Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 3867-3877.doi: 10.3864/j.issn.0578-1752.2020.19.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress

ZHANG ChunXiao1(),LI ShuFang1(),LIU XuYang2(),LIU Jie1,LIU WenPing1,LIU XueYan1,LI ChunHui2,WANG TianYu2(),LI XiaoHui1()   

  1. 1Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin
    2Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-11-03 Accepted:2020-04-08 Online:2020-10-01 Published:2020-10-19
  • Contact: TianYu WANG,XiaoHui LI E-mail:chunxiao1000@126.com;xlsf@163.com;1021247118@qq.com;wangtianyu@caas.cn;lixiaohui2002lix@163.com

Abstract:

【Objective】The main maize-producing areas in China are mostly arid and semi-arid areas, in which drought often occurred after sowing. The sufficient germination rate is key precondition for maize production. However, the decreasing germination rate caused by drought threatens the production of maize. Thus, it is of great importance to discover the drought tolerant maize varieties at germination stage, which relies on the establishment of evaluation system for drought tolerant maize at germination stage. 【Method】In the present study, 13 soil water content treatments, which represented the maize germination rates from 0 to 100%, were set using field soil and the germination rates of five representative maize hybrids were analyzed. The 50% germination rate soil water content (GW50) was determined based on the Logistic formula of germination rate and soil water content in five representative maize hybrids. Subsequently, 32 maize hybrids were treated with GW50 as drought condition. The relationships between germination rates of 32 hybrids and other 10 traits were investigated using correlation, cluster and principal component analyses. 【Result】The fitting degree (R2) of Logistic regression between germination rate of five representative maize hybrids and thirteen soil water contents ranged from 0.978 to 0.992. The GW50 of five representative hybrids, which were estimated by the Logistic regression formulas, ranged from 18.2%-18.7%, with mean of 18.5%. Under drought treatments of 18.5% soil water content, the germination rates of 32 hybrids showed significant correlation with germ fresh weight, radical fresh weight and storage material transport rate, but the correlation coefficients were all lower than 0.5, which was 0.36, 0.40 and 0.38, respectively. While the germination rates under GW50 showed no significant correlation with other seven traits such as radicle number. Besides, cluster analysis based on 10 other traits divided 32 hybrids to three clusters, each containing thirteen, ten and nine hybrids, respectively. However, the mean germination rates of the three clusters showed no significant difference. PCA analysis revealed germination rate, germ dry weight and storage material transport rate had highest eigenvalue in first principal component, which could explain 36.3% of the total variance. These three traits could be considered as key targets for drought tolerance evaluation at germination stage. Using the soil drought method and key traits for evaluation of drought tolerance at germination stage, four, twenty-two and seven of the thirty-four hybrids were identified as drought tolerant, intermedium and drought susceptible types, respectively. 【Conclusion】In this study, soil drought treatment method of GW50 was established for maize drought tolerance evaluation at germination stage. The germination rate, germ dry weight and storage material transport rate were identified as the key traits for high-throughput drought tolerance evaluation. Thus, an evaluation system for drought tolerance at maize germination stage was established.

Key words: maize (Zea mays L.), germination stage, soil drought, drought tolerance, evaluation system

Table 1

The 32 commercial maize hybrids"

序号 No. 品种名称 Hybrids 序号 No. 品种名称 Hybrids 序号 No. 品种名称 Hybrids
1 郑单958 Zhengdan 958 12 吉单50 Jidan 50 23 吉农大778 Jinongda 778
2 吉农大819 Jinongda 819 13 吉单66 Jidan 66 24 吉农玉719 Jinongyu 719
3 登海605 Denghai 605 14 吉单441 Jidan 441 25 金园15 Jinyuan 15
4 吉单551 Jidan 551 15 吉单505 Jidan 505 26 鹏玉1号 Pengyu 1
5 优迪919 Youdi 919 16 吉单511 Jidan 511 27 桥玉8号 Qiaoyu 8
6 先玉335 Xianyu 335 17 吉单513 Jidan 513 28 先达203 Xianda 203
7 迪卡517 Dika 517 18 吉单53 Jidan 53 29 翔玉218 Xiangyu 218
8 迪卡159 Dika 159 19 吉单558 Jidan 558 30 翔玉998 Xiangyu 998
9 富民108 Fumin 108 20 吉单56 Jidan 56 31 东农254 Dongnong 254
10 富民985 Fumin 985 21 吉单631 Jidan 631 32 源丰009 Yuanfeng 009
11 禾田4号 Hetian 4 22 吉单96 Jidan 96

