Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2504-2517.doi: 10.3864/j.issn.0578-1752.2023.13.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification, Cloning and Expression Profiles of Gustatory Receptor Genes in Chilo suppressalis

HUANG YuXuan1,2(), SHEN Chen1,2, JU JiaFei2, YANG Lei1,2, LUO GuangHua1,2(), FANG JiChao1,2()   

  1. 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
    2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014
  • Received:2023-03-28 Accepted:2023-05-04 Online:2023-07-01 Published:2023-07-06
  • Contact: LUO GuangHua, FANG JiChao

Abstract:

【Background】The rice striped stem borer, Chilo suppressalis, is one of the important rice pests in China. The gustatory receptors (GRs) play important roles in insect feeding, oviposition, and so on.【Objective】Based on transcriptomic and genomic data, the gustatory receptor gene sequences of C. suppressalis were identified and cloned in this study. Then, their expression characteristics at different developmental stages and in different tissues of adults were clarified. These results will lay a foundation for further study on the function of gustatory receptor genes in C. suppressalis.【Method】Combined with the transcriptome data of C. suppressalis and the GR sequences of other insects, the GR genes in C. suppressalis were identified by multiple sequence alignment. The complete open reading frame (ORF) sequences of the GR genes in C. suppressalis were cloned by RT-PCR, and the molecular biological characteristics and domains of the amino acid sequences encoded by the GR genes in C. suppressalis were analyzed by bioinformatics analysis tools. The phylogenetic tree of GR gene protein sequences of C. suppressalis and other insect GR genes was constructed based on the maximum likelihood method. The expression patterns of GR genes at different developmental stages (1-6 instar larvae, female and male adults) and in different adult tissues (antennae, head, wing, abdomen and leg) of C. suppressalis were determined by real-time quantitative PCR (RT-qPCR).【Result】Five gustatory receptor genes were identified and named as CsupGR1-5. The complete ORFs of these GR genes were between 1 122 and 1 428 bp in length, encoding 373-475 amino acids. Among them, CsupGR2, CsupGR4, CsupGR5 had seven transmembrane domains, CsupGR1, CsupGR3 had eight transmembrane domains. Phylogenetic analysis showed that CsupGR1 and CsupGR2 were closely related to DmelGR63a in Drosophila melanogaster, PxylGR7 and PxylGR8 in Plutella xylostella, belonging to the CO2 receptor family. CsupGR3 was closely related to DmelGR43a in D. melanogaster, BmorGR9 and BmorGR10 in Bombyx mori, belonging to the fructose/inositol receptor family. CsupGR4 and CsupGR5 were closely related to DmelGR64 in D. melanogaster and BmorGR5-8 in B. mori, belonging to the sugar receptor family. The expression profile analysis showed that the five GR genes were all expressed at different developmental stages in C. suppressalis. Among them, CsupGR1 and CsupGR4 were highly expressed in male adults, CsupGR2 had the highest expression level in the 1st instar larvae and male adults, CsupGR3 was highly expressed in adults, and CsupGR5 had the highest expression level in the 4th instar larvae. Tissue expression profile analysis showed that these five GR genes were expressed in all tissues of male and female adults. CsupGR1 and CsupGR5 were highly expressed in the head of adults, and CsupGR2-4 were highly expressed in the antennae of adults.【Conclusion】The five GR genes of C. suppressalis identified in this study have the typical characteristics of insect gustatory receptors and are highly expressed in the antennae or heads of adults. It is speculated that these five genes may be related to the recognition and adaptation of C. suppressalis to host plants.

