Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1756-1772.doi: 10.3864/j.issn.0578-1752.2020.09.006

• SPECIAL FOCUS: APPLICATIONS OF RESTRICTED TWO-STAGE MULTI-LOCUS GENOME-WIDE ASSOCIATION ANALYSIS • Previous Articles     Next Articles

A Comparative Study on Linkage and Association QTL Mapping for Seed Isoflavone Contents in a Recombinant Inbred Line Population of Soybean

ZaiDong LIU,Shan MENG,JianBo HE(),GuangNan XING,WuBin WANG,TuanJie ZHAO,JunYi GAI()   

  1. Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture/State Key Laboratory for Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095
  • Received:2019-09-09 Accepted:2020-01-02 Online:2020-05-01 Published:2020-05-13
  • Contact: JianBo HE,JunYi GAI E-mail:hjbxyz@gmail.com;sri@njau.edu.cn

Abstract:

【Objective】Isoflavones are a group of phenolic secondary metabolites which are relatively abundant in soybean and some other legumes, and are important for food and healthcare industry. A total of 12 kinds of components are isolated from soybean seed, and can be grouped into three categories: daidzin group, genistin group and glycitin group. To understand the complex genetic constitutions of isoflavone content in soybean, the additive and epistatic quantitative trait loci (QTLs) conferring the total isoflavone content and its component contents were detected in the present study. 【Method】The NJRSXG recombinant inbred line (RIL) population derived from Xianjin 2 and Gantai-2-2 were used in this study. Four isoflavone content traits, i.e. the total seed isoflavone content (SIFC), the total daidzin group content (TDC), the total genistin group content (TGC) and the total glycitin group content (TGLC) were tested in five environments. The mixed model composite interval mapping (MCIM) and restricted two-stage multi-locus genome-wide association analysis (RTM-GWAS) were used for QTL detection. 【Result】There was a large difference in isoflavone content between the two parental lines of NJRSXG population, and transgressive segregations were observed in NJRSXG population while the transgressive trend in low isoflavone content direction were stronger than that in high isoflavone content direction. A total of 19 additive QTLs and 16 pairs of epistatic QTLs for the four isoflavone traits on 15 chromosomes were detected by MCIM. Three novel additive QTLs, i.e. qSifc-14-1, qTdc-14-2 and qTgc-14-1, were detected in the same important marker interval GNE186b-Sat020 on chromosome 14, and explained the highest phenotypic variation. A total of 51, 66, 42 and 36 significantly associated markers were detected by RTM-GWAS for SIFC, TDC, TGC and TGLC, respectively. The phenotypic variation explained by these markers was ranged from 39.7% to 52.5%, covering 11 additive QTLs and 11 epistatic QTLs detected by MCIM. Furthermore, a total of 93 and 100 candidate genes were annotated in the additive and epistatic QTL regions, respectively. Gene enrichment analysis indicated that three genes located in the important marker interval GNE186b-Satt020 on chromosome 14, i.e. Glyma14g33227, Glyma14g33244 and Glyma14g33715, were related to isoflavone metabolism. 【Conclusion】A relatively thorough detection of isoflavone content QTLs was achieved by using linkage and association mapping. Compared with the linkage mapping method MCIM, the association mapping method RTM-GWAS can detect more QTLs with larger total contribution to phenotypic variation, but cannot detect epistatic QTLs as in MCIM. The QTLs detected from the two methods can be used for complementary verification from each other. A large number of QTLs/genes are involved in the seed isoflavone contents of soybean.