Fig. 1

The Logistic regression of maize seed germination rate under different soil water contents"

Table 2

Logistic equations of germination rate and soil water contents in five maize hybrids"

品种名称
Hybrids
回归方程
Logistic equations
拟合度
Fitting degree (R2)
50%种子萌发率时的土壤含水量
GW50 (%)
郑单958 Zhengdan 958 Y=103.048/(1+1.10×1015e-1.874X) 0.983 18.5
吉农大819 Jinongda 819 Y=107.042/(1+1.99×1012e-1.505X) 0.981 18.7
登海605 Denghai 605 Y=103.907/(1+1.04×1013e-1.642X) 0.978 18.2
吉单551 Jidan 551 Y=105.640/(1+4.28×1012e-1.554X) 0.992 18.7
优迪919 Youdi 919 Y=105.599/(1+1.11×1012e-1.485X) 0.985 18.6

Table 3

Trait variation of 32 hybrids under mean GW50 and normal water treatment"

处理
Treatments
性状
Traits
最小值
Minimum
最大值
Maximum
平均
Average
变异系数
CV
正常对照
Normal
种子发芽率GR (%) 96.00 100.00 99.44 1.28
胚芽鲜重GFW (g) 0.20 0.60 0.40 26.09
胚芽干重GDW (g) 0.02 0.06 0.04 27.55
胚芽长GL (cm) 6.74 16.76 11.98 19.19
胚根鲜重RFW (g) 0.09 0.42 0.24 40.80
胚根干重RDW (g) 0.01 0.04 0.03 28.92
胚根长RL (cm) 4.34 17.67 13.35 22.70
胚根数RN 3.05 6.45 4.48 17.53
种子鲜重SFW (g) 0.26 0.52 0.38 15.42
种子干重SDW (g) 0.13 0.28 0.19 20.36
贮藏物质转运率SMTR (%) 10.54 40.08 24.51 28.66
50%萌发率土壤含水量胁迫处理
GW50 treatment
种子发芽率GR (%) 19.00 92.00 59.88 26.75
胚芽鲜重GFW (g) 0.03 0.16 0.08 38.70
胚芽干重GDW (g) 0.00 0.03 0.01 44.61
胚芽长GL (cm) 1.13 5.10 2.67 35.36
胚根鲜重RFW (g) 0.03 0.17 0.09 38.22
胚根干重RDW (g) 0.01 0.03 0.01 35.60
胚根长RL (cm) 4.22 11.71 8.80 19.74
胚根数RN 2.60 6.00 3.84 19.70
种子鲜重SFW (g) 0.25 0.50 0.40 13.69
种子干重SDW (g) 0.18 0.32 0.25 12.87
贮藏物质转运率SMTR (%) 4.68 16.63 8.45 34.00
耐旱系数
DTC
种子发芽率GR (%) 19.79 92.00 60.17 26.60
胚芽鲜重GFW (g) 7.59 44.62 20.13 38.43
胚芽干重GDW (g) 13.91 86.85 29.18 48.08
胚芽长GL (cm) 10.89 59.34 22.82 40.00
胚根鲜重RFW (g) 21.17 84.64 39.46 34.75
胚根干重RDW (g) 23.20 105.61 50.99 32.28
胚根长RL (cm) 44.01 97.30 67.84 18.74
胚根数RN 59.77 129.51 86.26 15.00
种子鲜重SFW (g) 73.13 121.74 104.55 9.68
种子干重SDW (g) 100.03 167.96 130.07 12.11
贮藏物质转运率SMTR (%) 21.42 71.08 35.87 32.66

