Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4179-4195.doi: 10.3864/j.issn.0578-1752.2021.19.013

• HORTICULTURE • Previous Articles     Next Articles

Metabolomics Comparative Study on Fruits of Edible Seed Watermelon, Egusi and Common Watermelon

YUAN PingLi(),HE Nan,ZHAO ShengJie,LU XuQiang,ZHU HongJu,DIAO WeiNan,GONG ChengSheng,MUHAMMAD Jawad Umer,LIU WenGe()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450009
  • Received:2020-12-03 Accepted:2021-03-24 Online:2021-10-01 Published:2021-10-12
  • Contact: WenGe LIU E-mail:82101179218@caas.cn;mengping513@163.com;liuwenge@caas.cn

Abstract:

【Objective】Watermelon is a very popular summer fruit. Citrullus mucosospermus (egusi), Citrullus lanatus var. megalospermus (edible seed watermelon) and Citrullus lanatus var. vulgaris (common dessert watermelon) are the three main cultivation types. The appearance and taste of their fruits are quite different, but there is no detailed report on the comprehensive fruit metabolome. In order to clarity the influence of selection on metabolomics in watermelon domestication and improvement processes, the metabolic profiling of three types of watermelon fruits was analyzed. 【Method】 In this study, 5 egusi watermelon, 5 edible seed watermelon and 6 common watermelon accessions were used for metabolomics profiling analysis by widely targeted metabolic profiling method based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The software SIMCA-P, MetaboAnalyst 5.0, and Origin were used to analyze the metabolomics data. 【Result】A total of 323 metabolites were detected, including 51 amino acids and their derivatives, 21 nucleotides and their derivatives, 14 carbohydrates, 32 organic acids, 52 lipids, 36 flavonoids, 32 hydroxycinnamoyl derivatives, etc. PCA and cluster analysis showed that the difference of metabolomics profile between egusi watermelon and edible seed watermelon was small, and the metabolomics profile of edible seed watermelon was between that of egusi watermelon and common watermelon. The major metabolites contributing to the classification were sucrose, citric acid, L-glutamic acid, L-threonine, cucurbitacin, vanillic acid glycoside isomers, lipids, and so on. Heatmap analysis showed that cucurbitacin and their derivatives were the unique metabolites in egusi watermelon. The contents of chlorogenic acid, LysoPE, etc. in edible seed watermelon were higher than those in egusi and common watermelon. The contents of carbohydrate, arginine, ferulic acid and C18-2 and C18-3 unsaturated fatty acids in common watermelon were higher than those in egusi and edible seed watermelon. There were 156 differentially accumulated metabolites, which were identified by comparison analysis. The main divergent metabolites between edible seed watermelon and egusi watermelon were p-coumaraldehyde, ferulic acid, cinnamic acid, sucrose, cucurbitacin D O-glucoside, cucurbitacin E isomer, vitexin, coniferyl alcohol, and so on. The main divergent metabolites between edible seed watermelon and common watermelon were lipids, flavonoids, organic acids, sugars, and others. With the development of crop evolution, the content of nutritious metabolites increased, whereas the content of resistance related metabolites decreased. 【Conclusion】The watermelon fruit metabolomics was reported for the first time based on widely targeted metabolic profiling method. The metabolomics difference between edible seed watermelon and egusi watermelon was smaller than that of edible seed watermelon and common watermelon, and the metabolic profile of edible seed watermelon lay between that of egusi watermelon and common watermelon. In addition to phenotypic and genomic differences, the differential metabolites could also be used as biomarkers to distinguish different varieties. The metabolomics data provided the new insight for complementary understanding watermelon germplasm resources and for metabolomics-based genetic improvement of functional watermelon.

Key words: Citrullus mucosospermus, Citrullus lanatus var. megalospermus, Citrullus lanatus var. vulgaris, metabolome, divergence metabolites, domestication and improvement

Table 1

Fruit phenotypic characteristics of tested watermelon varieties"

品种名称
Variety name
栽培类型
Cultivated type
果肉颜色
Flesh color
含糖量
Brix (%)
果肉
pH
果肉硬度
Flesh firmness (kg∙cm-2)
皮厚
Rind thickness (cm)
果实重量
Fruit weight (kg)
桂引6号Guiyin No.6 普通西瓜 Common 红色 Red 12.00 5.50 1.05 1.0 3.20
红灯Hongdeng 普通西瓜 Common 红色 Red 10.50 5.56 0.80 1.0 2.40
91E7 普通西瓜 Common 红色 Red 10.50 5.56 1.10 0.8 3.20
郑州3号Zhengzhou No.3 普通西瓜 Common 红色 Red 10.50 5.46 0.90 1.1 3.80
黑崩筋Heibengjin 普通西瓜 Common 黄色Yellow 8.50 5.60 0.80 0.8 2.60
喇嘛瓜Lamagua 普通西瓜 Common 黄色Yellow 7.50 5.65 0.80 1.6 4.20
皋兰籽瓜Gaolanzigua 籽用西瓜 Edible seed 白色 White 4.50 4.80 5.12 1.1 3.00
廊坊籽瓜Langfangzigua 籽用西瓜 Edible seed 白色 White 4.50 4.78 5.00 1.2 3.30
磴口籽瓜Dengkouzigua 籽用西瓜 Edible seed 白色 White 5.00 4.69 5.01 1.6 3.36
郑州籽瓜Zhengzhouzigua 籽用西瓜 Edible seed 白色White 3.50 4.79 4.85 1.8 3.35
红瓜子Hongguazi 籽用西瓜 Edible seed 浅粉色Light pink 6.00 4.90 0.96 0.8 3.27
PI185636 黏籽西瓜 Egusi 白色 White 3.80 4.68 6.10 1.5 2.50
PI494532 黏籽西瓜 Egusi 白色 White 3.00 4.57 6.06 1.2 1.40
PI595203 黏籽西瓜 Egusi 白色 White 3.00 4.80 5.90 1.5 2.10
PI164248 黏籽西瓜 Egusi 白色 White 2.50 4.75 6.00 1.5 2.80
PI179240 黏籽西瓜 Egusi 白色 White 3.00 4.60 6.00 1.1 1.61