Key words: soybean [Glycine max (L.) Merr.], isoflavone, genetic dissection, linkage mapping, association mapping, QTL

Table 1

Frequency distribution of isoflavone content (102 μg·g-1)"

性状
Trait
组中值及频数
Midpoint and frequency
N P1 P2 平均值
Mean
变幅
Range
GCV
(%)
h2
(%)
SIFC 22 27 32 37 42 47 52 57 62 67
2 8 32 23 36 24 10 7 3 1 146 63.0 34.0 40.6 21.9—67.7 20.9 94.1
TDC 7.0 9.5 12.0 14.5 17.0 19.5 22.0 24.5 27.0 29.5
5 13 33 40 27 11 11 3 2 1 146 28.4 12.8 15.1 7.3—29.5 26.9 95.4
TGC 12.0 14.5 17.0 19.5 22.0 24.5 27.0 29.5 32.0 34.5
1 7 14 27 34 21 21 12 6 3 146 28.9 19.1 23.1 12.6—35.6 19.5 92.7
TGLC 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
9 22 30 24 23 13 10 10 2 3 146 5 .8 2.2 2.5 1.1—5.0 32.3 94.0

Fig. 1

Frequency distribution of isoflavone content (102 μg·g-1) SIFC: Total isoflavone content; TDC: Total daidzin group content; TGC: Total genistin group content; TGLC: Total glycitin group content. The same as below"

Table 2

The correlation coefficients for isoflavone content traits"

性状Trait SIFC TDC TGC
TDC 0.95**
TGC 0.97** 0.87**
TGLC 0.39** 0.26** 0.32**

Table 3

The genetic dissection of isoflavone content architecture"

性状
Trait
基因型变异 h2 Genotype variation (%) 基因型×环境变异 h2 Genotype×Env. variation (%)
总计Total Add.QTL Epi.QTL 总计Total Add.QTL×Env. Epi.QTL×Env.
SIFC 94.1 25.8 (4) 1.0 (1) 3.9 0.5 0.1
TDC 95.4 23.7 (5) 12.0 (6) 3.1 0.6 0.7
TGC 92.7 27.3 (6) 5.4 (4) 5.0 1.4 0.8
TGLC 94.0 15.9 (4) 15.0 (5) 3.3 0.8 0.9

Table 4

QTLs detected from MCIM for isoflavone content"