Fig. 2

Correlation analysis of germination rate and other traits under mean GW50 A and B represent the correlation analysis results of mean GW50 treatment and drought tolerance index, respectively. GR: Germination rate; GFW: Germ fresh weight; GDW: Germ dry weight; GL: Germ length; RFW: Radical fresh weight; RDW: Radicle dry weight; RL: Radicle length; RN: Radicle number; SFW: Seed fresh weight; SDW: Seed dry weight; SMTR: Storage material transport rate. The same as below"

Fig. 3

Clustering analysis of traits and differences of germination rates between hybrids in different clusters A and B represent the clustering results based on other 10 traits under mean GW50 and germination rates of different cluster groups, respectively; C and D represent the clustering results based on the drought tolerance index of other 10 traits and germination rates of different cluster groups, respectively"

Fig. 4

Principal component analysis of traits under mean GW50"

Table 4

The evaluation on drought tolerance of 33 hybrids at maize germination stage"

材料名称
Hybrids
发芽率
GR (%)
胚芽干重
RDW (g)
贮藏物质转运率
SMTR (%)
发芽率Z值
Z-score of GR
胚芽干重Z值
Z-score of RDW
贮藏物质转运率Z值
Z-score of SMTR
综合Z值
Mean Z-score
郑单958 Zhengdan 958 48 0.0076 5.53 -0.71 -0.55 -1.03 -0.76
吉农大819 Jinongda 819 54 0.0048 5.99 -0.37 -1.18 -0.86 -0.80
登海605 Denghai 605 48 0.0078 4.67 -0.75 -0.50 -1.33 -0.86
吉单551 Jidan 551 43 0.0061 6.40 -1.06 -0.88 -0.72 -0.89
优迪919 Youdi 919 43 0.0058 6.37 -1.06 -0.95 -0.73 -0.91
先玉335 Xianyu 335 92 0.0082 9.73 2.03 -0.41 0.45 0.69
迪卡517 Dika 517 68 0.0129 8.49 0.51 0.66 0.01 0.40
迪卡159 Dika 159 74 0.0174 13.63 0.89 1.67 1.83 1.46
富民108 Fumin 108 61 0.0141 9.46 0.07 0.92 0.36 0.45
富民985 Fumin 985 64 0.0108 12.83 0.30 0.17 1.55 0.67
禾田4号 Hetian 4 81 0.0094 7.94 1.34 -0.13 -0.17 0.34
吉单50 Jidan 50 77 0.0099 5.88 1.08 -0.01 -0.90 0.05
吉单66 Jidan 66 58 0.0087 9.26 -0.11 -0.29 0.28 -0.04
吉单441 Jidan 441 76 0.0079 7.12 1.02 -0.48 -0.46 0.02
吉单505 Jidan 505 50 0.0091 7.86 -0.62 -0.21 -0.20 -0.34
吉单511 Jidan 511 52 0.0267 16.62 -0.49 3.79 2.89 2.06
吉单513 Jidan 513 45 0.0091 6.74 -0.94 -0.21 -0.6 -0.58
吉单53 Jidan 53 19 0.0071 6.60 -2.59 -0.66 -0.65 -1.30
吉单558 Jidan 558 78 0.0156 10.33 1.15 1.26 0.66 1.02
吉单56 Jidan 56 59 0.0138 11.01 -0.05 0.85 0.90 0.56
吉单631 Jidan 631 49 0.0066 4.69 -0.68 -0.77 -1.32 -0.92
吉单96 Jidan 96 55 0.0067 9.17 -0.30 -0.75 0.25 -0.26
吉农大778 Jinongda 778 77 0.0096 7.83 1.08 -0.08 -0.21 0.26
吉农玉719 Jinongyu 719 49 0.0056 6.66 -0.68 -0.99 -0.63 -0.77
金园15 Jinyuan 15 74 0.0079 9.09 0.89 -0.48 0.23 0.21
鹏玉1号 Pengyu 1 57 0.0125 11.92 -0.18 0.57 1.23 0.54
桥玉8号 Qiaoyu 8 53 0.0098 7.05 -0.43 -0.03 -0.49 -0.32
先达203 Xianda 203 80 0.0109 9.27 1.27 0.20 0.29 0.59
翔玉218 Xiangyu 218 49 0.0086 7.91 -0.68 -0.30 -0.19 -0.39
翔玉998 Xiangyu 998 53 0.0076 5.25 -0.43 -0.54 -1.13 -0.70
东农254 Dongnong 254 86 0.0164 13.39 1.65 1.44 1.74 1.61
源丰009 Yuanfeng 009 42 0.0052 5.51 -1.13 -1.08 -1.03 -1.08