Fig. 1

Score plot of PCA analysis based on the metabolic data of three types of watermelon"

Fig. 2

Loadings plot for PCA analysis based on the metabolic data of three types of watermelon"

Fig. 3

Hierachical clustering analysis based on the metabolic data of three types of watermelon"

Fig. 4

Scores plot of OPLS-DA analysis"

Table 2

Evaluation parameters of OPLS-DA for egusi-edible seed watermelon and edible seed -common watermelon"

样品组 Combination A R2X (cum) R2Y (cum) Q2 (cum)
黏籽西瓜-籽用西瓜 Egusi-Edible seed 1+4 0.700 1 0.923
籽用西瓜-普通西瓜 Edible seed-Common 1+4 0.664 1 0.970

Table 3

Divergent metabolites of edible seed watermelon and egusi watermelon"

化合物名称
Compound name
变化倍数(籽瓜/黏籽)
Fold change
(Edible seed/Egusi)
VIP 物质分类
Classification of metabolites
6-甲基香豆素 6-MethylCoumarin 0.01 1.01 香豆素类 Coumarins
12,13-EODE 0.07 1.35 脂肪酸 Fatty acids
葫芦素D O-葡萄糖苷 Cucurbitacin D O-glucoside 0.07 1.21 三萜葫芦素Triterpenes-cucurbitacin
松柏醇 Coniferyl alcohol 0.09 1.33 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
芹菜素C-葡萄糖苷 Apigenin C-glucoside 0.11 1.14 黄酮C-糖苷 Flavone C-glycosides
牡荆素 Vitexin 0.11 1.13 黄酮C-糖苷 Flavone C-glycosides
牡荆素异构体 Vitexin isomer 0.12 1.11 黄酮C-糖苷 Flavone C-glycosides
异半皮桉苷 Isohemiphloin 0.12 1.13 生物碱Alkaloids
圣草素C-己糖苷Eriodictyol C-hexoside 0.12 1.17 黄酮C-糖苷 Flavone C-glycosides
异牡荆素 Isovitexin 0.13 1.12 黄酮C-糖苷 Flavone C-glycosides
梓苷异构体3 Catalposide isomer 3 0.13 1.58 萜烯 Terpene
烟酸甲酯 Nicotinic acid methyl ester 0.17 1.55 维生素 Vitamins
松柏醛 Coniferylaldehyde 0.19 1.37 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
9-KODE 0.22 1.45 脂肪酸 Fatty acids
葫芦素E异构体 Cucurbitacin E isomer 0.22 1.58 三萜葫芦素Triterpenes-cucurbitacin
松柏醛异构体 Coniferylaldehyde isomer 0.23 1.28 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
十八碳三烯酸 Punicic acid 0.24 1.49 脂肪酸Fatty acids
7-甲基黄嘌呤 7-Methylxanthine 0.24 1.57 核苷酸及其衍生物 Nucleotide and its derivates
O-阿魏酰蔗糖异构体3 O-feruloylsucrose isomer 3 0.24 1.13 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
2,5-二羟基苯甲酸邻己糖苷 2,5-dihydroxy benzoic acid O-hexside 0.25 1.06 苯甲酸衍生物 Benzoic acid derivatives
9-HOTrE 0.25 1.08 脂肪酸 Fatty acids
13-HpOTrE(r) 0.28 1.43 脂肪酸 Fatty acids
9-羟基-十八碳三烯酸9-Hydroxy-octadecatrienoic acid 0.33 1.57 脂肪酸 Fatty acids
金圣草素8-己糖苷 Chrysoeriol 8-C-hexoside 0.34 1.34 黄酮C-糖苷 Flavone C-glycosides
2-羟基异己二酸 2-Hydroxyisocaproic acid 0.35 1.56 有机酸 Organic acids
D-苏氨酸 D-Threose 0.35 1.11 碳水化合物 Carbohydrates
4-甲基-5-羟乙基噻唑 4-Methyl-5-thiazoleethanol 0.37 1.16 其他 Others
小麦黄素糖酸 Tricin O-saccharic acid 0.39 1.40 黄酮 Flavone
邻咖啡酰莽草酸 IO-Caffeoylshikimic acid I 0.39 1.07 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
香兰素 Vanillin 0.39 1.58 苯甲酸衍生物 Benzoic acid derivatives
5-甲氧基-N,N-二甲基色胺5-Methoxy-N,N-dimethyltryptamine 0.40 1.49 色胺衍生物 Tryptamine derivatives
2,3-二甲基丁二酸 2,3-dimethylsuccinic acid 0.41 1.43 氨基酸衍生物 Amino acid derivatives