性状
Trait
QTL 连锁群
Group
位置
Position(cM)
标记区间
Marker interval
区间长度
Interval length (cM)
h2Add
(%)
互作QTL
Epistatic QTL
h2Epi
(%)
参考文献
Reference
SIFC qSifc-03-1 3 32.4 Satt521—GNE324 11.1 4.2 [11,14]
qSifc-10-1 10 33.6 GNE061—GNB130 4.0 qSifc-17-1 1.0
qSifc-14-1 14 13.9 GNE186b—Satt020 2.9 10.6 [15]
qSifc-17-1 17 20.4 Sat_022—Satt186 10.2 qSifc-10-1 1.0 [11]
qSifc-18-1 18 1.4 Sat_210—Sat_168 1.1 4.4 [41]
qSifc-19-1 19 38.1 Satt481—GNE091 0.1 6.6 [13]
TDC qTdc-01-1 1-1 9.1 Sat_353—Satt532b 3.4 qTdc-10-1 1.3
qTdc-02-1 2 57.1 BF070293—Satt634 0.9 qTdc-02-2 2.7
qTdc-02-2 2 23.8 Satt282—Satt124c 18.2 qTdc-02-1 2.7
qTdc-03-1 3 67.3 Satt584—GNE333 2.2 qTdc-10-2 3.4
qTdc-03-2 3 20.1 Satt339—Satt660 1.3 3.1
qTdc-08-1 8-2 2.2 Satt089—Satt455b 0.6 3.8
qTdc-08-2 8-2 82.3 Satt409—GNE376 10.3 2.3 [18]
qTdc-10-1 10 22.1 Satt153—Satt188 6.3 qTdc-01-1 1.3
qTdc-10-2 10 1.8 GNB134—Sat_282 1.2 qTdc-03-1 3.4
qTdc-10-3 10 29.9 GNE262—GNE057 0.9 qTdc-17-1 1.2
qTdc-12-1 12 17.2 GNE229—Satt192 9.3 qTdc-16-1 0.5 [18,21-22]
qTdc-14-1 14 0.0 Satt304—Sat_191a 3.4 qTdc-15-1 3.3
qTdc-14-2 14 13.9 GNE186b—Satt020 2.9 8.7
qTdc-15-1 15-2 0.0 Satt651—Satt691 20.2 qTdc-14-1 3.3 [15]
qTdc-16-1 16 52.1 Sat_151—Satt529 0.2 qTdc-12-1 0.5 [22]
qTdc-17-1 17 99.8 Satt002—GNE158 12.5 qTdc-10-3 1.2
qTdc-18-1 18 1.0 Satt038—Sat_210 1.4 5.8
TGC qTgc-02-1 2 2.0 GNE278—Satt141 9.4 qTgc-19-3 3.3
qTgc-03-1 3 31.4 Satt521—GNE324 11.1 4.1
qTgc-03-2 3 5.4 Sat_306—Sat_239 3.9 qTgc-08-1 0.2
qTgc-08-1 8-1 3.4 Satt177a—Sat_406 12.5 qTgc-03-2 0.2 [14-15]
qTgc-10-1 10 2.8 GNB134—Sat_282 1.2 qTgc-19-2 1.1
qTgc-10-2 10 33.6 GNE061—GNB130 4.0 qTgc-17-1 0.8
qTgc-13-1 13 21.4 GNB007—Satt362 4.3 2.5
qTgc-14-1 14 13.9 GNE186b—Satt020 2.9 10.3
qTgc-17-1 17 23.4 Sat_022—Satt186 10.2 qTgc-10-2 0.8 [12-13]
qTgc-18-1 18 19.4 GNE001b—Satt324 21.4 3.9
qTgc-19-1 19 58.5 Satt232—Satt681 8.4 0.2
qTgc-19-2 19 48.1 GNE091—GNE397b 14.7 qTgc-10-1 1.1
qTgc-19-3 19 38.1 Satt481—GNE091 0.1 6.3 qTgc-02-1 3.3 [13,21-22]
TGLC qTglc-01-1 1-1 9.1 Sat_353—Satt532b 3.4 qTglc-14-1 3.6 [41]
qTglc-02-1 2 14.0 Satt483—Satt579 0.2 qTglc-14-2 2.4
qTglc-05-1 5 47.2 Satt619a—GNE055 1.7 qTglc-12-1 3.6
qTglc-05-2 5 12.6 GNE041—Satt174 3.8 qTglc-12-2 1.2 [21]
qTglc-06-1 6 78.8 Satt079—GNB215a 13.0 5.3 [15,21]
qTglc-08-1 8-2 4.8 GNE072b—Satt525 3.9 4.5 [13,41]
qTglc-10-1 10 50.9 Satt259—Satt455a 10.9 2.9 qTglc-17-1 4.6
qTglc-12-1 12 15.2 GNE229—Satt192 9.3 qTglc-05-1 3.6 [14]
qTglc-12-2 12 40.8 GNE351—Satt279 15.1 qTglc-05-2 1.2 [14]
qTglc-14-1 14 3.4 Sat_191a—Sat_355 0.6 qTglc-01-1 3.6
qTglc-14-2 14 11.3 Satt556—GNE421 2.0 qTglc-02-1 2.4
qTglc-17-1 17 80.8 Sat_220—Satt397 7.1 3.2 qTglc-10-1 4.6 [15-16,22]

Fig. 2

Additive and epistatic QTLs for the isoflavone content Circle represent the major additive QTL region and triangle represents the major epistatic QTL region. The straight line linking two QTLs is defined as the epistatic effect"

Fig. 3

Association mapping of isoflavone content"

Table 5

Marker/QTL detected for isoflavone component traits"

