Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2858-2869.doi: 10.3864/j.issn.0578-1752.2021.13.014

• HORTICULTURE • Previous Articles     Next Articles

Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages

CUI HuLiang1(),HE Xia2,ZHANG Qian2   

  1. 1College of Architecture, Taiyuan University of Technology, Taiyuan 030024
    2College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2020-08-28 Revised:2020-11-08 Online:2021-07-01 Published:2021-07-12
  • Contact: HuLiang CUI E-mail:cuihuliang2005@126.com

Abstract:

【Objective】Tree peony (Paeonia suffruticosa), one of the famous traditional flowers in China, is rich in flower colors and varieties. The composition content and structure of anthocyanins and flavonoids in different color cultivars and these dynamic changes at different blooming stages were studied, in order to lay a foundation for further investigation of the floral pigment mechanism and molecular breeding of tree peony.【Method】 Five different color cultivars of tree peony were chosen as materials. Anthocyanins and flavonoids in those petals of flowers at four different blooming stages, such as bud stage (S1), initial blooming stage (S2), blooming stage (S3) and wither stage (S4), were determined by high-performance liquid chromatography (HPLC) and mass spectrometric (LC-MS) detectors. Then, the difference of anthocyanins and flavonoids among these five cultivars was analyzed, and the regulation of changing density was summarized.【Result】In total, 6 anthocyanins and 12 flavonoids were described. However, the compounds were distributed different among different cultivars. The purple cultivar, Luoyanghong, had four anthocyanins, and the white cultivar of Baixuetai had no anthocyanin. Among the 12 flavonoids, the relative contents of apigenin-5-glucoside (7.18%-58.46%), apigenin hexo-glucoside (1.44%-43.72%) and kaempferol-3,7-glucoside (2.83%-43.44%) were higher than other compounds. In addition, the significant changes were observed among the five cultivars. During the blooming periods, the total anthocyanin content were constantly accumulated and dramatically increased at S3, then reached the highest at S4. However, the total content of flavonoids was increased firstly and then decreased. It should be noted that the variation trend of different varieties was obviously different. The flavonoids contents of Luoyanghong showed the highest value at S4 ((752.93±48.10) μg∙g-1 FW), and Zhaofen showed the highest value at S3 ((603.81±6.30) μg∙g-1 FW). Baixueta reached the highest value ((673.45±9.96) μg∙g-1 FW) at S2. But the other two cultivars, Yingrihong and Fenhe, reached the highest flavonoids content value at S1, with (525.88±22.38) μg∙g-1 FW and (740.56±16.08) μg∙g-1 FW, respectively.【Conclusion】The anthocyanins and flavonoids content were significantly different among different color cultivars. The purple cultivar always showed higher anthocyanins contents than other varieties. And the white cultivar almost did not detect any anthocyanin, relatively. What’s more, the anthocyanins were constantly accumulated during flower blooming stage, meanwhile, the flavonoids were increased first and then gradually degraded after flower opening.

Key words: Tree peony, anthocyanins, flavonoids, floral color

Fig. 1

Flower phenotypes of different color cultivars of tree peony at different blooming stages S1, Bud stage; S2, initial blooming stage; S3, blooming stage; S4, wither stage. BXT: Baixueta; ZF: Zhaofen; YRH: Yingrihong; FH: Fenhe; LYH: Luoyanghong"

Fig. 2

HPLC chromatograms at 520 nm of standards and anthocyanins extracted from cultivars LYH and YRH at stage 4 Peak numbers were as shown in Table 1 "

Table 1

Chromatographic, spectroscopic, and mass spectrometric features of identified anthocyanins of different tree peony cultivars"

峰序号
Peak number
推定物质
Putative identification matter
保留时间
Rt (min)
吸收波长
λmax (nm)
母离子+
[M+H]+
二级离子
MS2-PI
参考依据
Reference
1 Cy3g5g 12.22 278.22, 512.18 611.16 287.3 [6]
2 Pg3g5g 14.13 274.69, 496.69 595.17 271.06 [6, 20]
3 Pn3g5g 14.93 279.12, 513.17 625.15 301.1 [21]
4 Cy3g 16.18 280.32, 514.05 449.1 287.3 标准品 Std
5 Pg3g 18.22 266.70, 499.91 433.01 271.06 [20, 21]
6 Pn3g 19.21 279.22, 516.05 463.12 301.1 [21]

