Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 4011-4019.doi: 10.3864/j.issn.0578-1752.2022.20.012

• HORTICULTURE • Previous Articles     Next Articles

Tipburn Injury and Nutritional Quality of Lettuce Plants as Affected by Humidity Control During the Light Period in A Plant Factory

LI YangMei(),LIU Xin,JIA MengHan,TONG YuXin()   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-01-10 Accepted:2022-04-11 Online:2022-10-16 Published:2022-10-24
  • Contact: YuXin TONG E-mail:liyangmei@caas.cn;tongyuxin@caas.cn

Abstract:

【Background】In the recent years, the plant factories have been developing very fast in the world due to the incomparable advantages, such as labor-saving, pesticide-free, clean, safe and annual planned leafy vegetables production with vertical multi-layer cultivation systems. However, because of the faster growth rate and the weaker transpiration rate of the newly developed leaves, the vegetables in plant factories are very susceptible to tipburn caused by calcium deficiency, and therefore the appearance and nutritional qualities of leafy vegetable are significantly reduced. 【Objective】In this study, the effects of different relative humidity levels on the tipburn injury, growth and nutritional qualities of hydroponically grown lettuce were investigated. The objective of this study was to find out the optimum relative humidity levels for preventing or alleviating tipburn occurrence of vegetable in plant factories. Furthermore, this study also could provide the technical and theoretical support to prevent the tipburn occurrence, and improve vegetable quality and economic benefits of plant factories. 【Method】‘Tiberius’ lettuce, which was susceptible to calcium deficiency, was used in this experiment. Three different air relative humidity levels of 50% (RH50), 70% (RH70) and 90% (RH90) were set up during the light period (16 h), while the relative humidity was maintained at 70% during the dark period (8 h). The other environmental factors, such as light environment, air temperature and carbon dioxide concentration, were kept constant during this study. The tipburn occurrence, yield, photosynthetic parameters and nutritional quality of the lettuce plants were investigated. 【Result】Compared with RH70 and RH90, the calcium content in the newly developed lettuce leaves plants under RH50 was increased significantly, the percentage of lettuce plants with tipburn injury was decreased while harvesting, and the initial tipburn occurrence time was postponed significantly. The stomatal conductance and transpiration rate of lettuce plants increased significantly, which in turn enhanced transpiration and accelerated the absorption and transportation of Ca2+, under the lower relative humidity. The photosynthesis rate and fresh weight of lettuce plants were not significantly affected by different relative humidity levels. Moreover, the lower relative humidity also improved the nutritional quality of lettuce plants, including improving the contents of starch, ascorbic acid, and soluble protein. 【Conclusion】The high humidity environment in a plant factory was also one of the reasons for the frequent tipburn occurrence of lettuce plants. Based on the above analysis, it could be concluded that the tipburn occurrence of lettuce plants could be alleviated, the nutritional and commercial qualities of lettuce plants could be improved without affecting its yield and photosynthetic capacity by appropriately controlling the air relative humidity in a plant factory.

Key words: plant factory, humidity control, tipburn, lettuce, nutritional quality

Table 1

Effects of different humidity levels on initial tipburn occurrence time, tipburn incidence, calcium content in new leaves"

处理
Treatment
干烧心出现天数
Days of tipburn occurrence (d)
干烧心发生率
Tipburn incidence (%)
新叶钙离子含量
Calcium content in new leaves (%)
RH50 13.0±0.0a 25.1±4.2b 0.51±0.02a
RH70 11.0±0.0b 58.8±1.7a 0.41±0.02b
RH90 8.5±0.0c 63.9±0.5a 0.40±0.02b

Table 2

Effects of different humidity levels on photosynthetic parameters of lettuce plants"

处理
Treatment
气孔导度
Stomatal conductance
(mol·m-2·s-1)
蒸腾速率
Transpiration rate
(mmol·m-2·s-1)
胞间二氧化碳浓度
Intercellular carbon dioxide concentration (μmol·mol-1)
净光合速率
Net photosynthetic rate
(μmol·m-2·s-1)
暗呼吸速率
Dark respiration rate
(μmol·m-2·s-1)
RH50 0.41±0.03a 4.8±0.3a 519.5±5.1a 14.8±0.1a 1.8±0.1b
RH70 0.27±0.02b 2.0±0.1b 492.6±7.0b 14.7±0.2a 2.1±0.1a
RH90 0.20±0.02b 1.1±0.1c 464.2±11.4c 14.1±0.4a 2.0±0.1ab