异亮氨酸己糖苷异构体2 Isolariciresinol hexoside isomer 2 0.43 1.44 木脂素 Lignans
组氨酸 L-Histidine 0.43 1.09 氨基酸 Amino acids
D-吡喃葡萄糖酸盐 D-glucopyranuronate 0.44 1.68 碳水化合物 Carbohydrates
柠檬酸 Citric acid 0.45 1.05 有机酸 Organic acids
MAG(18:3)异构体4 MAG (18:3) isomer 4 0.46 1.39 甘油脂质 Glycerolipids
咖啡酰葡萄糖异构体1 Caffeoylhexose isomer 1 0.46 1.20 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
棕榈醛 Palmitaldehyde 0.47 1.38 脂肪酸 Fatty acids
D-半乳糖醛酸 D-Galacturonic acid 0.47 1.67 碳水化合物 Carbohydrates
2-羟基异己二酸异构体 2-Hydroxyisocaproic acid isomer 0.47 1.38 有机酸 Organic acids
MAG(18:3)异构体1 MAG (18:3) isomer 1 0.48 1.41 甘油脂质 Glycerolipids
阿魏酸己糖苷异构体1 Ferulic acid hexoside isomer 1 0.49 1.13 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
9-HpOTrE 0.49 1.10 脂肪酸 Fatty acids
金雀异黄素7-O-葡萄糖苷 Genistein 7-O-Glucoside 2.00 1.58 异黄酮 Isoflavone
氧化谷胱甘肽 Glutathione oxidized 2.02 1.44 氨基酸衍生物 Amino acid derivatives
氨基嘌呤 Aminopurine 2.05 1.17 其他 Others
2,3-氧化萘 2,3-Oxidosqualene 2.08 1.53 甾醇 Sterol
木犀草素7-O-葡萄糖苷 Luteolin 7-O-glucoside 2.10 1.04 黄酮 Flavone
LysoPC 16:0 2.13 1.72 甘油磷脂 Glycerophospholipids
蔗糖 Sucrose 2.19 1.50 碳水化合物 Carbohydrates
LysoPC 18:2(2n异构体) LysoPC 18:2 (2n isomer) 2.28 1.50 甘油磷脂 Glycerophospholipids
S-(5'-腺苷)-L-蛋氨酸S-(5'-Adenosyl)-L-methionine 2.29 1.38 氨基酸衍生物 Amino acid derivatives
烟酸腺嘌呤二核苷酸 Nicotinic acid adenine dinucleotide 2.32 1.35 核苷酸及其衍生物 Nucleotide and its derivates
LysoPE 16:0(2n异构体) LysoPE 16:0 (2n isomer) 2.41 1.63 甘油磷脂 Glycerophospholipids
胆固醇 Cholesterol 2.49 1.17 其他 Others
LysoPC 16:0(2n异构体) LysoPC 16:0 (2n isomer) 2.50 1.45 甘油磷脂 Glycerophospholipids
黄素腺嘌呤二核苷酸 Flavin adenine dinucleotide (FAD) 2.51 1.68 核苷酸及其衍生物 Nucleotide and its derivates
LysoPE 16:0 2.60 1.65 甘油磷脂 Glycerophospholipids
LysoPC 17:0 2.61 1.64 甘油磷脂 Glycerophospholipids
LysoPC 16:1(2n异构体) LysoPC 16:1 (2n isomer) 2.65 1.33 甘油磷脂 Glycerophospholipids
还原型谷胱甘肽 Glutathione reduced form 2.73 1.65 氨基酸衍生物 Amino acid derivatives
L-精氨酸 L-Arginine 2.90 1.44 氨基酸 Amino acids
丁二醇乙酸酯 Butanedioldiacetate 2.90 1.43 有机酸 Organic acids
L-蛋氨酸 L-Methionine 2.98 1.40 氨基酸 Amino acids
LysoPC 18:0 3.15 1.55 甘油磷脂 Glycerophospholipids
LysoPC 16:2(2n异构体) LysoPC 16:2 (2n isomer) 3.28 1.63 甘油磷脂 Glycerophospholipids
MGMG(18:2)异构体1 MGMG (18:2) isomer 1 3.30 1.52 甘油脂质 Glycerolipids
MGMG(18:2)异构体2 MGMG (18:2) isomer 2 3.36 1.58 甘油脂质 Glycerolipids
3-羟基-4-甲氧基肉桂酸3-Hydroxy-4-methoxycinnamic acid 4.20 1.06 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
反式玉米素N-葡萄糖苷 Trans-zeatin N-glucoside 5.43 1.66 植物激素 Phytohormones
LysoPC 16:1 5.94 1.59 脂质甘油磷脂Lipids_Glycerophospholipids
肉桂酸 Cinnamic acid 6.22 1.05 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
阿魏酸 Ferulic acid 7.02 1.58 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
对香豆醛 p-Coumaraldehyde 7.51 1.06 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives

Table 4

Divergent metabolites of edible seed watermelon and common watermelon"