性状
Trait
标记/QTL
Marker/QTL
连锁群
Group
位置
Position (cM)
Model a
-lgP
QTL QTL×Env. b
-lgP R2 (%) -lgP R2 (%)
SIFC GNE332 2 78.5 5.5 21.8 1.3 - -
Sat_239 3 6.3 13.3 31.4 2.0 - -
Satt339 3 20.1 2.8 32.0 2.0 1.9 0.2
Satt521 3 29.4 5.2 21.8 1.3 3.5 0.3
Satt718 4 13.2 3.4 19.1 1.1 - -
Satt225 5 19.1 6.4 26.3 1.6 - -
GNE397a 6 5.2 8.5 27.3 1.7 2.9 0.2
Sat_418b 6 47.1 4.1 17.3 1.0 - -
GNE072b 8-2 4.8 9.8 29.0 1.8 2.4 0.2
Satt460 10 13.8 5.0 31.0 1.9 3.1 0.3
Satt549b* 10 29.7 7.0 15.3 0.9 5.4 0.4
GNE262* 10 29.9 3.4 3.7 0.2 - -
GNE057* 10 30.9 6.4 3.0 0.2 - -
GNE187* 10 32.6 4.8 18.4 1.1 - -
Satt420a* 10 33.1 3.7 8.6 0.5 - -
Satt192 12 20.5 3.5 22.2 1.3 - -
Satt030 13 91.6 23.3 89.2 6.3 - -
Satt556 14 10.3 3.6 29.1 1.8 - -
Sat_168 18 2.5 4.5 15.5 0.9 - -
Sat_141 18 5.7 6.0 6.2 0.3 - -
GNE397b 19 52.8 5.8 17.7 1.1 - -
LC QTL 15 27.4
SC QTL 30 12.3
总Total 51 (3/4;1/2) 45 39.7 21 4.7
TDC GNE498 1-1 19.6 8.8 35.4 1.8 - -
Satt506 2 10.4 11.1 67.0 3.7 - -
Sat_424b 3 18.6 3.9 14.4 0.7 5.2 0.3
Satt660 3 21.4 6.0 15.5 0.7 - -
GNE397a 6 5.2 11.4 34.3 1.8 4.6 0.3
Satt684 7 67.1 9.2 28.8 1.5 2.9 0.2
Sat_199a 8-2 0.0 3.2 4.1 0.2 - -
Satt333 8-2 40.2 3.3 23.0 1.1 - -
Satt188* 10 28.4 3.9 3.0 0.1 - -
Satt549b* 10 29.7 5.9 13.6 0.7 2.4 0.2
GNE001a 11 20.6 11.6 34.2 1.8 2.7 0.2
Satt192* 12 20.5 8.7 18.1 0.9 3.4 0.2
Satt146 13 88.7 8.8 34.6 1.8 - -
Satt653 13 90.2 4.2 22.3 1.1 - -
Sat_191a* 14 3.4 4.1 3.0 0.1 - -
GNE186b 14 13.9 44.6 134.5 8.6 5.1 0.3
GNB191* 16 56.7 7.9 34.7 1.8 - -