Fig. 1

Photosynthetic to light intensity response curves as affected by different humidity levels"

Table 3

Effects of different humidity levels on growth and yield of lettuce plants"

处理
Treatment
总叶片数
Total leaf
number
总叶面积
Total leaf area
(cm2)
茎叶鲜重
Shoot fresh weight (g)
茎叶干重
Shoot dry weight
(g)
根系鲜重
Root fresh weight (g)
根系干重
Root dry weight
(g)
比叶重
Leaf mass per area (g·m-2)
RH50 23.7±0.4b 1608.2±53.2a 123.1±4.2a 6.6±0.2a 10.1±0.4b 0.77±0.04a 22.1±0.5a
RH70 26.2±0.5a 1525.5±40.5a 127.2±2. 9a 6.0±0.2b 12.6±0. 6a 0.69±0.04ab 20.8±0.5a
RH90 27.1±0.5a 1511.0±36.5a 121.0±3.3a 5.8±0.1b 11.4±0.5ab 0.63±0.02b 18.8±0.3b

Fig. 2

Effects of different humidity levels on the nutrition contents of lettuce plants Different lowercase letters indicate significant difference among treatments (P<0.05)"

[1] 仝宇欣, 方炜, 王敏娟, 马承伟, 徐丹, 王柔心, 钟兴颖. 数字化植物工厂理论与实践. 北京: 中国农业科学技术出版社, 2020.
TONG Y X, FANG W. WANG M J, MA C W, XU D, WANG R X, ZHONG X Y. The theory and practice of digital plant factory. The first edition. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[2] XU W S, NGUYEN D T P, SAKAGUCHI S, AKIYAMA T, TSUKAGOSHI S, FELDMAN A, LU N. Relation between relative growth rate and tipburn occurrence of romaine lettuce under different light regulations in a plant factory with LED lighting. European Journal of Horticultural Science, 2020, 85(5): 354-361. doi: 10.17660/eJHS.2020/85.5.7.
doi: 10.17660/eJHS.2020/85.5.7
[3] SAGO Y. Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience, 2016, 51(9): 1087-1091. doi: 10.21273/HORTSCI10668-16.
doi: 10.21273/HORTSCI10668- 16
[4] HAGASSOU D, FRANCIA E, RONGA D, BUTI M. Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Scientia Horticulturae, 2019, 249: 49-58. doi: 10.1093/jxb/erq128.
doi: 10.1093/jxb/erq128
[5] YU X M, WANG J Z, NIE P X, XUE X M, WANG G P, AN M. Control efficacy of Ca-containing foliar fertilizers on bitter pit in bagged ‘Fuji’ apple and effects on the Ca and N contents of apple fruits and leaves. Journal of the Science of Food and Agriculture, 2018, 98(14): 5435-5443. doi: 10.1002/jsfa.9087.
doi: 10.1002/jsfa.9087
[6] KOYAMA R, SANADA M, ITOH H, KANECHI M, INAGAKI N, UNO Y. In vitro evaluation of tipburn resistance in lettuce (Lactuca sativa L). Plant Cell, Tissue and Organ Culture, 2012, 108(2): 221-227. doi: 10.1007/s11240-011-0033-5.
doi: 10.1007/s11240-011-0033-5
[7] JENNI S, TRUCO M J, MICHELMORE R W. Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 2013, 126(12): 3065-3079. doi: 10.1007/s00122-013-2193-7.
doi: 10.1007/s00122-013- 2193-7
[8] MACIAS-GONZÁLEZ M, TRUCO M J, BERTIER L D, JENNI S, SIMKO I, HAYES R J, MICHELMORE R W. Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 2019, 132(8): 2209-2222. doi: 10.1007/s00122-019-03349-6.
doi: 10.1007/s00122-019-03349-6
[9] KURONUMA T, ANDO M, WATANABE H. Tipburn incidence and Ca acquisition and distribution in lisianthus (Eustoma grandiflorum (raf.) shinn.) cultivars under different Ca concentrations in nutrient solution. Agronomy, 2020, 10(2): 216. doi: 10.3390/agronomy10020216.
doi: 10.3390/agronomy10020216
[10] DE BANG T C, HUSTED S, LAURSEN K H, PERSSON D P, SCHJOERRING J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. The New Phytologist, 2021, 229(5): 2446-2469. doi: 10.1111/nph.17074.