化合物名称
Compound name
变化倍数(普通/籽瓜)
Fold change (Common/Edible seed)
VIP 分类
Classification of metabolites
LysoPC 14:0(2n异构体) LysoPC 14:0 (2n isomer) 0.05 1.19 甘油磷脂 Glycerophospholipids
原儿茶酸葡萄糖苷异构体2 Protocatechuic acid glucoside isomer 2 0.09 1.28 儿茶素衍生物 Catechin derivatives
LysoPC 16:2(2n异构体) LysoPC 16:2 (2n isomer) 0.12 1.71 甘油磷脂 Glycerophospholipids
LysoPC 18:3(2n异构体) LysoPC 18:3 (2n isomer) 0.13 1.70 甘油磷脂 Glycerophospholipids
金圣草素8-己糖苷 Chrysoeriol 8-C-hexoside 0.13 1.32 黄酮C-糖苷 Flavone C-glycosides
牡荆素异构体 Vitexin isomer 0.14 1.27 黄酮C-糖苷 Flavone C-glycosides
LysoPC 16:0(2n异构体) LysoPC 16:0 (2n isomer) 0.14 1.61 甘油磷脂 Glycerophospholipids
5-羟基吲哚-3-乙酸 5-Hydroxyindole-3-acetic acid 0.15 1.56 吲哚衍生物 Indole derivatives
维生素C Vitamin C 0.16 1.58 维生素 Vitamins
牡荆素 Vitexin 0.16 1.22 黄酮C-糖苷 Flavone C-glycosides
LysoPC 18:2(2n异构体) LysoPC 18:2 (2n isomer) 0.17 1.68 甘油磷脂Glycerophospholipids
异牡荆素 Isovitexin 0.17 1.22 黄酮C-糖苷 Flavone C-glycosides
黄柏红素F Phellodensin F 0.17 1.53 其他 Others
芹菜素C-葡萄糖苷 Apigenin C-glucoside 0.17 1.19 黄酮C-糖苷 Flavone C-glycosides
香兰素苷异构体2 Vanillic acid glycoside isomer 2 0.18 1.29 苯甲酸衍生物 Benzoic acid derivatives
异半皮桉苷 Isohemiphloin 0.19 1.28 生物碱Alkaloids
木犀草素C-己糖苷 Luteolin C-hexoside 0.19 1.31 黄酮C-糖苷 Flavone C-glycosides
2-O-戊糖基-6木犀草素 2-O-pentosyl-6-Chexosyl-luteolin 0.19 1.53 黄酮C-糖苷 Flavone C-glycosides
D-泛酸异构体 D-Pantothenic acid isomer 0.20 1.51 有机酸 Organic acids
木犀草素-O-己糖苷 Luteolin-O-hexoside 0.20 1.03 黄酮 Flavone
LysoPC 15:1 0.20 1.44 甘油磷脂 Glycerophospholipids
邻咖啡酰麦芽三糖 O-Caffeoyl maltotriose 0.21 1.23 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
木犀草素C-己糖苷 Luteolin C-hexoside isomer 0.21 1.31 黄酮C-糖苷 Flavone C-glycosides
枸橼苦素A异构体1 Citrusin A isomer 1 0.23 1.54 黄烷酮 Flavanone
3,4-二羟基苯乙酸 3,4-Dihydroxybenzeneacetic acid 0.23 1.58 有机酸 Organic acids
反式玉米素N-葡萄糖苷 Trans-zeatin N-glucoside 0.24 1.58 植物激素 Phytohormones
木犀草素6- C-葡萄糖苷 Luteolin 6-C-glucoside 0.24 1.04 黄酮C-糖苷 Flavone C-glycosides
小麦黄素糖酸 Tricin O-saccharic acid 0.24 1.55 黄酮 Flavone
7-甲基黄嘌呤 7-Methylxanthine 0.26 1.30 核苷酸及其衍生物 Nucleotide and its derivates
LysoPC 16:1(2n异构体) LysoPC 16:1 (2n isomer) 0.26 1.41 甘油磷脂 Glycerophospholipids
4-吡哆醇酸 4-Pyridoxic acid 0.27 1.60 嘧啶类衍生物 Pyridine derivatives
5-甲氧基-N,N-二甲基色胺5-Methoxy-N,N-dimethyltryptamine 0.27 1.54 色胺衍生物 Tryptamine derivatives
N-乙酰苏氨酸 N-Acetylthreonine 0.28 1.30 氨基酸衍生物 Amino acid derivatives
N2-甲基鸟苷 N2-methylguanosine 0.28 1.63 核苷酸及其衍生物 Nucleotide and its derivates
4-乙酰氨基丁酸 4-Acetamidobutyric acid 0.28 1.56 有机酸 Organic acids
二羟基葫芦二烯醇 Dihydroxy cucurbitadienol 0.29 1.38 三萜葫芦素Triterpenes-cucurbitacin
