Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (22): 4408-4418.doi: 10.3864/j.issn.0578-1752.2022.22.007

• PLANT PROTECTION • Previous Articles     Next Articles

Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis

XIE LiXue(),ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao()   

  1. Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013
  • Received:2022-06-21 Accepted:2022-07-25 Online:2022-11-16 Published:2022-12-14
  • Contact: Tao LI E-mail:xielx_faas@126.com;leetao06@163.com

Abstract:

【Objective】 East Asian Passiflora virus (EAPV) is an important virus in Passiflora edulis. The objective of this study is to determine the complete genome sequence of EAPV Fujian isolate (EAPV-FJ) in mainland China, define the genome sequence characteristics of EAPV-FJ, establish the TC-RT-PCR (tube capture RT-PCR) assay for the specific detection, and to provide theoretical basis and technical support for the detection, monitoring and control of the virus.【Method】The complete genome sequence of EAPV-FJ was determined by using small RNA deep sequencing technology, combined with segmental cloning and RACE technology. The obtained EAPV-FJ sequence was analyzed for sequence characteristics, phylogenetic relationship and recombination. The TC-RT-PCR technology for rapid detection of EAPV was established through optimization of reaction conditions and reaction system. The specificity and sensitivity of the TC-RT-PCR were determined. The established TC-RT-PCR technology was used to detect samples collected from P. edulis orchards in Fujian Province, and the conventional RT-PCR was used for verification.【Result】The full length of the obtained EAPV-FJ was 10 065 nt (excluding polyA tail), containing an open reading frame of 9 663 nt in length that encodes a polyprotein of 3 220 aa. The polyprotein was cleavaged into 10 proteins, which are P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa, NIb and CP, respectively. The results of genome sequence identity analysis showed that the nucleotide sequence identity between EAPV-FJ genome and the four EAPV representative isolates registered in GenBank was 80%-99%, among which Vietnamese isolate EAPV-GL1 (GenBank accession number MT450870) of AO strain had the highest identity (99%). The nucleotide and amino acid sequences of the polyprotein were 79%-99% and 82%-98% identical to the four EAPV representative isolates registered in GenBank, respectively. Phylogenetic analysis based on the nucleotide sequence of EAPV-FJ polyprotein showed that EAPV isolates were divided into two groups (Group I was AO strain and Group Ⅱ was IB strain), which did not show obvious geographical correlation. EAPV-FJ belonged to Group I and was most closely related to the reported Vietnamese isolate EAPV-GL1. The results of recombination analysis revealed that EAPV-FJ is not a recombinant of EAPV. The established TC-RT-PCR detection technology showed good specificity and sensitivity, and can only detect EAPV-infected samples of P. edulis, while other viruses including cucumber mosaic virus (CMV), Passiflora latent virus (PLV), hibiscus latent Fort Pierce virus (HLFPV), turnip mosaic virus (TuMV), soybean mosaic virus (SMV), telosma mosaic virus (TeMV) as well as healthy samples cannot be detected. The lowest sensitivity of the TC-RT-PCR could detect the crude leaf extract of EAPV-infected samples of P. edulis diluted by 10 times, which was similar to the sensitivity of conventional RT-PCR. A total of 13 EAPV-positive samples were detected from 60 suspected virus disease samples of P. edulis collected from P. edulis orchards in Fujian Province by using the established TC-RT-PCR assay, and the results were in good agreement with conventional RT-PCR.【Conclusion】 This is the first report of complete genome sequence of EAPV in mainland China. The genome structure of this isolate (EAPV-FJ) is consistent with other reported isolates. EAPV-FJ has the closest relative to the Vietnamese isolate EAPV-GL1 in phylogenetic relationship, and no recombination sites were detected. The established TC-RT-PCR assay has the advantages of convenient operation, strong specificity, high sensitivity and low cost, and can be effectively used for the actual detection of EAPV in P. edulis orchard samples.