Key words: Chilo suppressalis, gustatory receptor (GR), gene identification, sequence analysis, expression profile

Table 1

Primer sequences"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物用途
Usage of primers
CsGR1-F ATGTCCTATTATACACATAA 开放阅读框扩增Amplification of ORF
CsGR1-R TTAATGTTTCCTTTTCTTCT
CsGR2-F ATGATGATTCCTGATCATTT
CsGR2-R TCATGAGAGGGCTGCTTGAG
CsGR3-F ATGTTTGTGGAGAAGCCGGG
CsGR3-R TTACTGTTCCGAAAGCTGGA
CsGR4-F GGCTTCGCCCAAGGATCTCC
CsGR4-R TCAAGCGACAGCGATTACCG
CsGR5-F ATGAAAACTCAAATCCTGGG
CsGR5-R TTACTTAATAAATTGCAGCA
CsqGR1-F AACGCGATAGCACCTTTGGA 实时荧光定量PCR
RT-qPCR
CsqGR1-R AGAAGGTCTGGTGATCGGGA
CsqGR2-F TGCCGTCATGCCTATCACAA
CsqGR2-R ACGCTCGTATCCAACGAACA
CsqGR3-F CGGGGTTCTGCTGTTACTCC
CsqGR3-R CAGACCACACCACAACACCT
CsqGR4-F CCAAGTTCACGGGGATACGG
CsqGR4-R GAAATGGTGGCGGCAAGAAA
CsqGR5-F GTCAGCAGCGTTGGTCAAAT
CsqGR5-R GAGCGATACTGACCCTGACG
EF1-F AAAATGGACTCGACTGAACCCC
EF1-R TCTCCGTGCCAACCAGAAATA

Fig. 1

Electrophoretic analysis of PCR products of GR genes in C. suppressalis"

Table 2

The transmembrane domain prediction and BLAST best hit sequence results of GRs in C. suppressalis"

基因
Gene
登录号
Accession number
开放阅读框
长度
ORF length (bp)
氨基酸数量
Number of AA
跨膜结构域
数量
Number of TMD
最佳比对结果BLAST best hit
物种
Species
登录号
Accession number
E值
E-value
相似度
Similarity (%)
CsupGR1 OQ834263 1428 475 8 亚洲玉米螟O. furnacalis XP_028179334.1 0 80.62
CsupGR2 OQ834264 1302 433 7 粉纹夜蛾T. ni XP_026735279.1 0 86.95
CsupGR3 OQ834265 1317 438 8 棉红铃虫P. gossypiella XP_049878938.1 3.00E-63 31.45
CsupGR4 OQ834266 1122 373 7 黄野螟H. vitessoides UVB79175.1 7.00E-174 73.70
CsupGR5 OQ834267 1269 422 7 亚洲玉米螟O. furnacalis XP_028178841.1 0 66.91

Table 3

Physicochemical property analysis of GR proteins in C. suppressalis"

CsupGR1 CsupGR2 CsupGR3 CsupGR4 CsupGR5
分子式Molecular formula C2491H3908N610O676S26 C2287H3547N567O618S24 C2239H3596N566O608S23 C1899H2968N474O513S20 C2273H3558N560O589S24
分子质量Molecular weight (Da) 54051.67 49643.19 48909.99 41288.52 48924.09
等电点Theoretical pI 8.75 7.51 9.28 7.09 9.31
氨基酸含量
Amino acid content
Maximum Leu 11.2% Leu 11.8% Leu 15.8% Leu 12.3% Leu 14.7%
Minimum Trp 1.1% Trp 1.4% Trp 0.9% Asp 0.8% Trp 1.2%
Nonentity Pyl, Sec Pyl, Sec Pyl, Sec Pyl, Sec Pyl, Sec
正电荷残基Positively charged residues 40 40 43 21 36
负电荷残基Negatively charged residues 34 39 29 21 23
吸收率Absorptivity 1.205 1.370 1.041 0.884 1.294
不稳定指数Instability index 33.75 33.17 34.53 34.79 38.05
脂肪族指数Aliphatic index 109.18 110.35 120.59 114.48 119.36
疏水性系数的总平均值
Grand average of hydrophobicity coefficient
0.327 0.337 0.522 0.656 0.489

Fig. 2

Amino acid sequence alignment of CsupGR1 with GRs of other Lepidoptera insects"

Fig. 3

Amino acid sequence alignment of CsupGR2 with GRs of other Lepidoptera insects"

Fig. 4

Amino acid sequence alignment of CsupGR3 with GRs of other Lepidoptera insects"

Fig. 5

Amino acid sequence alignment of CsupGR4 with GRs of other Lepidoptera insects"