Fig. 3

HPLC chromatograms at 350 nm of ‘LYH’ at stage 4 A: Mix of standards. Std 1: rutin; Std 2: quercetin-3-glucoside; Std 3: myricetin; Std 4: kaempferol-3-glucorhamnoside; Std 5: quercetin; Std 6: apigenin; Std 7: kaempferol. B: ‘LYH’. Peak numbers were as shown in Table 2 "

Table 2

Chromatographic, spectroscopic, and mass spectrometric features of identified flavonoids from tree peony cultivars"

峰序号
Peak number
推定物质
Putative identification matter
保留时间
Rt (min)
最大波长
λmax (nm)
质谱离子ESIMS (m/z) 参考依据
Reference
母离子+
[M+H]+
二级离子+
MS2-PI
母离子-
[M-H]-
二级离子-
MS2-NI
1 未知 Unknown 14.41 352.7 - - - -
2 未知 Unknown 15.78 331.9 465.08 303.02/229.05 463.09 271.00
3 Km3g7g 16.54 265.11, 345.81 633 449 609 447/285.04 [6,8]
4 Km3g 17.24 266.22, 352.43 471.24 287.05 447.34 284.16/249.04 [8]
5 Rutin 22.76 326.9 610.53 609.1 301.04 std
6 Km7g 23.2 266.03, 362.07 449.11 287.05 447.09 285.04 [8]
7 Qu3g 24.08 254.08, 347.39 487.12 303.01 463.09 301.03 std
8 未知Unknown 26.27 269.81, 336.57 625.17 479.12 - -
9 Ap5g 26.97 268.33, 336.57 433.11 256.96 431.36 269.22 [6,8]
10 Aphg 27.59 265.21, 336.51 601.28 579.26/433.2/271.07 577.44 431.36/269.17 [6,8]
11 Lt7g 27.88 266.01, 344.77 449.1 287.05/135.05 447.21 285.01 [6,8]
12 My 28.56 269.11, 345.29 319.04 217.05 463.1 179 std

Table 3

Contents of anthocyanins in the four tree peony cultivars at different blooming stages (μg∙g -1 FW) "

品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
LYH Cy3g5g 4.24±0.73d 8.70±0.76c 15.04±1.62b 26.22±0.78a
Pn3g5g 9.80±1.22d 29.59±3.52c 48.72±1.39b 86.50±3.89a
Cy3g 2.99±0.29d 11.04±1.33c 42.38±1.13b 139.63±7.10a
Pn3g 3.47±0.22c 8.66±1.14c 26.46±3.42b 87.38±9.64a
合计 Total 20.50±1.74d 57.99±6.05c 132.59±5.25b 340.06±9.50a
FH Pg3g5g - - - 2.73±0.82
Pn3g5g 4.94±0.87b 7.48±0.73a 8.02±1.66a 9.62±1.62a
合计 Total 4.94±0.87c 7.48±0.73b 8.02±1.66b 12.35±1.41a
YRH Pg3g5g 13.95±4.76c 22.02±5.65b 35.48±5.28a 33.17±2.03a
Pg3g 3.48±1.70c 6.25±1.68ab 4.69±1.28bc 7.72±0.67a
合计 Total 16.27±6.24bc 28.27±7.32ab 40.17±6.41a 40.89±1.53a
ZF Pg3g5g - 4.43±2.15b 7.00±0.83a 5.12±0.96ab

Table 4

Contents of flavonoids in the five tree peony cultivars at different blooming stages (μg∙g-1 FW) "