[1] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1-5.
DAI J R, E L Z. Scientific and technological innovation of maize breeding in China. Journal of Maize Sciences, 2010, 18(1): 1-5. (in Chinese)
[2] 黎裕, 王天宇, 石云素, 宋燕春. 玉米抗旱性的QTL分析研究进展和发展趋势. 干旱地区农业研究, 2004, 22(1): 32-39.
LI Y, WANG T Y, SHI Y S, SONG Y C. Current status and perspective of drought resistance QTL in maize. Agricultural Research in the Arid Areas, 2004, 22(1): 32-39. (in Chinese)
[3] 王崇桃, 李少昆. 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010, 43: 1136-1146.
WANG C T, LI S K. Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010, 43: 1136-1146. (in Chinese)
[4] 楚杰, 路海东, 薛吉全, 赵明. 玉米宽窄行深旋免耕精量播种机田间试验及效果. 农业工程学报, 2014, 14: 34-41.
CHU J, LU H D, XUE J Q, ZHAO M. Field experiment and effect of precise mechanical sowing of maize based on wide-narrow row deep rotation and no-tillage technology. Transactions of the Chinese Society of Agricultural Engineering, 2014, 14: 34-41. (in Chinese)
[5] LU Y, ZHANG S, SHAH T, XIE C, HAO Z, LI X, FARKHARI M, RIBAUT J M, CAO M, RONG T, XU Y. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19585-19590.
doi: 10.1073/pnas.1006105107 pmid: 20974948
[6] 唐怀君, 谢小清, 张磊, 孙宝成, 周芳芝, 刘成. 应用缺次灌溉和半产需水量模型鉴定玉米杂交种的抗旱性. 新疆农业科学, 2018, 55(11): 1994-2001.
TANG H J, XIE X Q, ZHANG L, SUN B C, ZHOU F Z, LIU C. Identification of drought resistance of maize hybrid by using the model of deficient irrigation and semi-yield water demand. Xinjiang Agricultural Sciences, 2018, 55(11): 1994-2001. (in Chinese)
[7] 唐怀君, 谢小清, 赵连佳, 孙宝成, 黎裕, 王天宇, 刘成. 欠量灌水方法用于玉米抗旱性鉴定和评价研究. 新疆农业科学, 2017, 54(5): 804-810.
TANG H J, XIE X Q, ZHAO L J, SUN B C, LI Y, WANG T Y, LIU C. Study on the evaluation and identification of maize drought resistance by using the method of water shortage irrigation. Xinjiang Agricultural Sciences, 2017, 54(5): 804-810. (in Chinese)
[8] MAO H, WANG H W, LIU SH X, LI Z G, YANG X H, YAN J B, LI J S, TRAN L S P, QIN F. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 2015, 6: 8326.
doi: 10.1038/ncomms9326 pmid: 26387805
[9] WANG X L, WANG H W, LIU S X, FERJANI A, LI J S, YAN J B, YANG X H, QIN F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 10: 3636.
[10] BLUM A. Genomics for drought resistance-getting down to earth. Functional Plant Biology, 2014, 41(11): 1191.
doi: 10.1071/FP14018 pmid: 32481068
[11] ZHENG J, FU J, GOU M, HUAI J, LIU Y, JIAN M, HUANG Q, GUO X, DONG Z, WANG H, WANG G. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Molecular Biology, 2010, 72(4/5): 407-421.
[12] HALL A J, VILELLA F, TRAPANI N, CHIMENTI C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Research, 1982, 5: 349-366.
doi: 10.1016/0378-4290(82)90036-3
[13] EDMEADES G O, BOLANOS J, HERNANDEZ M, BELLO S. Causes for silk delay in a lowland tropical maize population. Crop Science, 1993, 33(5): 1029.
[14] LU Y, HAO Z, XIE C, CROSSA J, ARAUS J L, GAO S, VIVEK B, MAGOROKOSHO C, MUGO S, MAKUMBI D, TABA S, PAN G, LI X, RONG T, ZHANG S, XU Y. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Research, 2011, 124: 37-45.