5-氧化脯氨酸 5-oxoproline 0.31 1.23 氨基酸衍生物 Amino acid derivatives
犬尿喹啉酸 Kynurenic acid 0.32 1.59 有机酸 Organic acids
L-哌可酸 L-Pipecolic acid 0.32 1.19 氨基酸衍生物 Amino acid derivatives
D-泛酸 D-Pantothenic acid 0.33 1.57 维生素 Vitamin
羟基丁酸乙酯己糖苷异构体1 Hydroxybutanoic acid ethylester-hexoside isomer 1 0.33 1.45 有机酸 Organic acids
异亮氨酸己糖苷异构体2 Isolariciresinol hexoside isomer 2 0.35 1.63 木脂素 Lignans
吲哚甲醛 Indole-3-carboxaldehyde 0.35 1.03 吲哚衍生物 Indole derivatives
对氨基苯甲酸盐 p-Aminobenzoate 0.36 1.45 苯甲酸衍生物 Benzoic acid derivatives
LysoPC 18:0 0.37 1.29 甘油磷脂 Glycerophospholipids
异亮氨酸己糖苷异构体1 Isolariciresinol hexoside isomer 1 0.37 1.20 木脂素 Lignans
圣草酚7-葡萄糖苷 Eriodictyol 7-glucoside 0.37 1.27 黄烷酮 Flavanone
LysoPE 16:0(2n异构体) LysoPE 16:0 (2n isomer) 0.37 1.51 甘油磷脂 Glycerophospholipids
LysoPC 17:0 0.37 1.55 甘油磷脂 Glycerophospholipids
犬尿喹啉酸异构体Kynurenic acid isomer 0.37 1.56 有机酸 Organic acids
对苯二酚葡萄糖醛酸盐Hydroquinone glucuronide 0.37 1.14 其他 Others
LysoPE 16:0 0.38 1.50 甘油磷脂 Glycerophospholipids
原儿茶酸葡萄糖苷异构体1 Protocatechuic acid glucoside isomer 1 0.38 1.22 儿茶素衍生物 Catechin derivatives
邻咖啡酰莽草酸I O-Caffeoylshikimic acid I 0.39 1.03 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
焦谷氨酸己糖苷异构体1 Pyroglutamic acid hexoside isomer 1 0.40 1.54 氨基酸衍生物 Amino acid derivatives
原儿茶酸O-葡萄糖苷 Protocatechuic acid O-glucoside 0.41 1.09 儿茶素衍生物 Catechin derivatives
龙胆酸-己糖苷体1 Gentisic acid- hexosideisomer 1 0.41 1.10 苯甲酸衍生物 Benzoic acid derivatives
8-甲基-2-氧代-4-苯基-2H-铬-7-基4-(己基氧基)苯甲酸酯 8-Methyl-2-oxo-4-phenyl-2H-chromen-7-yl 4-(hexyloxy)benzoate 0.41 1.29 苯甲酸衍生物 Benzoic acid derivatives
吲哚-5-羧酸 Indole-5-carboxylic acid 0.42 1.13 吲哚衍生物 Indole derivatives
LysoPC 16:1 0.42 1.24 甘油磷脂 Glycerophospholipids
圣草次甙 Eriodictyol rutinoside 0.43 1.01 黄烷酮 Flavanone
原儿茶酸 Protocatechuic acid 0.44 1.03 儿茶素衍生物 Catechin derivatives
甲酰苯胺 N'-Formylkynurenine 0.44 1.02 氨基酸衍生物 Amino acid derivatives
圣草素C-己糖苷 Eriodictyol C-hexoside 0.44 1.11 黄酮C-糖苷 Flavone C-glycosides
LysoPC 16:0 0.45 1.61 甘油磷脂 Glycerophospholipids
香兰素苷异构体1 Vanillic acid glycoside isomer 1 0.45 1.64 苯甲酸衍生物 Benzoic acid derivatives
LysoPC 18:3 0.48 1.58 甘油磷脂 Glycerophospholipids
LysoPC 18:2 0.48 1.17 甘油磷脂 Glycerophospholipids
S-(5'-腺苷)-L-蛋氨酸 S-(5'-Adenosyl)-L-methionine 0.49 1.18 氨基酸衍生物 Amino acid derivatives
(5-L-谷氨酰胺基)-L-氨基酸 (5-L-Glutamyl)-L-amino acid 0.49 1.34 氨基酸衍生物 Amino acid derivatives
烟酸腺嘌呤二核苷酸 Nicotinic acid adenine dinucleotide 2.02 1.30 核苷酸及其衍生物 Nucleotide and its derivates
4-(氨甲基)-5-(羟甲基)-2-甲基吡啶-3-醇4-(Aminomethyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol 2.03 1.36 其他 Others
L-苏氨酸 L-Threonine 2.20 1.58 氨基酸 Amino acids