品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
LYH 峰1 Peak 1 4.98±0.37d 14.61±3.06c 22.58±3.69b 26.08±7.39a
峰2 Peak 2 5.07±0.36b 10.53±2.35a 13.55±3.00a 5.38±3.15b
Km3g7g 13.11±2.08d 33.93±7.46c 50.51±8.56b 72.10±15.70a
Km3g 12.00±1.42c 25.48±6.50b 26.70±3.72b 66.86±13.43a
Rutin 4.32±0.17b 7.39±1.43a 8.67±1.72a 6.33±5.03ab
Km7g 4.42±0.06b 6.67±1.24a 8.29±1.94a 7.37±2.77a
Qu3g 206.18±34.09b 254.00±13.21a 243.70±21.08a 232.37±15.81a
峰8 Peak 8 5.62±0.24cd 8.19±1.57b 11.73±2.53a 6.29±3.11bc
Ap5g 84.13±4.83c 111.64±16.90b 159.68±11.85a 147.41±15.63a
Aphg 61.19±1.64b 81.58±4.58b 83.11±6.68b 123.29±14.70a
Lt7g 37.83±4.70b 38.61±6.78b 45.37±6.37a 39.15±3.84b
My 24.71±2.99a 20.34±4.93b 22.77±3.35a 20.29±4.05b
山奈酚总含量Total km 29.54±3.55c 66.08±14.88b 85.50±14.14b 146.34±17.60a
芹菜素总含量Total ap 145.32±5.17b 193.22±15.21b 242.79±17.93a 270.70±28.52a
合计 Total 463.58±44.14c 612.98±31.23b 696.67±12.25ab 752.93±48.10a
FH 峰1 Peak 1 7.85±2.24a 6.99±3.72a 4.83±1.27b 5.03±3.03b
峰2 Peak 2 17.34±2.49a 12.31±5.82b 8.94±2.06c 15.62±3.78ab
Km3g7g 58.04±7.36b 77.78±9.03a 75.13±5.25a 88.24±5.57a
Km3g 12.33±0.72ab 11.11±0.58b 10.56±1.47bc 12.69±4.41a
Rutin 3.12±0.03b 4.22±1.94a 4.28±0.98a
Km7g 3.73±0.03a 3.77±1.69a 1.84±0.43b
Qu3g 27.41±1.28a 18.12±2.76ab 13.57±1.01b 14.01±2.89b
峰8 Peak 8 29.96±1.14a 19.99±4.73b 16.69±4.56b 15.84±1.48b
Ap5g 432.95±27.17a 333.13±13.86b 247.42±19.42d 251.88±28.77c
Aphg 132.20±7.25b 164.13±1.36a 125.38±11.46c 28.09±7.47e
Lt7g 14.05±0.24b 5.40±3.34c 5.17±1.19c 15.39±3.25a
My 6.15±0.58a 4.64±0.43b 3.33±0.03c 3.78±0.25b
山奈酚总含量Total km 71.61±6.87c 59.26±15.67d 88.20±7.35b 102.16±10.46a
芹菜素总含量Total ap 565.15±24.11a 331.51±27.33b 372.80±10.57b 279.96±22.45bc
合计 Total 740.56±16.08a 435.72±37.50c 515.53±19.46b 456.07±26.12bc
BXT 峰1 Peak 1 6.26±2.04b 7.71±0.03b 12.24±1.43a 6.00±1.82b
峰2 Peak 2 6.23±1.93c 19.61±1.77b 39.89±7.15a 32.92±10.35a
Km3g7g 10.52±2.48c 67.29±3.54b 159.68±15.43a 179.49±17.09a
Km3g 13.02±3.61a 4.04±0.54b 14.24±1.90a 8.02±1.63b
Qu3g 183.68±46.64a 7.37±1.32d 12.85±2.15c 6.08±1.96d
峰8 Peak 8 7.32±2.30c 14.46±2.66b 19.15±1.94a 8.05±1.91c
Ap5g 74.10±18.05d 259.97±21.93b 304.54±25.31a 145.99±19.20c
Aphg 4.84±1.64d 294.44±76.50a 45.72±5.24b 16.94±6.61c
品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
Lt7g na 6.01±1.73c 14.25±0.38a 5.46±1.41c
My 24.65±5.72a 3.10±0.03bc 7.50±0.80b 2.42±0.71c
山奈酚总含量Total km 29.79±8.14c 69.98±2.00b 173.92±17.31a 187.51±18.57a
芹菜素总含量Total ap 78.95±9.66d 554.41±18.93a 350.26±30.35b 162.93±14.23c
合计 Total 336.87±6.44c 673.45±9.96a 625.98±15.87a 413.18±25.33b
YRH 峰1 Peak 1 3.89±1.60ab 5.04±0.53a 4.14±0.80a 4.75±0.42a
峰2 Peak 2 14.68±1.05b 12.44±2.58b 5.44±2.48c 23.68±8.08a
Km3g7g 76.80±3.73b 68.99±2.30b 72.09±3.25b 117.40±11.45a
Km3g 5.94±1.23a 5.97±0.78a 4.11±0.45a 5.32±0.26a
Rutin 6.96±3.96b 8.14±1.09ab 10.83±0.66a 4.75±1.28c
Qu3g 4.99±0.71a 3.79±0.67a 2.76±0.89a 4.31±0.54a
峰8 Peak 8 11.52±3.26a 11.91±2.03a 8.89±0.61b 12.20±4.26a
Ap5g 262.87±5.68a 250.79±28.04a 173.83±18.97b 252.57±30.53a