Key words: Passiflora edulis, East Asian Passiflora virus (EAPV), complete genome, TC-RT-PCR detection

Table 1

Primers used for EAPV complete genome amplification"

片段Segment 引物Primer 序列Sequence (5′-3′) 目的片段大小Expected size (kb) 退火温度Tm (℃)
S1 S1-F CTGGAACCGCTACAATCACTAAGA 2.0 53
S1-R CAATGAGCCAATAGCAAGTTTCCT
S2 S2-F GATGCGCTTAGGGTGTTCAGAAAC 2.0 53
S2-R AATAGCATCGCTTCTTTCAGTGTC
S3 S3-F ACGATGGCGTCCTTCACAGAACAC 2.0 55
S3-R TAACTGTGCCTTCGCTTGCTGTAG
S4 S4-F GCACGCATACCTTTCTACGCACAT 2.1 51
S4-R ACTATTGGCTTGTTGTATTTGAAG
S5 S5-F TGATGAACAGCCCAGAGAGGAATT 2.1 52
S5-R TCAACTAACGGCTTCAATGGGTAT

Table 2

EAPV isolate information used for phylogenetic analysis"

序号 Number 登录号Accession number 分离物Isolate 国家Country
1 AB246773 AO 日本Japan
2 AB604610 IB 日本Japan
3 KP114136 EAPV-TW 中国台湾Taiwan, China
4 KP114137 EAPV 0920-6 中国台湾Taiwan, China
5 KT724930 EAPV-IB-dpd 中国台湾Taiwan, China
6 KY614052 pt 中国台湾Taiwan, China
7 LC325839 YW 日本Japan
8 LC656468 PFK1 韩国South Korea
9 MT450870 EAPV-GL1 越南Viet Nam

Fig. 1

Amplification of RT-PCR for EAPV suspected sample of P. edulis"

Table 3

Nucleotide and amino acid identities between EAPV-FJ and representative EAPV isolates"

基因片段
Segment
核苷酸位置
Nucleotide position (nt)
核苷酸/氨基酸一致性Nucleotide/amino acid identities (%)
IB株系IB strain AO株系AO strain
KT724930
(EAPV-IB-dpd)
AB604610
(Ibusuki)
MT450870
(EAPV-GL1)
AB246773
(EAPV-AO)
全长Complete sequence 1-10065 80 80 99 98
多聚蛋白Polyprotein 148-9810 79/83 79/82 99/98 98/98
5′-UTR 1-147 82/- 96/- 95/- 97/-
P1 148-1452 76/58 70/56 98/99 98/98
HC-Pro 1453-2823 75/82 74/82 98/97 97/98
P3 2824-3864 77/75 76/76 99/97 98/97
PIPO 3279-3506 87/79 86/79 99/97 98/95
6K1 3865-4020 81/90 83/92 98/98 99/100
CI 4021-5922 82/94 82/94 99/99 99/99
6K2 5923-6081 87/85 83/81 99/100 99/100
VPg 6082-6651 80/85 80/84 99/98 98/97
NIa 6652-7380 81/91 80/90 99/99 99/99
NIb 7381-8937 82/88 82/89 99/98 98/98
CP 8938-9807 85/87 81/87 98/96 97/94
3′-UTR 9811-10065 85/- 85/- 99/- 99/-

Fig. 2

Phylogenetic tree based on the nucleotide sequences of polyproteins from representative isolates of EAPV SH-aLRT support (%)/bootstrap values (>90%) are shown above the branches. The scale bar is given in substitutions/site"

Fig. 3

Identity analysis of the recombinant EAPV-IB-dpd by Simplot"

Fig. 4

Specificity of TC-RT-PCR"

Fig. 5

Sensitivity of TC-RT-PCR"

Fig. 6

TC-RT-PCR detection of P. edulis samples"