Fig. 6

Amino acid sequence alignment of CsupGR5 with GRs of other Lepidoptera insects"

Fig. 7

Phylogenetic tree of GRs in C. suppressalis and other insects based on amino acid sequences"

Fig. 8

Relative expression levels of GR mRNA at different developmental stages in C. suppressalis"

Fig. 9

Relative expression levels of GR mRNA in different tissues of C. suppressalis adult"

[1]
MAO K K, LI W H, LIAO X, LIU C Y, QIN Y, REN Z J, QIN X Y, WAN H, SHENG F, LI J H. Dynamics of insecticide resistance in different geographical populations of Chilo suppressalis (Lepidoptera: Crambidae) in China 2016-2018. Journal of Economic Entomology, 2019, 112(4): 1866-1874.

doi: 10.1093/jee/toz109
[2]
胡君, 陈文明, 张真真, 郑雪松, 靳建超, 苏建亚, 高聪芬, 沈晋良. 长江流域稻区二化螟抗药性监测. 中国水稻科学, 2010, 24(5): 509-515.

doi: 10.3969/j.issn.1001-7216.2010.05.011
HU J, CHEN W M, ZHANG Z Z, ZHENG X S, JIN J C, SU J Y, GAO C F, SHEN J L. Insecticide resistance monitoring of Chilo suppressalis in the drainage area of the Yangtze River, China. Chinese Journal of Rice Science, 2010, 24(5): 509-515. (in Chinese)
[3]
LU Y, ZHENG X, LU Z. Application of vetiver grass Vetiveria zizanioides: Poaceae (L.) as a trap plant for rice stem borer Chilo suppressalis: Crambidae (Walker) in the paddy fields. Journal of Integrative Agriculture, 2019, 18(4): 797-804.

doi: 10.1016/S2095-3119(18)62088-X
[4]
ZHAO X, XU X, WANG X G, YIN Y, LI M Y, WU Y Q, LIU Y H, CHENG Q H, GONG C W, SHEN L T. Mechanisms for multiple resistances in field populations of rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae) from Sichuan Province, China. Pesticide Biochemistry and Physiology, 2021, 171: 104720.

doi: 10.1016/j.pestbp.2020.104720
[5]
姚诚诚, 杜立啸, 李云河. 虫害诱导植物信息化合物介导的植物间交流及机制. 植物保护, 2021, 47(6): 1-10.
YAO C C, DU L X, LI Y H. Plant-to-plant communications medicated by herbivore-induced plant volatiles and the mechanisms. Plant Protection, 2021, 47(6): 1-10. (in Chinese)
[6]
王广利, 付小刚, 韩晓霞, 张宇瑶, 魏洪义. 二化螟雌蛾对香根草挥发物的EAG和行为反应. 应用昆虫学报, 2016, 53(1): 148-156.
WANG G L, FU X G, HAN X X, ZHANG Y Y, WEI H Y. EAG and behavioral responses of Chilo suppressalis females to plant volatiles from Vetiveria zizanioides. Chinese Journal of Applied Entomology, 2016, 53(1): 148-156. (in Chinese)
[7]
HU X Y, SU S L, LIU Q S, JIAO Y Y, PENG Y F, LI Y H, TURLINGS T C J. Caterpillar-induced rice volatiles provide enemy-free space for the offspring of the brown planthopper. eLife, 2020, 9: e55421.

doi: 10.7554/eLife.55421
[8]
OZAKI K, RYUDA M, YAMADA A, UTOGUCHI A, ISHIMOTO H, CALAS D, MARION-POLL F, TANIMURA T, YOSHIKAWA H. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nature Communications, 2011, 2: 542.

doi: 10.1038/ncomms1548
[9]
SCHOONHOVEN L M, VAN LOON J J A. An inventory of taste in caterpillars: Each species its own key. Acta Zoologica Academiae Scientiarum Hungaricae, 2002, 48(Suppl. 1): 215-263.
[10]
ZHANG Z J, ZHANG S S, NIU B L, JI D F, LIU X J, LI M W, BAI H, PALLI S R, WANG C Z, TAN A J. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biology, 2019, 17(2): e3000162.
[11]
YANG J, GUO H, JIANG N J, TANG R, LI G C, HUANG L Q, VAN LOON J J A, WANG C Z. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly Pieris rapae. PLoS Genetics, 2021, 17(7): e1009527.