Aphg 137.57±10.44a 128.71±34.98a 58.71±9.04b 57.09±18.54b
山奈酚总含量Total km 82.75±4.89b 74.97±2.63b 76.20±3.57b 122.72±11.20a
芹菜素总含量Total ap 400.44±16.11a 379.50±14.87a 232.54±7.63c 309.66±4.77b
合计 Total 525.88±22.38a 495.79±13.54a 340.80±5.82b 482.06±24.03a
ZF 峰1 Peak 1 5.10±0.55b 7.40±0.67b 13.16±0.03a 6.60±1.60b
峰2 Peak 2 9.96±4.36ab 9.63±4.32b 16.28±9.32a 16.75±1.48a
Km3g7g 50.88±3.86b 69.01±15.50b 77.41±3.70b 100.30±1.84a
Km3g 4.55±0.51a 5.87±1.59a 6.29±0.70a 2.54±0.14b
Qu3g 7.96±1.39ab 8.66±2.28a 10.31±1.93a 4.37±0.59b
峰8 Peak 8 11.29±2.19a 12.31±4.53a 15.07±2.19a 6.60±1.37b
Ap5g 231.30±52.55b 250.31±76.68b 263.98±30.52a 173.39±25.33c
Aphg 154.19±59.74c 161.46±76.31b 202.70±21.61a 124.80±29.55d
Lt7g 4.08±0.03ab na 8.99±0.03a 3.55±1.08b
My 3.50±0.22b 3.29±1.55b 6.48±0.83a na
山奈酚总含量Total km 55.42±4.34d 74.88±1.99c 81.60±0.04b 102.83±1.98a
芹菜素总含量Total ap 385.49±3.30c 411.77±15.86b 466.68±2.53a 298.19±4.19d
合计 Total 478.39±8.64ab 524.38±16.89a 603.81±6.30a 438.89±6.62b
[1] STERN F C. A Study of The Genus Paeonia. London: Royal Horticulture Society, 1946.
[2] 李嘉珏, 张西方, 赵孝庆. 中国牡丹. 北京:中国大百科全书出版社, 2011:15-17.
LI J J, ZHANG X F, ZHAO X Q. Chinese Peony. Beijing:Encyclopaedia of China Publishing House, 2011:15-17. (in Chinese)
[3] CUI H L, CHEN C R, HUANG N Z, CHENG F Y. Association analysis of yield, oil and fatty acid content, and main phenotypic traits in Paeonia rockii as an oil crop. The Journal of Horticultural Science and Biotechnology, 2018, 93(4):425-432.
doi: 10.1080/14620316.2017.1381045
[4] 王莲英, 袁涛. 中国牡丹品种图志. 北京:中国林业出版社, 1997:25-28.
WANG L Y, YUAN T. Sequel of Chinese Tree Peony. Beijing:China Forestry Publishing House, 1997:25-28. (in Chinese)
[5] WANG L S, SHIRAISHIA, HASHIMOTOF, AOKI N, SHIMIZU K, SAKATA Y. Analysis of petal anthocyanins to investigate flower colouration of Zhongyuan (Chinese) and daikon island (Japanese) tree peony cultivars. Journal of Plant Research, 2001, 114(1113):33-43.
doi: 10.1007/PL00013966
[6] FAN J L, ZHU W X, KANG H B, MA H L, TAO G J. Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree penoy cultivars. Journal of Functional Foods, 2012, 4(1):147-157.
doi: 10.1016/j.jff.2011.09.006
[7] BAO Y T, QU Y, LI J H, LI Y F, REN X D, MAFFUCCI K G, LI R P, WANG Z G, ZENG R. In vitro andin vivo antioxidant activities of the flowers and leaves from Paeonia rockii and identification of their antioxidant constituents by UHPLC-ESI-HRMSn via pre-column DPPH reaction. Molecules, 2018, 23(2):392.
doi: 10.3390/molecules23020392
[8] LI C H, DU H, WANG L S, SHU Q Y, ZHENG Y R, XU Y J, ZHANG J L, ZHANG J, YANG R Z, GE Y X. Flavonoid composition and antioxidant activity of Tree Peony (Paeonia Section Moutan) yellow flowers. Journal of Agricultural and Food Chemistry, 2009, 57(18):8496-8503.
doi: 10.1021/jf902103b
[9] YANG Y, LI B, FENG C Y, WU Q, WANG Q Y, LI S S, YU X N, WANG L S. Chemical mechanism of flower color microvariation in Paeonia with yellow flowers. Horticultural Plant Journal, 2020, 6(3):179-190.
doi: 10.1016/j.hpj.2020.04.002