doi: 10.1016/j.fcr.2011.06.003
[15] FU F, FENG Z, GAO S, ZHOU S, LI W. Evaluation and quantitative inheritance of several drought-relative traits in maize. Agricultural Sciences in China, 2008, 7(3): 280-290.
[16] LI C, SUN B, LI Y, LIU C, WU X, ZHANG D, SHI Y, SONG Y, BUCKLER E S, ZHANG Z, WANG T, LI Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
doi: 10.1186/s12864-016-3170-8 pmid: 27825295
[17] 徐明慧, 于晓东, 马兴林, 关义新. 水分胁迫对玉米萌芽期贮藏物质利用效率的影响. 作物杂志, 2004, 6: 11-13.
XU M H, YU X D, MA X L, GUAN Y X. Effect of water stress on storage substance utilization at maize germination stage. Crops, 2004, 6: 11-13. (in Chinese)
[18] 张倩, 张洪生, 盖伟玲, 段梅堂, 姜雯. 玉米品种早期抗旱性分析. 山东农业科学, 2011, 2: 21-23.
ZHANG Q, ZHANG H S, GAI W L, DUAN M T, JIANG W. Drought resistance analysis of maize varieties at germination stage. Shandong Agricultural Sciences, 2011, 2: 21-23. (in Chinese)
[19] 孙军伟, 冀天会, 杨子光, 孟丽梅, 张珂, 宋韶帅. 玉米萌芽期抗旱性鉴定研究. 中国农学通报, 2009, 25, 3: 104-107.
SUN J W, JI T H, YANG Z G, MENG L M, ZHANF K, SONG S S. Study on identification of the drought resistant in maize seedling emergence stage. Chinese Agricultural Science Bulletin, 2009, 25, 3: 104-107. (in Chinese)
[20] 成锴, 苏晓慧, 栗建枝, 赵太存, 王国梁, 李洪. PEG-6000胁迫下玉米品种萌发期抗旱性鉴定与评价. 玉米科学, 2017, 25(5): 85-90.
CHENG K, SU X H, LI J Z, ZHAO T C, WANG G L, LI H. Identification and evaluation of maize drought resistance under PEG-6000 stress at germination stage. Journal of Maize Sciences, 2017, 25(5): 85-90. (in Chinese)
[21] 任杨柳, 乔大河, 胡春辉, 张龙, 李玉玲. 不同种质玉米自交系种子萌发的干旱胁迫. 中国农学通报, 2017, 33(9): 17-21.
REN Y L, QIAO D H, HU C H, ZHANG L, LI Y L. Drought stress on different maize inbred lines at germination stage. Chinese Agricultural Science Bulletin, 2017, 33(9): 17-21. (in Chinese)
[22] 余贵海, 起雪宏, 王正启, 赵自仙, 杨久. 14个玉米杂交种萌发期抗旱性评价. 西南农业学报, 2016, 29(7): 1499-1505.
YU G H, Qi X H, WANG Z Q, ZHAO Z X, YANG J. Evaluation of drought resistance for 14 corn hybrids at seed germination stage. Southwest China Journal of Agricultural Sciences, 2016, 29(7): 1499-1505. (in Chinese)
[23] 郝楠, 王延波, 李月明. 温度对玉米种子萌发特性的影响. 玉米科学, 2013, 4: 59-63.
HAO N, WANG Y B, LI Y M. Effect of temperature on seed germination and physiological character of maize hybrid. Journal of Maize Sciences, 2013, 4: 59-63. (in Chinese)
[24] 高星, 李永祥, 杨明涛, 李琲琲, 李春辉, 宋燕春, 张登峰, 王天宇, 黎裕, 石云素. 基于高密度遗传图谱的玉米籽粒灌浆特性遗传解析. 中国农业科学, 2017, 50(21): 4087-4099.
doi: 10.3864/j.issn.0578-1752.2017.21.003
GAO X, LI Y X, YANG M T, LI B B, LI C H, SONG Y C, ZHANG D F, WANG T Y, LI Y, SHI Y S. Genetic dissection of grain filling related traits based on a high-density map in maize. Scientia Agricultura Sinica, 2017, 50(21): 4087-4099. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.21.003
[25] 刘洪伟, 李小林, 任万军. 裂颖与去壳对水稻种子萌发生理的初步研究. 种子, 2009, 28(6): 81-85.
LIU H W, LI X L, REN W J. Preliminary study on germination physiology of opening glume and hulled rice seed. Seed, 2009, 28(6): 81-85. (in Chinese)