doi: 10.1111/nph.17074
[11] LEE R J, BHANDARI S R, LEE G, LEE J G. Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory. Horticulture, Environment, and Biotechnology, 2019, 60(2): 207-216. doi: 10.1007/s13580-018-0118-8.
doi: 10.1007/ s13580-018-0118-8
[12] CHOI K Y, LEE Y B. Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. Journal of the Korean Society for Horticultural Science, 2003, 44(6): 805-808. doi: 10.1007/978-94-015-9371-727.
doi: 10.1007/ 978-94-015-9371-727
[13] SAMARAKOON U, PALMER J, LING P, ALTLAND J. Effects of electrical conductivity, pH, and foliar application of calcium chloride on yield and tipburn of lactuca sativa grown using the nutrient-film technique. HortScience, 2020, 55(8): 1265-1271. doi: 10.21273/HORTSCI15070-20.
doi: 10.21273/ HORTSCI15070-20
[14] INTHICHACK P, NISHIMURA Y, FUKUMOTO Y. Effect of potassium sources and rates on plant growth, mineral absorption, and the incidence of tip burn in cabbage, celery, and lettuce. Horticulture, Environment, and Biotechnology, 2012, 53(2): 135-142. doi: 10.1007/s13580-012-0126-z.
doi: 10.1007/s13580-012-0126-z
[15] NUKAYA A, GOTO K, JANG H, KANO A, OHKAWA K. Effect of NH4-N level in the nutrient solution on the incidence of blossom-end rot and gold specks on tomato fruit grown in rockwool. Acta Horticulturae, 1995, 401: 381-388. doi: 10.17660/actahortic.1995.401.46.
doi: 10.17660/actahortic.1995.401. 46
[16] XU J, GUO Z X, JIANG X C, AHAMMED G J, ZHOU Y H. Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 2021, 7(5): 367-379. doi: 10.1016/j.hpj.2021.01.005.
doi: 10.1016/j.hpj. 2021.01.005
[17] 李列, 仝宇欣, 李锦, 杨其长. 不同光质组合对生菜生长和能量利用效率的影响. 西北农林科技大学学报(自然科学版), 2020, 48(9): 114-120.
LI L, TONG Y X, LI J, YANG Q C. Effect of different combinations of light wavelengths on growth and energy use efficiency of lettuce. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(9): 114-120. (in Chinese)
[18] AHMED H A, TONG Y X, YANG Q C. Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. Journal of Thermal Biology, 2020, 88: 102496. doi: 10.1016/j.jtherbio.2019.102496.
doi: 10.1016/j.jtherbio.2019.102496
[19] GOTO E, TAKAKURA T. Prevention of lettuce tipburn by supplying air to inner leaves. Transactions of the American Society of Agricultural Engineers, 1992, 35(2): 641-645. doi: 10.13031/2013.28644.
doi: 10.13031/2013. 28644
[20] BORKOWSKI J, DYKI B, OSKIERA M, MACHLANSKA A, FELCZYNSKA A. The prevention of tipburn on Chinese cabbage (Brassica rapa L. var. pekinensis (Lour.) Olson) with foliar fertilizers and biostimulators. Journal of Horticultural Research, 2016, 24(1): 47-56. doi: 10.1515/johr-2016-0006.
doi: 10.1515/johr-2016-0006
[21] 泰兹, 奇格尔, 宋纯鹏, 王学路, 周云. 植物生理学. 第五版. 北京: 科学出版社, 2015: 80-81.
TAIZ L, ZEIGER E, SONG C P, WANG X L, ZHOU Y. Plant Physiology. 5th edition. Beijing: Science Press, 2015: 80-81. (in Chinese).
[22] GILLIHAM M, DAYOD M, HOCKING B J, XU B, CONN S J, KAISER B N, LEIGH R A, TYERMAN S D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. Journal of Experimental Botany, 2011, 62(7): 2233-2250. doi: 10.1093/jxb/err111.
doi: 10.1093/jxb/err111 pmid: 21511913
[23] 高丽红, 别之龙. 无土栽培学. 北京: 中国农业大学出版社, 2017.
GAO L H, BIE Z L. Soilless Culture. Beijing: China Agricultural University Press, 2017. (in Chinese)