[10] ZHAO D Q, TANG W H, HAO Z J, TAO J. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochemical and Biophysical Research Communications, 2015, 459(3):450-456.
doi: 10.1016/j.bbrc.2015.02.126
[11] JIA N, SHU Q Y, WANG L S, DU H, XU Y J, LIU Z A. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars. Scientia Horticulturae, 2008, 117(2):167-173.
doi: 10.1016/j.scienta.2008.03.016
[12] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[13] 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49(3):529-542.
DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration. Scientia Agricultura Sinica, 2016, 49(3):529-542. (in Chinese)
[14] GROTEWOLD E. The genetics and biochemistry of floral pigments. Annual review of plant biology, 2006, 57:761-780.
doi: 10.1146/annurev.arplant.57.032905.105248
[15] SHI Q Q, LI L, ZHANG X X, LUO J R, LI X, ZHAI L J, HE L X, ZHANG Y L. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in Paeonia rockii. Molecules, 2017, 22(8):1364.
doi: 10.3390/molecules22081364
[16] ZHANG Y Z, CHENG Y W, YA H Y, XU Z Z, HAN J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes. Frontiers in Plant Science, 2015, 6:964.
[17] QI Y, ZHOU L, HAN L L, ZOU H Z, MIAO K, WANG Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 2020, 154:396-408.
doi: 10.1016/j.plaphy.2020.06.015
[18] GU Z Y, ZHU J, HAO Q, YUAN Y U, DUAN Y W, MEN S Q, WANG Q Y, HOU Q Z, LIU Z A, SHU Q Y, WANG L S. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa). Plant & Cell Physiology, 2019, 60(3):599-611.
[19] 于世林. 图解高效液相色谱与应用. 北京:科学出版社, 2009:56-66.
YU S. Graphic High Performance Liquid Chromatography and Its Application. Beijing:The Science Publishing Company, 2009:56-66. (in Chinese)
[20] YILDIRIM S, KADIOGLU A, SAGLAM A, YASAR A, SELLITEPE H E. Fast determination of anthocyanins and free pelargonidin in fruits, fruit juices, and fruit wines by high-performance liquid chromatography using a core-shell column. Journal of Separation Science, 2016, 39(20):3927-3935.
doi: 10.1002/jssc.201600661
[21] ZHANG J J, WANG L S, SHU Q Y, LIU Z A, LI C H, ZHANG J, WEI X L, TIAN D K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Scientia Horticulturae, 2007, 114(2):104-111.
doi: 10.1016/j.scienta.2007.05.009
[22] SINGH R, WU B J, TANG L, LIU Z Q, HU M. Identification of the position of Mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (λmax) generated from an online diode array detector. Journal of Agricultural and Food Chemistry, 2010, 58(17):9384-9395.
doi: 10.1021/jf904561e
[23] 张玲, 徐宗大, 汤腾飞, 张辉, 赵兰勇. ‘紫枝’玫瑰(Rosa rugosa ‘Zi zhi’)开花过程花青素相关化合物及代谢途径分析. 中国农业科学, 2015, 48(13):2600-2611.
ZHANG L, XU Z D, TANG T F, ZHANG H, ZHAO L Y. Analysis of anthocyanins related compounds and their biosynthesis pathways in Rosa rugosa ‘Zi Zhi’ at blooming stages . Scientica Agricultura Sinica, 2015, 48(13):2600-2611. (in Chinese)
[24] WAN H H, YU C, HAN Y, GUOX L, AHMAD S, TANG A Y, WANG J, CHENG T R, PAN H T, ZHANG Q X. Flavonols and carotenoids in yellow petals of rose cultivar (Rosa ‘Sun City’): A possible rich source of bioactive compounds. Journal of Agricultural and Food Chemistry, 2018, 66(16):4171-4181.