doi: 10.1371/journal.pgen.1009527
[12]
SINGH R N. Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microscopy Research and Technique, 1997, 39(6): 547-563.

doi: 10.1002/(ISSN)1097-0029
[13]
CLYNE P J, WARR C G, CARLSON J R. Candidate taste receptors in Drosophila. Science, 2000, 287(5459): 1830-1834.

doi: 10.1126/science.287.5459.1830
[14]
AGNIHOTRI A R, ROY A A, JOSHI R S. Gustatory receptors in Lepidoptera: Chemosensation and beyond. Insect Molecular Biology, 2016, 25(5): 519-529.

doi: 10.1111/imb.12246 pmid: 27228010
[15]
SANCHEZ-GRACIA A, VIEIRA F G, ROZAS J. Molecular evolution of the major chemosensory gene families in insects. Heredity, 2009, 103(3): 208-216.

doi: 10.1038/hdy.2009.55
[16]
ROBERTSON H M, WARR C G, CARLSON J R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(Suppl. 2): 14537-14542.
[17]
GUO H, CHENG T, CHEN Z, JIANG L, GUO Y, LIU J, LI S, TANIAI K, ASAOKA K, KADONO-OKUDA K, et al. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori. Insect Biochemistry and Molecular Biology, 2017, 82: 74-82.

doi: 10.1016/j.ibmb.2017.02.001
[18]
ZHAN S, MERLIN C, BOORE J L, REPPERT S M. The monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147(5): 1171-1185.

doi: 10.1016/j.cell.2011.09.052 pmid: 22118469
[19]
BRISCOE A D, MACIAS-MUÑOZ A, KOZAK K M, WALTERS J R, YUAN F, JAMIE G A, MARTIN S H, DASMAHAPATRA K K, FERGUSON L C, MALLET J, JACQUIN-JOLY E, JIGGINS C D. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLOS Genetics, 2013, 9(7): e1003620.

doi: 10.1371/journal.pgen.1003620
[20]
YOU M, YUE Z, HE W, YANG X, YANG G, XIE M, ZHAN D, BAXTER S W, VASSEUR L, GURR G M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013, 45(2): 220-225.

doi: 10.1038/ng.2524 pmid: 23313953
[21]
LI L L, XU J W, YAO W C, YANG H H, DEWER Y, ZHANG F, ZHU X Y, ZHANG Y N. Chemosensory genes in the head of Spodoptera litura larvae. Bulletin of Entomological Research, 2021, 111(4): 454-463.

doi: 10.1017/S0007485321000109
[22]
DU L X, ZHAO X C, LIANG X Z, GAO X W, LIU Y, WANG G R. Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics, 2018, 19: 518.

doi: 10.1186/s12864-018-4898-0
[23]
ZHANG Y N, QIAN J L, XU J W, ZHU X Y, LI M Y, XU X X, LIU C X, XUE T, SUN L. Identification of chemosensory genes based on the transcriptomic analysis of six different chemosensory organs in Spodoptera exigua. Frontiers in Physiology, 2018, 9: 432.

doi: 10.3389/fphys.2018.00432
[24]
罗智心, 姚静, 张茹, 罗光华, 方继朝. 二化螟 二化螟36 d标准化饲养技术与管理体系. 江苏农业科学, 2021, 49(24): 100-109.
LUO Z X, YAO J, ZHANG R, LUO G H, FANG J C. A 36-days standardized mass rearing technique and management system for rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), Jiangsu Agricultural Sciences, 2021, 49(24): 100-109. (in Chinese)
[25]
HE F J, LU M X, DU Y Z. Selection and evaluation of reference genes for qRT-PCR analysis of different developmental stages in Chilo suppressalis. Journal of Asia-Pacific Entomology, 2021, 24(4): 1228-1234.

doi: 10.1016/j.aspen.2021.08.008
[26]
YANG K, GONG X L, LI G C, HUANG L Q, NING C, WANG C Z. A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). eLife, 2020, 9: e64114.

