAO J S, ZHANG J H. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2): 86-101.
doi: 10.1111/jipb.12513
[37] SOMSSICH I E. Networks of transcriptional regulation underlying plant defense responses towards phytopathogens//GRASSER K D. Regulation of Transcription in Plants. Blackwell Publishing, 2006: 266-284.
[38] 张远嬿. 苹果MdWRKY33基因的克隆与功能分析[D]. 沈阳: 沈阳农业大学, 2018.
ZHANG Y Y. Cloning and functional analysis of MdWRKY33 gene in apple[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[39] 周茜茜. 苹果轮纹病激发的SA特异性诱导表达基因MdWRKY40的抗病功能鉴定[D]. 泰安: 山东农业大学, 2019.
ZHOU Q Q. Identification of disease resistance of SA-specific inducible gene MdWRKY40 stimulated by Botryosphaeria dothidea[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
[40] 周茜茜, 邱化荣, 何晓文, 王宪璞, 刘秀霞, 李保华, 吴树敬, 陈学森. MdWRKY40介导提高苹果与拟南芥对轮纹病菌的免疫抗性. 中国农业科学, 2018, 51(21): 4052-4064.
ZHOU Q Q, QIU H R, HE X W, WANG X P, LIU X X, LI B H, WU S J, CHEN X S. MdWRKY40 mediated improvement of immune resistance of apple and Arabidopsis thaliana to Botryosphaeria dothidea. Scientia Agricultura Sinica, 2018, 51(21): 4052-4064. (in Chinese)
[41] PANDEY S P, ROCCARO M, SCHON M, LOGEMANN E, SOMSSICH I E. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. The Plant Journal, 2010, 64(6): 912-923.
doi: 10.1111/j.1365-313X.2010.04387.x
[42] LI H, XU Y, XIAO Y, ZHU Z G, XIE X Q, ZHAO H Q, WANG Y J. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta, 2010, 232(6): 1325-1337.
doi: 10.1007/s00425-010-1258-y
[43] 乔恒波. 中国野生毛葡萄转录因子WRKY3基因克隆与功能研究[D]. 杨凌: 西北农林科技大学, 2016.
QIAO H B. Cloning and function analysis of a WRKY3 transcription factor in Vitis quinquangularis[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[44] DOU L L, GUO Y N, ONDATI E, PANG C Y, WEI H L, SONG M Z, FAN S L, YU S X. Identification and expression analysis of group Ⅲ WRKY transcription factors in cotton. Journal of Integrative Agriculture, 2016, 15(11): 2469-2480.
doi: 10.1016/S2095-3119(15)61306-5
[45] 魏娟娟, 杨伟, 潘宇, 张兴国, 李金华. 番茄WRKY41基因的克隆、表达分析与转基因植株的获得. 西南大学学报(自然科学版), 2017, 39(1): 46-54.
WEI J J, YANG W, PAN Y, ZHANG X G, LI J H. Cloning and expression analysis of a WRKY41 gene in tomato and its transfer into a tomato cultivar. Journal of Southwest University (Natural Science Edition), 2017, 39(1): 46-54. (in Chinese)
[46] WANG X, GUO R, TU M, WANG D, GUO C, WAN R, LI Z, WANG X. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinera. Frontiers in Plant Science, 2017, 8: 97.
[47] APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.
pmid: 15377225
[48] MADER M, FUSSL R. Role of peroxidase in lignification of tobacco cells.Ⅱ. Regulation by phenolic compounds. Plant Physiology, 1982, 70(4): 1132-1134.
doi: 10.1104/pp.70.4.1132
[49] FINATTO T, VIANA V E, WOYANN L G, BUSANELLO C, MAIA L C, OLIVEIRA A. Can WRKY transcription factors help plants to overcome environmental challenges? Genetics and Molecular Biology, 2018, 41(3): 533-544.
doi: S1415-47572018000400533 pmid: 30235398
[50] LI J, BRADER G, PALVA E T. The WRKY 70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 2004, 16(2): 319-331.
doi: 10.1105/tpc.016980
[51] LI J, BRADER G, KARIOLA T, PALVA E T. WRKY 70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 2006, 46(3): 477-491.
doi: 10.1111/j.1365-313X.2006.02712.x
[52] MARCHIVE C, MZID R, DELUC L, BARRIEU F, PIRRELLO J, GAUTHIER A, CORIO-COSTET M F, REGAD F, CAILLETEAU B, HAMDI S, LAUVERGEAT V. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58(8): 1999-2010.
doi: 10.1093/jxb/erm062
[53] MØLLER S G, CHUA N H. Interactions and intersections of plant signaling pathways. Journal of Molecular Biology, 1999, 293(2): 219-234.
pmid: 10550205
[54] CHEONG Y H, CHANG H S, GUPTA R, WANG X, ZHU T, LUAN S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 2002, 129(2): 661-677.
doi: 10.1104/pp.002857
[1] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[2] GE TianCheng, YIN Fei, HU QiongBo, PENG ZhengKe, LI ZhenYu. Function of MBF2 Transcriptionally Regulating Glutathione S-transferase Metabolizing Chlorantraniliprole in Plutella xylostella [J]. Scientia Agricultura Sinica, 2023, 56(4): 665-673.
[3] FENG XiangJun, WANG HongYu, YU Jing, CHI ChunYu, DING GuoHua. Overexpressing NPR1 from Arabidopsis thaliana Enhanced Resistance to Fusarium Wilt and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2023, 56(14): 2701-2712.
[4] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[5] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[6] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[7] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[8] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[9] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[10] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[11] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[12] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[13] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
[14] ChanJing FENG,GuangZheng SUN,Yang WANG,Qing MA. Functional Analysis of Gene ShARPC5 Involved in Tomato Resistance to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 65-73.
[15] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!