Satt669 17 85.3 9.9 33.8 1.7 - -
Sat_210 18 1.4 3.1 9.4 0.4 - -
Sat_141 18 5.7 2.7 4.0 0.2 - -
Sat_421 20 21.9 5.0 23.0 1.1 - -
LC QTL 12 27.7
SC QTL 48 19.3
性状
Trait
标记/QTL
Marker/QTL
连锁群
Group
位置
Position (cM)
Model a
-lgP
QTL QTL×Env. b
-lgP R2 (%) -lgP R2 (%)
总Total 66 (4/5;4/12) 60 47.0 30 5.5
TGC GNE332 2 78.5 4.6 20.1 1.4 - -
Satt339 3 20.1 3.6 17.5 1.2 - -
Satt521 3 29.4 3.9 34.5 2.4 - -
GMAC7L 6 16.6 9.1 20.1 1.4 - -
Sat_148 7 37.6 6.8 31.1 2.2 3.1 0.3
GNE072b 8-2 4.8 8.5 15.6 1.0 5.1 0.4
Sat_193* 10 6.4 3.2 7.6 0.5 - -
Satt460 10 13.8 5.5 27.7 1.9 3.0 0.3
Satt549b* 10 29.7 4.6 12.2 0.8 2.0 0.2
Satt442 12 28.0 4.3 26.4 1.8 2.0 0.2
GNB125 13 11.1 5.4 15.6 1.0 - -
Satt030 13 91.6 13.1 68.6 5.2 - -
Satt020 14 16.7 2.9 39.2 2.8 2.0 0.2
Sat_210 18 1.4 4.7 17.0 1.1 - -
LC QTL 12 23.5
SC QTL 28 11.4
总Total 42 (2/6; 2/8) 40 34.9 18 4.8
TGLC Satt147 1-2 18.5 7.7 11.1 1.1 2.8 0.4
Sat_306 3 2.4 8.0 15.9 1.6 - -
Satt354 5 26.1 9.4 16.1 1.6 3.1 0.4
GNE055* 5 47.8 4.6 9.6 1.0 - -
GNB215a 6 79.8 21.0 46.4 5.0 2.3 0.3
GNB022b 7 0.0 10.4 22.3 2.3 - -
Sat_140 8-2 1.6 14.7 33.4 3.5 - -
Satt576 10 16.7 13.3 30.4 3.1 - -
Satt259* 10 50.9 13.5 29.3 3.0 - -
Satt332 11 5.1 5.0 11.6 1.1 - -
GNB177 13 8.3 8.2 16.9 1.7 - -
Satt304* 14 0.0 7.8 15.7 1.5 - -
Satt651 15-2 0.0 6.7 13.9 1.4 - -
Satt669* 17 85.3 10.2 21.0 2.1 - -
Sat_143 18 73.6 7.8 14.6 1.4 - -
GNE493 18 108.5 4.9 10.9 1.0 - -
LC QTL 15 31.3
SC QTL 21 12.0
总Total 36 (2/4;4/10) 36 43.3 7 2.3