N-乙酰蛋氨酸 N-Acetylmethionine 2.32 1.09 氨基酸衍生物 Amino acid derivatives
S-(5'-腺苷)-L-同型半胱氨酸S-(5'-Adenosy)-L-homocysteine 2.62 1.01 氨基酸衍生物 Amino acid derivatives
吡哆醇 Pyridoxine 2.67 1.24 维生素 Vitamins
D-葡萄糖醛酸 D-Glucuronic acid 2.75 1.53 碳水化合物 Carbohydrates
LysoPC 18:1(2n异构体) LysoPC 18:1 (2n isomer) 2.87 1.11 甘油磷脂 Glycerophospholipids
柠檬酸 Citric acid 2.90 1.55 有机酸 Organic acids
柠檬酸异构体1 Citric acid isomer 1 2.95 1.47 有机酸 Organic acids
烟酸甲酯 Nicotinic Acid Methyl Ester 2.97 1.22 维生素 Vitamins
2-氨基己二酸 2-Aminoadipic acid (L-Homoglutamic acid) 3.09 1.22 氨基酸 Amino acids
MAG(18:3)异构体2 MAG (18:3) isomer2 3.13 1.10 甘油脂质 Glycerolipids
LysoPC 18:0(2n异构体) LysoPC 18:0 (2n isomer) 3.19 1.08 甘油磷脂 Glycerophospholipids
十八碳三烯酸 Punicic acid 3.21 1.44 脂肪酸 Fatty acids
L-精氨酸 L-Arginine 3.24 1.44 氨基酸 Amino acids
尿苷5′-二磷酸葡萄糖二钠盐
Uridine 5′-diphosphoglucose disodium salt hydrate
3.26 1.29 碳水化合物 Carbohydrates
UDP-α-D-葡萄糖 UDP-α-D-glucose 3.28 1.27 碳水化合物 Carbohydrates
尿苷5'-二磷酸-D-葡萄糖 Uridine 5'-diphospho-D-glucose 3.29 1.28 核苷酸及其衍生物 Nucleotide and its derivates
丁二醇乙酸酯 Butanedioldiacetate 3.30 1.39 有机酸 Organic acids
MAG(18:3)异构体3 MAG (18:3) isomer 3 3.38 1.01 甘油脂质 Glycerolipids
奎宁酸 Quinic acid 3.38 1.40 奎宁酸盐及其衍生物 Quinate and its derivatives
L-谷氨酸 L-Glutamic acid 3.43 1.56 氨基酸 Amino acids
13-HPODE 3.44 1.39 脂肪酸 Fatty acids
LysoPC 20:4 3.53 1.08 甘油磷脂 Glycerophospholipids
组氨酸2 L-Histidine 2 3.65 1.27 氨基酸 Amino acids and its derivatives
LysoPC 18:1 3.98 1.15 甘油磷脂 Glycerophospholipids
氧化谷胱甘肽2 Glutathione oxidized 2 4.23 1.47 氨基酸衍生物 Amino acids
MAG(18:3)异构体5 MAG (18:3) isomer 5 4.28 1.02 甘油脂质Glycerolipids
琥珀酸2 Succinic acid 2 4.34 1.31 有机酸 Organic acids
LysoPE18:1(2n异构体) LysoPE 18:1 (2n isomer) 4.60 1.11 甘油磷脂 Glycerophospholipids
组氨酸 L-Histidine 4.64 1.22 氨基酸 Amino acids
氧化谷胱甘肽 Glutathione oxidized 4.68 1.47 氨基酸衍生物 Amino acid derivatives
琥珀酸 Succinic acid 4.96 1.34 有机酸 Organic acids
DGMG(18:2)异构体3 DGMG (18:2) isomer 3 6.00 1.30 甘油脂质 Glycerolipids
DGMG(18:2)异构体1 DGMG (18:2) isomer 1 6.02 1.30 甘油脂质 Glycerolipids
蔗糖 Sucrose 6.89 1.59 碳水化合物 Carbohydrates
5-羟基己酸 5-hydroxyhexanoic acid 7.46 1.11 有机酸 Organic acids
3,4-二甲氧基肉桂酸 3,4-Dimethoxycinnamic acid 7.52 1.36 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives
MGMG(18:2)异构体2 MGMG (18:2) isomer 2 7.89 1.36 甘油脂质 Glycerolipids
MGMG(18:2)异构体1 MGMG (18:2) isomer 1 8.40 1.38 甘油脂质 Glycerolipids
2-异丙基苹果酸 2-Isopropylmalate 10.14 1.11 有机酸 Organic acids
D-松三糖 D-Melezitose 10.43 1.09 碳水化合物 Carbohydrates
MAG(18:1)异构体2 MAG (18:1) isomer2 18.54 1.04 甘油脂质 Glycerolipids
对香豆酸苷异构体1 p-coumaric acid glucoside isomer 1 59.23 1.19 羟基肉桂酰衍生物Hydroxycinnamoyl derivatives