doi: 10.7554/eLife.64114
[27]
ABDEL-LATIEF M. A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PLoS ONE, 2007, 2(12): e1319.

doi: 10.1371/journal.pone.0001319
[28]
ROBERTSON H M, WANNER K W. The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Research, 2006, 16(11): 1395-1403.

doi: 10.1101/gr.5057506
[29]
JONES W D, CAYIRLIOGLU P, KADOW I G, VOSSHALL L B. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature, 2007, 445(7123): 86-90.

doi: 10.1038/nature05466
[30]
SATO K, TANAKA K, TOUHARA K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11680-11685.
[31]
MANG D, SHU M, ENDO H, YOSHIZAWA Y, NAGATA S, KIKUTA S, SATO R. Expression of a sugar clade gustatory receptor, BmGr6, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 70: 85-98.

doi: 10.1016/j.ibmb.2015.12.008
[32]
LIU X L, SUN S J, HOU W, ZHANG J, YAN Q, DONG S L. Functional characterization of two spliced variants of fructose gustatory receptor in the diamondback moth, Plutella xylostella. Pesticide Biochemistry and Physiology, 2020, 164: 7-13.
[33]
LIU X L, YAN Q, YANG Y L, HOU W, MIAO C L, PENG Y C, DONG S L. A gustatory receptor GR8 tunes specifically to D-fructose in the common cutworm Spodoptera litura. Insects, 2019, 10(9): 272.

doi: 10.3390/insects10090272
[34]
JIANG X J, NING C, GUO H, JIA Y Y, HUANG L Q, QU M J, WANG C Z. A gustatory receptor tuned to D-fructose in antennal sensilla chaetica of Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2015, 60: 39-46.

doi: 10.1016/j.ibmb.2015.03.002
[35]
MIYAMOTO T, SLONE J, SONG X, AMREIN H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 2012, 151(5): 1113-1125.

doi: 10.1016/j.cell.2012.10.024
[36]
MANG D, SHU M, TANAKA S, NAGATA S, TAKADA T, ENDO H, KIKUTA S, TABUNOKI H, IWABUCHI K, SATO R. Expression of the fructose receptor BmGr9 and its involvement in the promotion of feeding, suggested by its co-expression with neuropeptide F1 in Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 75: 58-69.

doi: 10.1016/j.ibmb.2016.06.001
[37]
KIKUTA S, ENDO H, TOMITA N, TAKADA T, MORITA C, ASAOKA K, SATO R. Characterization of a ligand-gated cation channel based on an inositol receptor in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 74: 12-20.
[38]
ZHANG H J, ANDERSON A R, TROWELL S C, LUO A R, XIANG Z H, XIA Q Y. Topological and functional characterization of an insect gustatory receptor. PLoS ONE, 2011, 6(8): e24111.

doi: 10.1371/journal.pone.0024111
[39]
POPESCU A, COUTON L, ALMAAS T J, ROSPARS J P, WRIGHT G A, MARION-POLL F, ANTON S. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis. Journal of Comparative Physiology A, 2013, 199(5): 403-416.

doi: 10.1007/s00359-013-0803-0
[40]
贾岩岩. 雌性棉铃虫触角刺形感器和喙管栓锥感器的味觉感受特性[D]. 合肥: 安徽大学, 2016.
JIA Y Y. Gustatory characteristics of sensilla chaetica in antennae and sensilla styloconica in proboscis of female Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)[D]. Hefei: Anhui University, 2016. (in Chinese)
[41]
MONTELL C. A taste of the Drosophila gustatory receptors. Current Opinion in Neurobiology, 2009, 19(4): 345-353.

doi: 10.1016/j.conb.2009.07.001
[42]
AI D, DONG C, YANG B, YU C, WANG G. A fructose receptor gene influences development and feed intake in Helicoverpa armigera. Insect Science, 2022, 29(4): 993-1005.