Fig. 4

Biological process distribution of candidate genes for soybean seed isoflavone content"

[1] GRAHAM T, GRAHAM M, SUBRAMANIAN S, YU O . RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiology, 2007,144:728-740.
doi: 10.1104/pp.107.097865 pmid: 17416637
[2] GRIFFITH A P, COLLISON M W . Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography-mass spectrometry. Journal of Chromatography A, 2001,913:397-413.
doi: 10.1016/s0021-9673(00)01077-3 pmid: 11355838
[3] MUNRO I, HARWOOD M, HLYWKA J, STEPHEN A, DOULL J, FLAMM W, ADLERCREUTZ H . Soy isoflavones: A safety review. Nutrition Reviews, 2003,61:1-33.
doi: 10.1301/nr.2003.janr.1-33 pmid: 12638461
[4] TANAKA M, FUJIMOTO K, CHIHARA Y, TORIMOTO K, YONEDA T, TANAKA N, HIRAYAMA A, MIYANAGA N, AKAZA H, HIRAO Y . Isoflavone supplements stimulated the production of serum equol and decreased the serum dihydrotestosterone levels in healthy male volunteers. Prostate Cancer and Prostatic Diseases, 2009,12:247-252.
doi: 10.1038/pcan.2009.10 pmid: 19597532
[5] 王春娥, 赵团结, 盖钧镒 . 中国大豆资源异黄酮含量及其组分的遗传变异和演化特征. 中国农业科学, 2010,43(19):3919-3929.
WANG C E, ZHAO T J, GAI J Y . Genetic variability and evolutionary peculiarity of isoflavone content and its components in soybean germplasm from China. Scientia Agricultura Sinica, 2010,43(19):3919-3929. (in Chinese)
[6] WANG H, MURPHY P A . Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 1994,42:1666-1673.
doi: 10.1021/jf00044a016
[7] REINLI K, BLOCK G . Phytoestrogen content of foods: A compendium of literature values. Nutrition and Cancer, 1996,26:123-148.
doi: 10.1080/01635589609514470 pmid: 8875551
[8] SCHRADER C, ERNST I M, SINNECKER H, SOUKUP S, KULLING S E, RIMBACH G . Genistein as a potential inducer of the anti-atherogenic enzyme paraoxonase-1: Studies in cultured hepatocytes in vitro and in rat liver in vivo. Journal of Cellular and Molecular Medicine, 2012,16(10):2331-2341.
doi: 10.1111/j.1582-4934.2012.01542.x pmid: 22304296
[9] WINZER M, RAUNER M, PIETSCHMANN P . Glycitein decreases the generation of murine osteoclasts and increases apoptosis. Wiener Medizinische Wochenschrift, 2010,160(17/18):446-451.
doi: 10.1007/s10354-010-0811-4 pmid: 20714813
[10] YOSHIDA H, TERAMOTO T, IKEDA K, YAMORI Y . Glycitein effect on suppressing the proliferation and stimulating the differentiation of osteoblastic MC3T3-E1 cells. Bioscience Biotechnology and Biochemistry, 2001,5:1211-1213.
doi: 10.1271/bbb.65.1211 pmid: 11440142
[11] LIANG H Z, YU Y L, WANG S F, LIAN Y, WANG T F, WEI Y L, GONG P T, LIU X Y, FANG X J, ZHANG M C . QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China, 2010,9:1108-1116.
doi: 10.1016/S1671-2927(09)60197-8
[12] WANG Y, HAN Y, TENG W, ZHAO X, LI Y, WU L, LI D, LI W . Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics, 2014,15:680.
doi: 10.1186/1471-2164-15-680 pmid: 25124843
[13] WANG Y, HAN Y, ZHAO X, LI Y, TENG W, LI D, ZHAN Y, LI W . Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean. PLoS ONE, 2015,10:e0118447.
doi: 10.1371/journal.pone.0118447 pmid: 25738957
[14] YANG K, MOON J, JEONG N, CHUN H, KANG S, BACK K, JEONG S . Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genomics, 2011,33:685-692.
doi: 10.1007/s13258-011-0043-z
[15] YOSHIKAWA T, OKUMOTO Y, OGATA D, SAYAMA T, TERAISHI M, TERAI M, TODA T, YAMADA K, YAGASAKI K, YAMADA N, TSUKIYAMA T, YAMADA T, TANISAKA T . Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breeding Science, 2010,60:243-254.
doi: 10.1270/jsbbs.60.243
[16] ZHANG H J, LI J W, LIU Y J, JIANG W Z, DU X L, LI L, LI X W, SU L T, WANG Q Y, WANG Y . Quantitative trait loci analysis of individual and total isoflavone contents in soybean seeds. Journal of Genetics, 2014,93:331-338.