[26] 范翠丽, 陈景堂, 李育峰, 袁丁. 玉米苗期及萌芽期抗旱性评定方法筛选. 玉米科学, 2007, 15(3): 114-117.
FAN C L, CHEN J T, LI Y F, YUAN D. Filtrate methods of drought- tolerance in maize during the germination stage and the seedling stage. Journal of Maize Sciences, 2007, 15(3): 114-117. (in Chinese)
[27] WANG W B, KIM Y H, LEE H S, KIM K Y, DENG X P, KWAK S S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 2009, 47(7): 570-577.
[28] AN Y, LIANG Z. Drought tolerance of Periploca sepium during seed germination: antioxidant defense and compatible solutes accumulation. Acta Physiologiae Plantarum, 2013, 35(3): 959-967.
[29] KPOGHOMOU B K, SAPRA V T, BEYL C A. Screening for drought tolerance: Soybean germination and its relationship to seedling responses. Journal of Agronomy and Crop Science, 164(3): 153-159.
[1] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[2] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[3] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[4] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[5] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[6] WAN HuaFang,WEI Shuai,FENG YuXia,QIAN Wei. Creating a New-Type Brassica napus (AnArCnCo) with High Drought-resistance Employing Hexaploid (AnAnCnCnCoCo) as a Bridge [J]. Scientia Agricultura Sinica, 2020, 53(16): 3225-3234.
[7] DIAO XianMin. Progresses in Stress Tolerance and Field Cultivation Studies of Orphan Cereals in China [J]. Scientia Agricultura Sinica, 2019, 52(22): 3943-3949.
[8] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[9] QIN Ling, ZHANG YanTing, CHEN ErYing, YANG YanBing, LI FeiFei, GUAN YanAn. Screening for Germplasms Tolerant to Salt at Germination Stage and Response of Protective Enzymes to Salt Stress in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4027-4038.
[10] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[11] WANG Yang, JIA XiaoHui, WANG WenHui, TONG Wei, WANG ZhiHua, DU YanMin. Quality Evaluation System Established for Pear Processed by Freezing in China [J]. Scientia Agricultura Sinica, 2019, 52(12): 2151-2160.
[12] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[13] FAN Xin,ZHAO LeiLin,ZHAI HongHong,WANG Yuan,MENG ZhiGang,LIANG ChengZhen,ZHANG Rui,GUO SanDui,SUN GuoQing. Functional Characterization of AtNEK6 Overexpression in Cotton Under Drought and Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(22): 4230-4240.
[14] XIANG Wei, YI Zi-li, XIAO Liang, LIU Qing-bo, QIN Jing-ping. Construction of Energy Potential Evaluation System for Miscanthus [J]. Scientia Agricultura Sinica, 2016, 49(24): 4687-4700.
[15] LIU Cheng, YANG Bing-peng, SUN Bao-cheng, ZHANG Jia-chang, TANG Huai-jun, WANG Tian-yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Yu, LI Jian-sheng. Field Identification of Drought Tolerance of LOS5 Transgenic Maize [J]. Scientia Agricultura Sinica, 2016, 49(23): 4469-4479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!