doi: 10.1111/ins.v29.4
[43]
张军飞, 杨雪梅, 孙惠, 张楠, 安传远, 吴帆, 李红亮. 基于循环伏安法的蜜蜂组织传感器对蜂蜜品质的鉴别. 中国食品学报, 2022, 22(6): 307-314.
ZHANG J F, YANG X M, SUN H, ZHANG N, AN C Y, WU F, LI H L. Identification of honey quality with bee tissue sensor based on cyclic voltammetry. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 307-314. (in Chinese)
[44]
AMREIN H, THORNE N. Gustatory perception and behavior in Drosophila melanogaster. Current Biology, 2005, 15(17): R673-R684.

doi: 10.1016/j.cub.2005.08.021
[45]
ZHANG G, CAO S, GUO T, WANG H, QI X, REN X, NIU C. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth. Insect Science, 2022, 29(5): 1240-1250.

doi: 10.1111/ins.v29.5
[46]
DEL CAMPO M L, MILES C I, SCHROEDER F C, MUELLER C, BOOKER R, RENWICK J A. Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature, 2001, 411(6834): 186-189.

doi: 10.1038/35075559
[47]
侯文华, 孙龙龙, 马英, 孙惠婉, 张佳佳, 白润娥, 赵新成, 汤清波. 草地贪夜蛾幼虫对四种刺激物质的味觉感受和取食选择. 昆虫学报, 2020, 63(5): 545-557.
HOU W H, SUN L L, MA Y, SUN H W, ZHANG J J, BAI R E, ZHAO X C, TANG Q B. Gustatory perception and feeding preference of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae to four stimuli. Acta Entomologica Sinica, 2020, 63(5): 545-557. (in Chinese)
[48]
周东升, 龙九妹. 棉铃虫5龄幼虫对棉酚和印楝素的味觉适应性行为研究. 南方农业学报, 2013, 44(4): 590-593.
ZHOU D S, LONG J M. Taste adaptability to azadirachtin and gossypol in fifth instar larvae of Helicoverpa armigera. Journal of Southern Agriculture, 2013, 44(4): 590-593. (in Chinese)
[49]
XU W, ZHANG H J, ANDERSON A. A sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera. Journal of Chemical Ecology, 2012, 38(12): 1513-1520.

doi: 10.1007/s10886-012-0221-8
[1] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[2] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[3] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[4] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[5] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[6] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[7] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[8] WANG ChengLi,YIN ZhiYuan,NIE JiaJun,LIN YongHui,HUANG LiLi. Identification and Virulence Analysis of CAP Superfamily Genes in Valsa mali [J]. Scientia Agricultura Sinica, 2021, 54(16): 3440-3450.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] XU BingXia, YIN MeiQiang, WEN YinYuan, PEI ShuaiShuai, KE ZhenJin, ZHANG Bin, YUAN XiangYang. Gene Expression Profiling of Foxtail Millet (Setaria italica L.) Under Drought Stress During Germination [J]. Scientia Agricultura Sinica, 2018, 51(8): 1431-1447.
[11] LIU XiaoQiang, JIANG HongBo, LI HuiMin, XIONG Ying, WANG JinJun. The cDNA Cloning, Expression Profiling and Functional Characterization of Octopamine Receptor 3 (TcOctβR3) in Tribolium castaneum [J]. Scientia Agricultura Sinica, 2018, 51(7): 1315-1324.
[12] CHEN DongKai, ZHANG LinYa, XING ZhenLong, LEI ZhongRen. Identification and Function of the OBP13 Protein from the Leafminer (Liriomyza sativae) [J]. Scientia Agricultura Sinica, 2018, 51(5): 893-904.
[13] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
[14] YANG Li-qun, JIA Le-mei, TANG Mei, CHEN Yi-biao, CUI Hong-juan. Identification and Expression Analysis of BmYki-1 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2016, 49(8): 1607-1616.
[15] LI Hui-feng, RAN Kun, CHENG Lai-liang, WANG Hai-bo, HE Ping, CHANG Yuan-sheng, LI Lin-guang. Cloning, Sequence and Expression Analysis of Phosphoenolpyruvate Carboxykinase Genes (PEPCKs) in Apple [J]. Scientia Agricultura Sinica, 2016, 49(7): 1417-1428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!