doi: 10.1007/s12041-014-0371-2 pmid: 25189227
[17] AKOND M, LIU S, KANTARTZI S K, KHALID M, NACER B, LIGHTFOOT D A, YUAN J Z, WANG D C, ANDERSON J, KASSEM M A . A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population identified QTL for seed isoflavone contents in soybean. Plant Breeding, 2015,134(5):580-588.
doi: 10.1111/pbr.12298
[18] PRIMOMO V S, POYSA V, ABLETT G R, JACKSON C J, GIJZEN M, RAJCAN I . Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Science, 2005,45:2454-2464.
doi: 10.2135/cropsci2004.0672
[19] ZENG G, LI D, HAN Y, TENG W, WANG J, QIU L, LI W . Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theoretical and Applied Genetics, 2009,118:1455-1463.
doi: 10.1007/s00122-009-0994-5
[20] GUTIERREZ-GONZALEZ J J, VUONG T D, ZHONG R, YU O, LEE J D, SHANNON G, ELLERSIECK M, NGUYEN H T, SLEPER D A . Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theoretical and Applied Genetics, 2011,123:1375-1385.
doi: 10.1007/s00122-011-1673-x
[21] GUTIERREZ-GONZALEZ J J, WU X, GILLMAN J D, LEE J D, ZHONG R, YU O, SHANNON G, ELLERSIECK M, NGUYEN H T, SLEPER D A . Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology, 2010,10:105.
doi: 10.1186/1471-2229-10-105 pmid: 20540761
[22] GUTIERREZ-GONZALEZ J J, WU X, ZHANG J, LEE J D, ELLERSIECK M, SHANNON J G, YU O, NGUYEN H T, SLEPER D A . Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theoretical and Applied Genetics, 2009,119:1069-1083.
doi: 10.1007/s00122-009-1109-z
[23] LI X H, KAMALA S, TIAN R, HUI D, LI W L, KONG Y B, ZHANG C Y . Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean. Molecular Breeding, 2018,38(1):8.
doi: 10.1007/s11032-017-0768-8
[24] PEI R, ZHANG J, TIAN L, ZHANG S G, HAN F X, YANG S R, WANG L Z, LI B, SUN J M . Identification of novel QTL associated with soybean isoflavone content. The Crop Journal, 2018,6(3):244-252.
doi: 10.1016/j.cj.2017.10.004
[25] CAI Z, CHENG Y, MA Z, LIU X G, MA Q B, XIA Q J, ZHANG G Y, MU Y H, NIAN H . Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theoretical and Applied Genetics, 2018,131(3):555-568.
doi: 10.1007/s00122-017-3018-x pmid: 29159422
[26] 朱莹, 褚姗姗, 张培培, 程浩, 喻德跃, 王娇 . R2R3-MYB转录因子GmMYB184调节大豆异黄酮合成. 作物学报, 2018,44(2):185-196.
doi: 10.3724/SP.J.1006.2018.00185
ZHU Y, CHU S S, ZHANG P P, CHENG H, YU D Y, WANG J . An R2R3-MYB transcription factor GmMYB184 regulates soybean isoflavone synthesis. Acta Agronomica Sinica, 2018,44(2):185-196. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00185
[27] CHU S S, WANG J, ZHU Y, LIU S L, ZHOU X Q, ZHANG H, WANG C, TIAN Z, CHENG H, YU D Y . An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genetics, 2017,13(5):e1006770.
doi: 10.1371/journal.pgen.1006770 pmid: 28489859
[28] VADIVEL A, KUMARAN A, KAGALE S, DHAUBHADEL S . GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean. Frontiers in Plant Science, 2019,10:562.
doi: 10.3389/fpls.2019.00562 pmid: 31130975
[29] YANG J, ZHU J, WILLIAMS R W . Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007,23:1527-1536.
doi: 10.1093/bioinformatics/btm143 pmid: 17459962
[30] PAN L Y, HE J B, ZHAO T J, XING G N, WANG Y F, YU D Y, CHEN S Y, GAI J Y . Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theoretical and Applied Genetics, 2018,131:2581-2599.
doi: 10.1007/s00122-018-3174-7 pmid: 30167759
[31] HE J B, MENG S, TZHAO T J, XING G N, YANG S P, LI Y, GUAN R Z, LU J J, WANG Y F, XIA Q J, YANG B, GAI J Y . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 2017,130:2327-2343.
doi: 10.1007/s00122-017-2962-9 pmid: 28828506
[32] 贺建波, 刘方东, 邢光南, 王吴彬, 赵团结, 管荣展, 盖钧镒 . 限制性两阶段多位点全基因组关联分析方法的特点与计算程序. 作物学报, 2018,44(9):1274-1289.
doi: 10.3724/SP.J.1006.2018.01274