doi: 10.1021/acs.jafc.8b01509
[25] CHEN S, XIANG Y, DENG J, LIU Y L, LI S H. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different Lotus(Nelumbo) cultivars by HPLC-DAD- ESI-MSn. PLoS ONE, 2013, 8(4):e62291.
[26] LI Q, WANG J, SUN H Y, SHANG X. Flower color patterning in pansy (Viola×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiology and Biochemistry, 2014, 84:134-141.
doi: 10.1016/j.plaphy.2014.09.012
[27] WANG X, CHENG C, SUN Q L, LI F W, LIU J H, ZHENG C C. Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography. Journal of chromatography A, 2005, 1075(1):127-131.
doi: 10.1016/j.chroma.2005.04.017
[28] KITDAMRONGSONT K, PPTHAVORN P, SWANGPOL S, WONGNIAM S, ATAWONGSA K, SVASTI J, SOMANA J. Anthocyanin composition of wild bananas in Thailand. Journal of Agricultural and Food Chemistry, 2008, 56(22):10853-10857.
doi: 10.1021/jf8018529
[29] STOCHMAL A, SIMONET A M, MACIAS F A, OLIVEIRA M A, ABREU J M, NASH R, OLESZEK W. Acylated apigenin glycosides from alfalfa (Medicago sativa L.) var. Artal. Phytochemistry, 2001, 57(8):1223-1226.
doi: 10.1016/S0031-9422(01)00204-7
[30] POP R M, SOCACIU C, PINTEA A, BUZOIANU A D, SANDERS M G. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different carpathian Hippophaë rhamnoides L. varieties. Phytochemical Analysis, 2013, 24(5):484-492.
doi: 10.1002/pca.v24.5
[31] NAKATSUKA T, SUZUKI T, HARADA K, KOBAYASHI Y, DOHRA H, OHNO H. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers. Plant Science, 2019, 287:110173.
doi: 10.1016/j.plantsci.2019.110173
[32] SUI X N, ZHANG Y, ZHOU W B. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 2016, 21:50-57.
doi: 10.1016/j.jff.2015.11.042
[33] ZHANG C, WANG W N, WANG Y J, GAO S L, DU D N, FU J X, DONG L. Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’. Postharvest Biology and Technology, 2014, 97:11-22.
doi: 10.1016/j.postharvbio.2014.05.019
[34] MITCHELL K, MARKHAM K R, BOASE M R. Pigment chemistry and colour of pelargonium flowers. Phytochemistry, 1998, 47(3):355-361.
doi: 10.1016/S0031-9422(97)00595-5
[35] 赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理. 植物学通报, 2005, 22(1):70-81.
ZHAO C L, GUO W M, CHEN J Y. Formation and regulation of flower color in higher plants. Chinese Bulletin of Botany, 2005, 22(1):70-81. (in Chinese)
[36] 杨琴, 袁涛, 孙湘滨. 两个牡丹品种开花过程中花色变化的研究. 园艺学报, 2015, 42(5):930-938.
YANG Q, YUAN T, SUN X B. Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars. Acta Horticulturae Sinica, 2015, 42(5):930-938. (in Chinese)
[37] GUO L, YIN Z Y, WEN L, XIN J, GAO X, ZHENG X X. Flower extracts from Paeonia decomposita and Paeonia ostii inhibit melanin synthesis via Camp-REB-ssociated melanogenesis signaling pathways in murine B16 melanoma cells. Journal of Food Biochemistry, 2019, 43(4):e12777.
doi: 10.1111/jfbc.2019.43.issue-4
[38] XIE L H, YAN Z G, LI M C, TIAN Y, KILARU A, NIU L X, ZHANG Y L. Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC-based analysis. Industrial Crops and Products, 2020, 154:112711.