Fig. 5

Correlation pattern analysis of the compounds correlated with the egusi-edible seed-common watermelon"

Fig. 6

Comparison of the content of important metabolites in three types of watermelon Different lowercase letters indicate significant difference (P<0.05) (Fisher LSD test)"

[1] 刘文革, 何楠, 赵胜杰, 路绪强. 我国西瓜品种选育研究进展. 中国瓜菜, 2016, 29(1):1-7.
LIU W G, HE N, ZHAO S J, LU X Q. Advances in watermelon breeding in China. China Cucurbits and Vegetables, 2016, 29(1):1-7. (in Chinese)
[2] 万学闪, 刘文革, 阎志红, 赵胜杰, 何楠, 刘鹏, 代军委. 西瓜果实发育过程中番茄红素、瓜氨酸和Vc等功能物质含量的变化. 中国农业科学, 2011, 44(13):2738-2747.
WAN X S, LIU W G, YAN Z H, ZHAO S J, HE N, LIU P, DAI J W. Changes of the contents of functional substances including lycopene, citrulline and ascorbic acid during watermelon fruits development. Scientia Agricultura Sinica, 2011, 44(13):2738-2747. (in Chinese)
[3] ZHANG H Y, FAN J G, GUO S G, REN Y, GONG G Y, ZHANG J, WENG Y Q, DAVIS A, XU Y. Genetic diversity, population structure, and formation of a core collection of 1197 Citrullus accessions. HortScience, 2016, 51(1):23-29.
doi: 10.21273/HORTSCI.51.1.23
[4] RENNER S S, SOUSA A, CHOMICKI G. Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus Citrullus, with 50 names allocated to seven biological species. Taxon, 2017, 66(6):1393-1405.
doi: 10.12705/666.7
[5] ACHIGAN-DAKO E G, AVOHOU E S, LINSOUSSI C, AHANCHEDE A, VODOUHE R S, BLATTNER F R. Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus). Genetic Resources and Crop Evolution, 2015, 62(8):1159-1179.
doi: 10.1007/s10722-015-0220-z
[6] 陈菁菁, 许勇, 张建农, 陈年来. 我国籽用西瓜生产与研究进展. 中国蔬菜, 2015(12):12-18.
CHEN J J, XU Y, ZHANG J N, CHEN N L. Production and research of seed using watermelon in China. China Vegetables, 2015(12):12-18. (in Chinese)
[7] 甘肃省园艺学会瓜类专业委员会. 对黑籽瓜生产与研究中一些术语与标准界定的意见. 中国西瓜甜瓜, 1999, 12(2):31-33.
Gansu Horticultural Society Cucurbits Professional Committee. Some terms and standards in the production and research of black edible seed watermelon. China Watermelon and Muskmelon, 1999, 12(2):31-33. (in Chinese)
[8] 徐明慧, 张清华. 打瓜高产栽培管理. 特种经济动植物, 2011, 14(1):34-35.
XU M H, ZHANG Q H. High yield cultivation and management of Da Gua. Special Economic Animal and Plant, 2011, 14(1):34-35. (in Chinese)
[9] 中国农业科学院郑州果树研究所. 中国西瓜甜瓜. 北京: 中国农业出版社, 2000.
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences. China Watermelon and Muskmelon. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[10] 林淑敏, 刘谨, 刘彤, 陶东, 王诚忠. 甘肃鲜食籽瓜产业开发前景. 农业科技与信息, 2011, 8(21):9-11.
LIN S M, LIU J, LIU T, TAO D, WANG C Z. Development prospect of fresh seed melon industry in Gansu Province. Agricultural Science and Technology and Information, 2011, 8(21):9-11. (in Chinese)
[11] CHEN W, GAO Y Q, XIE W B, GONG L, LU K, WANG W S, LI Y, LIU X Q, ZHANG H Y, DONG H X, ZHANG W, ZHANG L J, YU S B, WANG G W, LIAN X M, LUO J. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 2014, 46(7):714-721.
doi: 10.1038/ng.3007
[12] GOFF S A, RICKE D, LAN T H, PRESTING G, WANG R L, DUNN M, GLAZEBROOK J, SESSIONS A, OELLER P, VARMA H, HADLEY D, HUTCHISON D, MARTIN C, KATAGIRI F, LANGE B M, MOUGHAMER T, XIA Y, BUDWORTH P, ZHONG J P, MIGUEL T, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565):92-100.
doi: 10.1126/science.1068275
[13] FU J J, CHENG Y B, LINGHU J J, YANG X H, KANG L, ZHANG Z X, ZHANG J, HE C, DU X M, PENG Z Y, WANG B, ZHAI L H, DAI C M, XU J B, WANG W D, LI X R, ZHENG J, CHEN L, LUO L H, LIU J J, QIAN X J, YAN J B, WANG J, WANG G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4:2832.
doi: 10.1038/ncomms3832
[14] HAAS B J, DELCHER A L, MOUNT S M, WORTMAN J R, JR R K S, HANNICK L I, MAITI R, RONNING C M, RUSCH D B, TOWN C D, SALZBERG S L, WHITE O. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research, 2003, 31(19):5654-5666.
doi: 10.1093/nar/gkg770
[15] CONSORTIUM T G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485(7400):635-641.
doi: 10.1038/nature11119
[16] ZHANG W Y, ALSEEKH S, ZHU X, ZHANG Q H, FERNIE A R, KUANG H H, WEN W W. Dissection of the domestication-shaped genetic architecture of lettuce primary metabolism. The Plant Journal, 2020, 104(3):613-630.
doi: 10.1111/tpj.v104.3
[17] YUN D Y, KANG Y G, KIM M, KIM D, KIM E H, HONG Y S. Metabotyping of different soybean genotypes and distinct metabolism in their seeds and leaves. Food Chemistry, 2020, 330:127198.
doi: 10.1016/j.foodchem.2020.127198
[18] MOING A, ALLWOOD J W, AHARONI A, BAKER J, BEALE M H, BEN-DOR S, BIAIS B, BRIGANTE F, BURGER Y, DEBORDE C, ERBAN A, FAIGENBOIM A, GUR A, GOODACRE R, HANSEN T H, JACOB D, KATZIR N, KOPKA J, LEWINSOHN E, MAUCOURT M, et al. Comparative metabolomics and molecular phylogenetics of melon (Cucumis melo Cucurbitaceae) biodiversity. Metabolites, 2020, 10(3):121.
doi: 10.3390/metabo10030121
[19] 崔霞霞, 王亚钦, 任毅, Alisdair R Fernie, Saleh Alseekh, 何洪巨, 宫国义, 张海英, 郭绍贵, 张洁, 许勇. 低糖野生种与高糖栽培种西瓜果实代谢产物组分差异分析. 园艺学报, 2018, 45(4):775-783.