[24] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6): 727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012
YE Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6): 727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012
[25] 王三根. 植物生理学实验教程. 北京: 科学出版社, 2017.
WANG S G. Experiment Course of Plant Physiology. Beijing: Science Press, 2017. (in Chinese)
[26] 陈德伟, 汤寓涵, 石文波, 张夏燕, 陶俊, 赵大球. 钙调控植物生长发育的进展分析. 分子植物育种, 2019, 17(11): 3593-3601.
CHEN D W, TANG Y H, SHI W B, ZHANG X Y, TAO J, ZHAO D Q. Progress in the regulation of calcium growth and development. Molecular Plant Breeding, 2019, 17(11): 3593-3601. (in Chinese)
[27] 李贺, 刘世琦, 刘中良, 冯磊, 刘景凯, 陈祥伟, 王越. 钙对大蒜生理特性及主要矿质元素吸收的影响. 中国农业科学, 2013, 46(17): 3626-3634.
LI H, LIU S Q, LIU Z L, FENG L, LIU J K, CHEN X W, WANG Y. Effects of calcium on physiological characteristics and main mineral elements absorption of garlic. Scientia Agricultura Sinica, 2013, 46(17): 3626-3634. (in Chinese)
[28] CHOI K Y, LEE Y B. Effects of relative humidity on the apparent variability in the incidence of tipburn symptom and distribution of mineral nutrients between morphologically different lettuce (Lactuca sativa L.) cultivars. Horticulture Environment and Biotechnology, 2008, 49: 20-24.
[29] 程涣. 大白菜干烧心病发生与钙运输基因和CAS基因表达分析[D]. 南京: 南京农业大学, 2015.
CHENG H. The expression analysis on Ca2+ transport and response genes under calcium deficiency condition in different resistance plants[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[30] MONTANARO G, DICHIO B, XILOYANNIS C. Significance of fruit transpiration on calcium nutrition in developing apricot fruit. Journal of Plant Nutrition and Soil Science, 2010, 173(4): 618-622. doi: 10.1002/jpln.200900376.
doi: 10.1002/jpln.200900376
[31] 韩路, 王海珍, 徐雅丽, 牛建龙. 灰胡杨蒸腾速率对气孔导度和水汽压差的响应. 干旱区资源与环境, 2016, 30(8): 193-197.
HAN L, WANG H Z, XU Y L, NIU J L. Responses of transpiration rate of Populus pruinosa to stomatal conductance and vapor pressure deficient. Journal of Arid Land Resources and Environment, 2016, 30(8): 193-197. (in Chinese)
[32] GRANTZ D A. Plant response to atmospheric humidity. Plant, Cell and Environment, 1990, 13(7): 667-679. doi: 10.1111/j.1365-3040.1990.tb01082.x.
doi: 10.1111/j.1365-3040. 1990.tb01082.x
[33] CARINS MURPHY M R, JORDAN G J, BRODRIBB T J. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell & Environment, 2014, 37(1): 124-131. doi: 10.1111/pce.12136.
doi: 10.1111/pce.12136
[34] HASSIOTOU F, RENTON M, LUDWIG M, EVANS J R, VENEKLAAS E J. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? Journal of Experimental Botany, 2010, 61(11): 3015-3028. doi: 10.1093/jxb/erq128.
doi: 10.1093/jxb/erq128 pmid: 20484320
[35] 陈晓丽, 杨其长, 张馨, 马太光, 郭文忠, 薛绪掌. LED绿光补光模式对生菜生长及品质的影响. 中国农业科学, 2017, 50(21): 4170-4177.
CHEN X L, YANG Q C, ZHANG X, MA T G, GUO W Z, XUE X Z. Effects of green LED light on the growth and quality of lettuce. Scientia Agricultura Sinica, 2017, 50(21): 4170-4177. (in Chinese)
[36] LEE S K, KADER A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 2000, 20(3): 207-220.
doi: 10.1016/S0925-5214(00)00133-2
[37] AHNEN R T, JONNALAGADDA S S, SLAVIN J L. Role of plant protein in nutrition, wellness, and health. Nutrition Reviews, 2019, 77(11): 735-747. doi: 10.1093/nutrit/nuz028.
doi: 10.1093/nutrit/nuz028 pmid: 31322670