doi: 10.1016/j.indcrop.2020.112711
[1] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[2] LU Qi,JIA XuChao,DENG Mei,ZHANG RuiFen,DONG LiHong,HUANG Fei,CHI JianWei,LIU Lei,ZHANG MingWei. Effects of Different Drying Methods on Bioactive Components of Shatianyou (Citrus grandis L. Osbeck) Pomace Powder [J]. Scientia Agricultura Sinica, 2022, 55(14): 2825-2836.
[3] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[4] YE Di,SHI Jiang,GAO ShuangCheng,WANG ZhanYing,SHI GuoAn. Correlation Analysis of Auxin Involved in the Process of Petal Abscission of Tree Peony Luoyanghong Cut Flowers by Ethylene Promoting [J]. Scientia Agricultura Sinica, 2021, 54(23): 5097-5109.
[5] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[6] ShaoKang DI,QingGang YIN,YaYing XIA,YongZhen PANG. Functional Characterization of a UDP: Flavonoid Glycosyltransferase Gene UGT73C19 in Glycine max [J]. Scientia Agricultura Sinica, 2019, 52(20): 3507-3519.
[7] SU Fan, XUE Jia, YANG Xi, DENG Hong, MENG YongHong, GUO YuRong. Effects of Phenolic Acids on Copigmentation and Stability of Anthocyanins in Red-Fleshed Apple [J]. Scientia Agricultura Sinica, 2017, 50(4): 732-742.
[8] YANG XiaoMeng, DU Juan, ZENG YaWen, PU XiaoYing, YANG ShuMing, YANG Tao, WANG LuXiang, YANG I JiaZhen. QTL Mapping of Protein and Related Functional Components Content in Barley Grains [J]. Scientia Agricultura Sinica, 2017, 50(2): 205-215.
[9] AN JianPing, SONG LaiQing, ZHAO LingLing, YOU ChunXiang, WANG XiaoFei, HAO YuJin. Effects of Overexpression of Apple Cytokinin Response Factor Gene MdCRF6 on Anthocyanins Accumulation and Salt Stress Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(16): 3196-3204.
[10] WANG HaiZhu, QU HongYun, ZHOU TingTing, XU QiJiang. Cloning and Expression Analysis of Anthocyanin Biosynthesis-Associated DFR and MYB Genes in Calyx of Eggplant (Solanum melongena L.) [J]. Scientia Agricultura Sinica, 2017, 50(14): 2781-2792.
[11] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[12] LI Zong-yan1, QIN Yan-ling1, MENG Jin-fang2, TANG Dai1, WANG Jin1. Study on the Origin of Tree Peony Cultivars from Southwest China Based on ISSR Technology [J]. Scientia Agricultura Sinica, 2015, 48(5): 931-940.
[13] ZHANG Ling, XU Zong-da, TANG Teng-fei, ZHANG Hui, ZHAO Lan-yong. Analysis of Anthocyanins Related Compounds and Their Biosynthesis Pathways in Rosa rugosa ‘Zi zhi’ at Blooming Stages [J]. Scientia Agricultura Sinica, 2015, 48(13): 2600-2611.
[14] ZHENG Jie, ZHAO Qi-yang, ZHANG Yao-hai, JIAO Bi-ning. Simultaneous Determination of Main Flavonoids and Phenolic Acids in Citrus Fruit by Ultra Performance Liquid Chromatography [J]. Scientia Agricultura Sinica, 2014, 47(23): 4706-4717.
[15] LI Jun, ZHAO Ai-chun, UMUHOZA Diane, WANG Xi-ling, LIU Chang-ying, LU Cheng, YU Mao-de. Cloning and Function Analysis of a MaDFR Gene from Mulberry [J]. Scientia Agricultura Sinica, 2014, 47(22): 4524-4532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!