HE J B, LIU F D, XING G N, WANG W B, ZHAO T J, GUAN R Z, GAI J Y . Characteristics and calculation procedures of a restrictive two-stage multi-site genome-wide association analysis method. Acta Agronomica Sinica, 2018,44(9):1274-1289. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01274
[33] 王春娥, 赵团结, 盖钧镒 . 大豆异黄酮组分HPLC快速分析技术及其在豆腐加工中的应用. 作物学报, 2010,36(12):2062-2072.
doi: 10.3724/SP.J.1006.2010.02062
WANG C E, ZHAO T J, GAI J Y . Establishment of a rapid HPLC method for quantifying isoflavone components and its application in tofu processing. Acta Agronomica Sinica, 2010,36(12):2062-2072. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02062
[34] 王宇峰 . 大豆基因组SSR分布特征和高密度遗传图谱的构建、整合与应用[D]. 南京: 南京农业大学, 2009.
WANG Y F . Genomic characterization of simple sequence repeats and establishment, integration and application of high density genetic linkage map in soybean[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[35] STAM P . Construction of integrated genetic linkage maps by means of a new computer package: Join Map. The Plant Journal, 1993,3(5):739-744.
doi: 10.1111/j.1365-313X.1993.00739.x
[36] SONG Q J, MAREK L F, SHOEMAKER R C, LARK K G, CONCIBIDO V C, DELANNAY X, SPECHT J E, CREGAN P B . A new integrated genetic linkage map of soybean. Theoretical and Applied Genetics, 2004,109:122-128.
doi: 10.1007/s00122-004-1602-3
[37] SAS Institute Inc. SAS/STAT User's Guide. Cary, NC: SAS Institute Inc, 2017.
[38] CHANTRET N, MINGEOT D, SOURDILLE P, BERNARD M, JACQUEMIN J M, DOUSSINAULT G . A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theoretical and Applied Genetics, 2001,103:962-971.
doi: 10.1007/s001220100645
[39] SYMONDS V V, GODOY A V, ALCONADA T, BOTTO J F, JUENGER T E, CASAL J J, LLOYD A M . Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics, 2005,169:1649-1658.
doi: 10.1534/genetics.104.031948 pmid: 15654092
[40] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒 . 大豆抗筛豆龟蝽Megacota cribraria(Fabricius)的QTL分析. 作物学报, 2008,34(3):361-368.
doi: 10.3724/SP.J.1006.2008.00361
XING G N, ZHOU B, ZHAO T J, YU D Y, XING H, CHEN S Y, GAI J Y . Mapping QTLs of resistance to Megacota cribraria (Fabricius) in soybean. Acta Agronomica Sinica, 2008,34(3):361-368. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00361
[41] KASSEM M A, SHULTZ J, MEKSEM K, CHO Y, WOOD A J, IQBAL M J, LIGHTFOOT D A . An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theoretical and Applied Genetics, 2006,113:1015-1026.
doi: 10.1007/s00122-006-0361-8
[42] 盖钧镒, 章元明, 王健康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003.
GAI J Y, ZHANG Y M, WANG J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. (in Chinese)
[43] FAMOSO A N, ZHAO K, CLARK R T, TUNG C W, WRIGHT M H, BUSTAMANTE C, KOCHIAN L V, MCCOUCH S R . Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 2011,7:e1002221.
doi: 10.1371/journal.pgen.1002221 pmid: 21829395
[44] KRILL A M, KIRST M, KOCHIAN L V, BUCKLER E S, HOEKENGA O A . Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 2010,5:e9958.
doi: 10.1371/journal.pone.0009958 pmid: 20376361
[45] 苏成付, 赵团结, 盖钧镒 . 不同统计遗传模型QTL定位方法应用效果的模拟比较. 作物学报, 2010,36(7):1100-1107.
doi: 10.3724/SP.J.1006.2010.01100
SU C F, ZHAO T J, GAI J Y . Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agronomica Sinica, 2010,36(7):1100-1107. (in Chinese)
doi: 10.3724/SP.J.1006.2010.01100
[46] YU O, MCGONIGLE B . Metabolic engineering of isoflavone biosynthesis. Advances in Agronomy, 2005,86:147-190.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[7] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[8] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[14] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[15] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!