[1] FUKUMOTO T, NAKAMURA M, OHSHIMA K, IWAI H. Genetic structure and variability of East Asian Passiflora virus population in Amami-O-shima, Japan. Journal of Phytopathology, 2012, 160(7/8): 404-411.
[2] IWAI H, YAMASHITA Y, NISHI N, NAKAMURA M. The potyvirus associated with the dappled fruit of Passiflora edulis in Kagoshima prefecture, Japan is the third strain of the proposed new species East Asian Passiflora virus (EAPV) phylogenetically distinguished from strains of passion fruit woodiness virus. Archives of Virology, 2006, 151(4): 811-818.
doi: 10.1007/s00705-005-0659-x
[3] IWAI H, TERAHARA R, YAMASHITA Y, UEDA S, NAKAMURA M. Complete nucleotide sequence of the genomic RNA of an Amami-O-shima strain of East Asian Passiflora potyvirus. Archives of Virology, 2006, 151(7): 1457-1460.
pmid: 16718357
[4] CHIAKI Y, FUKUMOTO T, NAKAMURA M, IWAI H. Population genetics analysis of East Asian Passiflora virus on Amami Oshima Island. European Journal of Plant Pathology, 2016, 144(1): 109-120.
doi: 10.1007/s10658-015-0755-z
[5] FUKUMOTO T, NAKAMURA M, RIKITAKE M, IWAI H. Molecular characterization and specific detection of two genetically distinguishable strains of East Asian Passiflora virus (EAPV) and their distribution in southern Japan. Virus Genes, 2012, 44(1): 141-148.
doi: 10.1007/s11262-011-0676-7 pmid: 21948007
[6] CHONG Y H, CHENG Y H, CHENG H W, HUANG Y C, YEH S D. The virus causing passionfruit woodiness disease in Taiwan is reclassified as East Asian Passiflora virus. Journal of General Plant Pathology, 2018, 84(3): 208-220.
doi: 10.1007/s10327-018-0777-4
[7] 谢丽雪, 张立杰, 张小艳, 郑姗, 李韬. 福建西番莲上首次检出东亚西番莲病毒. 园艺学报, 2018, 45(8): 1587-1594.
XIE L X, ZHANG L J, ZHANG X Y, ZHENG S, LI T. First report of East Asian Passiflora virus infecting Passiflora edulis in Fujian, China. Acta Horticulturae Sinica, 2018, 45(8): 1587-1594. (in Chinese)
[8] ZHANG D, GAO F L, JAKOVLIĆ I, ZOU H, ZHANG J, LI W X, WANG G T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 2020, 20(1): 348-355.
doi: 10.1111/1755-0998.13096 pmid: 31599058
[9] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4): 772-780.
doi: 10.1093/molbev/mst010 pmid: 23329690
[10] KALYAANAMOORTHY S, MINH B Q, WONG T K F, VON HAESELER A, JERMIIN L S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589.
doi: 10.1038/nmeth.4285 pmid: 28481363
[11] NGUYEN L T, SCHMIDT H A, VON HAESELER A, MINH B Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1): 268-274.
doi: 10.1093/molbev/msu300
[12] HUSON D H. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics, 1998, 14(1): 68-73.
pmid: 9520503
[13] MARTIN D P, MURRELL B, GOLDEN M, KHOOSAL A, MUHIRE B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 2015, 1(1): vev003.
[14] LI R G, GAO S, HERNANDEZ A G, WECHTER W P, FEI Z J, LING K S. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE, 2012, 7(5): e37127.
[15] 范旭东, 张尊平, 任芳, 胡国君, 李正男, 张双纳, 董雅凤. 葡萄浆果内坏死病毒变种类型1分离物全长基因组序列分析. 植物病理学报, 2018, 48(3): 423-427.
FAN X D, ZHANG Z P, REN F, HU G J, LI Z N, ZHANG S N, DONG Y F. Complete genome sequence analysis of grapevine berry inner necrosis virus type 1 isolate. Acta Phytopathologica Sinica, 2018, 48(3): 423-427. (in Chinese)