[38] PONGPRAYOON W, ROYTRAKUL S, PICHAYANGKURA R, CHADCHAWAN S. The role of hydrogen peroxide in chitosan- induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regulation, 2013, 70(2): 159-173. doi: 10.1007/s10725-013-9789-4.
doi: 10.1007/s10725-013- 9789-4
[39] 程智慧, 高芸, 孟焕文. 盐胁迫对番茄幼苗转化酶表达及糖代谢的影响. 西北农林科技大学学报(自然科学版), 2007, 35(1): 184-188.
CHENG Z H, GAO Y, MENG H W. Effects of salinity stress on invertase expression and carbohydrate metabolism in tomato seedling. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(1): 184-188. (in Chinese)
[1] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[2] ZHAI ShengNan,LIU AiFeng,LI FaJi,LIU Cheng,GUO Jun,HAN Ran,ZI Yan,WANG XiaoLu,LÜ YingYing,LIU JianJun. Improvement and Application of the Method for Determining Yellow Pigment Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(2): 239-247.
[3] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[4] ZHANG Yu, HOU LuLu, YAN RuiRui, XIN XiaoPing. Effects of Grazing Intensity on Plant Community Characteristics and Nutrient Quality of Herbage in a Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2550-2561.
[5] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[6] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[7] XIAO MengYing,ZHANG RuiDong,ZHANG Zhuang,XU XiaoXue,CHEN XiaoFei,ZHOU YuFei,KONG FanHua,HUANG RuiDong. Taste Quality Traits of Sorghum Landraces from Liaoning Province [J]. Scientia Agricultura Sinica, 2019, 52(4): 591-601.
[8] ZHU ChangAn,HE ZhiHao,CAI ZeLin,LIU JianFei,ZHANG Zhi. Regulation of Comprehensive Nutritional Quality of Cucumber by Water and Fertilizer Coupling with Magnesium [J]. Scientia Agricultura Sinica, 2019, 52(18): 3258-3270.
[9] SUN YanMei,ZHANG QianBing,MIAO XiaoRong,LIU JunYing,YU Lei,MA ChunHui. Effects of Phosphorus-Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Production Performance and Root Biomass of Alfalfa [J]. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242.
[10] CHEN XiaoLi, YANG QiChang, ZHANG Xin, MA TaiGuang, GUO WenZhong, XUE XuZhang. Effects of Green LED Light on the Growth and Quality of Lettuce [J]. Scientia Agricultura Sinica, 2017, 50(21): 4170-4177.
[11] CHEN Hong-Yang, FU Hua, HUANG De-Jun, ZHOU Hong-Jin. Selection of Excellent Germplasm Resources of Elymus nutans in Alpine Region [J]. Scientia Agricultura Sinica, 2013, 46(4): 841-848.
[12] WANG Yong, SONG Shang-You, FAN Ting-Lu, GAO Yu-Feng. Effects of Film Mulching and Different Ratios of Base Nitrogen to Dressing on Yield and Key Quality of Spring Maize in Dryland of the Loess Plateau [J]. Scientia Agricultura Sinica, 2012, 45(3): 460-`470.
[13] ZHANG Xue-Jie, YE Zhi-Hua. Effects of Hydrostatic High Pressure and Temperature on the Micro- Organisms of Fresh-Cut Lettuce and During Its Shelf Life [J]. Scientia Agricultura Sinica, 2012, 45(22): 4660-4667.
[14] WU Cai-E, LI Ting-Ting, FAN Gong-Jian, CHEN Rong, WU Hai-Xia. Effect of Different Preservatives on Post-Harvest Physiological and Storage Quality in Ginkgo biloba Seeds [J]. Scientia Agricultura Sinica, 2012, 45(18): 3832-3840.
[15] ,,,. Isolation and Characterization of Mutants with High Inorganic Phosphorus in Seeds of Soybean [J]. Scientia Agricultura Sinica, 2005, 38(11): 2355-2359 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!