CUI X X, WANG Y Q, REN Y, FERNIE A, ALSEEKH S, HE H J, GONG G Y, ZHANG H Y, GUO S G, ZHANG J E, XU Y. Variance analysis of metabolite components between low sugar wild and high sugar cultivated watermelon fruits. Acta Horticulturae Sinica, 2018, 45(4):775-783. (in Chinese)
[20] ASLAM A, ZHAO S J, AZAM M, LU X Q, HE N, LI B B, DOU J L, ZHU H J, LIU W G. Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. PeerJ, 2020, 8:e8259.
doi: 10.7717/peerj.8259
[21] SULAIMAN F, AZAM A A, BUSTAMAM M S A, FAKURAZI S, ABAS F, LEE Y X, ISMAIL A A, MOHD FAUDZI S M, ISMAIL I S. Metabolite profiles of red and yellow watermelon (Citrullus lanatus) cultivars using a1H-NMR metabolomics approach. Molecules, 2020, 25(14):3235.
doi: 10.3390/molecules25143235
[22] 袁平丽, 李智, 赵胜杰, 路绪强, 何楠, 尚建立, 刘文革. 西瓜种质资源番茄红素含量评价. 江苏农业科学, 2018, 46(7):115-120.
YUAN P L, LI Z, ZHAO S J, LU X Q, HE N, SHANG J L, LIU W G. Evaluation of lycopene content of watermelon germplasm resources. Jiangsu Agricultural Sciences, 2018, 46(7):115-120. (in Chinese)
[23] 李蒙蒙, 路绪强, 赵胜杰, 何楠, 尚建立, 刘文革. 西瓜种质资源的瓜氨酸含量分析及评价. 果树学报, 2017, 34(4):482-494.
LI M M, LU X Q, ZHAO S J, HE N, SHANG J L, LIU W G. Analysis and evaluation of citrulline content in watermelons. Journal of Fruit Science, 2017, 34(4):482-494. (in Chinese)
[24] 关立颖, 刘文革, 裴孝伯, 赵胜杰, 阎志红, 路绪强. 不同砧木对西瓜果实中糖和Vc含量的影响. 西北农业学报, 2012, 21(1):136-140.
GUAN L Y, LIU W G, PEI X B, ZHAO S J, YAN Z H, LU X Q. Effect of different rootstocks on the sugar and vitamin C content in watermelon fruit. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(1):136-140. (in Chinese)
[25] 程瑛琨, 孟庆繁, 陈亚光, 滕利荣. 籽瓜多种营养成分的分析. 食品研究与开发, 2006, 27(7):169-171.
CHENG Y K, MENG Q F, CHEN Y G, TENG L R. Analysis of nutritional compositions of seed melon. Food Research and Development, 2006, 27(7):169-171. (in Chinese)
[26] 梁琪, 蒋玉梅, 张盛贵, 毕阳, 郑善强. 甘肃省不同产地籽瓜瓤皮成分分析. 甘肃农业大学学报, 1999, 34(1):79-83.
LIANG Q, JIANG Y M, ZHANG S G, BI Y, ZHENG S Q. Components of seed-used watermelon fruit in Gansu of China. Journal of Gansu Agricultural University, 1999, 34(1):79-83. (in Chinese)
[27] 张玉秀, 赵文明. 籽瓜种子蛋白质的氨基酸成分分析. 果树科学, 1992, 9(4):231-233.
ZHANG Y X, ZHAO W M. Amino acid composition analysis of seed protein of seed melon. Guoshu Kexue, 1992, 9(4):231-233. (in Chinese)
[28] ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO Q G, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X E, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J E, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2):249-261.
doi: 10.1016/j.cell.2017.12.019
[29] PECH J C, BOUZAYEN M, LATCHÉ A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 2008, 175(1):114-120.
doi: 10.1016/j.plantsci.2008.01.003
[30] 张建农. 籽用西瓜种质资源利用和耐贮性生理机理的研究[D]. 兰州: 甘肃农业大学, 2005.
ZHANG J N. Study on germplasm resource exploitage and bear- storage mechanism in edible seed watermelon[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese)
[31] LEVI A, THOMAS C E. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience, 2001, 36(6):1096-1101.
doi: 10.21273/HORTSCI.36.6.1096
[32] LUO J. Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology, 2015, 24:31-38.
doi: 10.1016/j.pbi.2015.01.006
[33] MCNAIR J B. Angiosperm phylogeny on a chemical basis. Bulletin of the Torrey Botanical Club, 1935, 62(9):515-532.
doi: 10.2307/2481192
[34] WATERMAN P G. The current status of chemical systematics. Phytochemistry, 2007, 68(22/24):2896-2903.
doi: 10.1016/j.phytochem.2007.06.029
[35] BERNILLON S, BIAIS B, DEBORDE C, MAUCOURT M, CABASSON C, GIBON Y, HANSEN T H, HUSTED S, DE VOS R C H, MUMM R, JONKER H, WARD J L, MILLER S J, BAKER J M, BURGER J, TADMOR Y, BEALE M H, SCHJOERRING J K, SCHAFFER A A, ROLIN D, HALL R D, MOING A. Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics, 2013, 9(1):57-77.
doi: 10.1007/s11306-012-0429-1
[36] VAN TREUREN R, VAN EEKELEN H D L M, WEHRENS R, DE VOS R C H. Metabolite variation in the lettuce gene pool: Towards healthier crop varieties and food. Metabolomics, 2018, 14(11):146.
doi: 10.1007/s11306-018-1443-8
[37] FANG C Y, FERNIE A R, LUO J. Exploring the diversity of plant metabolism. Trends in Plant Science, 2019, 24(1):83-98.
doi: 10.1016/j.tplants.2018.09.006
[38] WANG S C, ALSEEKH S, FERNIE A R, LUO J. The structure and function of major plant metabolite modifications. Molecular Plant, 2019, 12(7):899-919.
doi: 10.1016/j.molp.2019.06.001
[1] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[2] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[3] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[4] XIANG Jie, CHEN JingShi, XIA XinXin, LIU Kuai, LI ShiGui, GU JinGang. Molecular Regulation of Trichoderma harzianum ACCC32527 Response to NaCl Based on Transcriptome and Metabolome Analysis [J]. Scientia Agricultura Sinica, 2019, 52(12): 2079-2091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!