[16] ADAMS M J, ANTONIW J F, FAUQUET C M. Molecular criteria for genus and species discrimination within the family Potyviridae. Archives of Virology, 2005, 150(3): 459-479.
doi: 10.1007/s00705-004-0440-6
[17] VALLI A, LÓPEZ-MOYA J J, GARCÍA J A. Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. Journal of General Virology, 2007, 88(3): 1016-1028.
doi: 10.1099/vir.0.82402-0
[18] SHI Y H, CHEN J, HONG X Y, CHEN J P, ADAMS M J. A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Molecular Plant Pathology, 2007, 8(6): 785-790.
doi: 10.1111/j.1364-3703.2007.00426.x pmid: 20507538
[19] CHUNG B Y, MILLER W A, ATKINS J F, FIRTH A E. An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(15): 5897-5902.
[20] GARCÍA-ARENAL F, FRAILE A, MALPICA J M. Variation and evolution of plant virus populations. International Microbiology, 2003, 6(4): 225-232.
doi: 10.1007/s10123-003-0142-z
[21] ROOSSINCK M J. Plant RNA virus evolution. Current Opinion in Microbiology, 2003, 6(4): 406-409.
pmid: 12941413
[22] MORENO I M, MALPICA J M, DÍAZ-PENDÓN J A, MORIONES E, FRAILE A, GARCÍA-ARENAL F. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology, 2004, 318(1): 451-460.
pmid: 14972570
[23] 贺振, 陈春峰, 张志想, 李世访. 马铃薯Y病毒科分子进化研究进展. 植物保护, 2017, 43(3): 13-22.
HE Z, CHEN C F, ZHANG Z X, LI S F. Advances in molecular evolution of viruses in the family Potyviridae. Plant Protection, 2017, 43(3): 13-22. (in Chinese)
[24] 谢丽雪, 张小艳, 郑姗, 张立杰, 李韬. 侵染西番莲的夜来香花叶病毒的分子鉴定及特异性检测. 中国农业科学, 2017, 50(24): 4725-4734.
XIE L X, ZHANG X Y, ZHENG S, ZHANG L J, LI T. Molecular identification and specific detection of telosma mosaic virus infecting passion fruit. Scientia Agricultura Sinica, 2017, 50(24): 4725-4734. (in Chinese)
[25] XIE L X, GAO F L, SHEN J G, ZHANG X Y, ZHENG S, ZHANG L J, LI T. Molecular characterization of two recombinant isolates of telosma mosaic virus infecting Passiflora edulis from Fujian Province in China. PeerJ, 2020, 8: e8576.
doi: 10.7717/peerj.8576
[26] XIE L X, GAO F L, ZHENG S, ZHANG X Y, ZHANG L J, LI T. Molecular characterization of a new potyvirus infecting passion fruit. Archives of Virology, 2019, 164(7): 1903-1906.
doi: 10.1007/s00705-019-04251-8 pmid: 30972590
[27] FU X D, JIAN J M, LUO L T, DU Q L, LI X Y, AFANDI A, FENG W Z, XIE X. Development of reverse transcription loop-mediated isothermal amplification assay for rapid and visual detection of telosma mosaic virus (TeMV) in passion fruit. Crop Protection, 2021, 150: 105795.
doi: 10.1016/j.cropro.2021.105795
[28] 沈建国, 高芳銮, 廖富荣, 王念武, 郭琼霞, 吴祖建. TC-RT- PCR检测菜豆荚斑驳病毒的研究. 激光生物学报, 2009, 18(1): 108-111.
SHEN J G, GAO F L, LIAO F R, WANG N W, GUO Q X, WU Z J. Detection of bean pod mottle virus by TC-RT-PCR. Acta Laser Biology Sinica, 2009, 18(1): 108-111. (in Chinese)
[1] GAO Fang-luan, CHANG Fei, SHEN Jian-guo, XIE Lian-hui, ZHAN Jia-sui. Complete Genome Analysis of a PVYNTN-NW Recombinant Isolate from Yulin of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 270-279.
[2] XU Jing-jing,WANG Xiao-ming,DUAN Can-xing,WU Xiao-fei,ZHU Zhen-dong
. Development of Genomic SSR Markers for Phytophthora sojae#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3112-3122 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!