Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1394-1406.doi: 10.3864/j.issn.0578-1752.2024.07.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits

ZHAO ZhenJian(), WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing()   

  1. College of Animal Science and Technology, Sichuan Agricultural University/Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs/Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province/State Key Laboratory of Swine and Poultry Breeding Industry, Chengdu 611130
  • Received:2023-10-18 Accepted:2023-12-31 Online:2024-04-01 Published:2024-04-09
  • Contact: TANG GuoQing

Abstract:

【Background】 The meat quality traits of pigs are important economic traits. Studying the molecular mechanisms that affect various meat quality traits and discovering key genes can guide genetic improvement of pigs and have significant implications for improving pork quality. Currently, those researches on meat-related mechanisms were mainly based on DNA genomics, while studies on DNA methylation related to meat quality traits, as well as integrated analysis of combining genomics and methylation, are scarce. 【Objective】 The potential key genes affecting pork meat quality were screened and identified by combined analysis of genome and DNA methylome, so as to provide a reference for the genetic improvement of pork quality. 【Method】 In this study, 28 meat quality traits of the ongissimus dorsi muscle of 140 Large White pigs were examined. Epigenome-wide association analysis (EWAS) and genome-wide association analysis (GWAS) were performed to identify CpG and SNP sites significantly associated with each trait. Subsequently, the conditional association analysis was performed by using SNPs as covariates on the significantly associated sites overlapping between GWAS and EWAS to further identify CpG sites with independent effects. Association analysis was then conducted to identify methylation quantitative trait loci (meQTL) by using the methylation levels of CpG sites as the dependent variable and SNPs as the independent variable. Finally, the cis-methylation quantitative trait loci (cis-meQTL) were used as instrumental variables for Mendelian randomization analysis to infer the causal relationship between cis-meQTL and phenotypes, while potential key genes at the loci were annotated and identified. 【Result】 (1) The significant associated sites were identified in the same genomic regions for the meat quality traits, namely yellowness value at slaughter 45 minutes postmortem (b45min), drip loss (DL), and docosahexaenoic acid (C22:6n-3), by both EWAS and GWAS. (2) After conditional association analysis, seven CpG sites for b45min and one CpG site for DL remained significant, while the three sites for C22:6n-3 were no longer significant after using SNPs as covariates, indicating that the significant associations of the seven CpG sites for b45min and one CpG site for DL identified by EWAS were not influenced by nearby significant SNPs. (3) A total of ten meQTL were identified for the seven CpG sites for b45min and one CpG site for DL, but the majority were trans-meQTL, with only one CpG site (SSC12:44 254 675 bp) identifying a cis-meQTL, suggesting that this site might be regulated by nearby SNPs. (4) Mendelian randomization analysis showed a causal relationship between the CpG site (SSC12:44 254 675 bp) and the b45min phenotype. (5) annotation of the locus revealed that the nearest gene to the CpG site (SSC12:44 254 675 bp) and its cis-meQTL was NOS2, and the CpG site was located within the NOS2 gene. 【Conclusion】 Based on the integrated analysis of DNA methylation and genomics data, this study proposed that the NOS2 gene might be a key candidate gene for meat color traits. DNA methylation and SNP jointly regulated gene expression, thereby affecting the expression of genes related to meat color traits.

Key words: epigenome-wide association study (EWAS), genome-wide association study (GWAS), meat quality traits, DNA methylation, meQTL

Table 1

Summary of the overlapped significant associations between GWAS and EWAS"

性状
Trait
GWAS关联 GWAS associations EWAS关联 EWAS associations
染色体SSC 位点或区域 Position or Region (bp) SNP数量 Number of SNP CpG位点 CpG site (bp)
b45min 1 4049232 1 SSC1:4667485
b45min 6 5191168-5483926 10 SSC6:4737404
b45min 7 9770008-10877899 20 SSC7:10489621
b45min 10 35692369 1 SSC10:36329538
b45min 12 44218560 1 SSC12:44254675
b45min 14 17744509-18820911 19 SSC14:17859513
b45min 18 49231979-50010893 7 SSC18:48429425
b45min 18 49231979-50010893 7 SSC18:50979305
DL 7 121791317 1 SSC7:120954182
C22:6n-3 4 101860069-103765886 146 SSC4:102796889
C22:6n-3 4 101860069-103765886 146 SSC4:103218200
C22:6n-3 4 101860069-103765886 146 SSC4:103552805

Table 2

Conditional association studies based on overlap signal between GWAS and EWAS"

性状Trait CpG位点 CpG site (bp) 染色体SSC 位置 Position (bp) P value (EWAS) P value (after correct)
b45min SSC1: 4667485 1 4667485 3.95E-9 3.95E-9
SSC6: 4737404 6 4737404 7.59E-9 0.35
SSC7: 10489621 7 10489621 1.53E-9 1.53E-9
SSC10: 36329538 10 36329538 2.76E-13 2.76E-13
SSC12: 44254675 12 44254675 5.45E-9 5.45E-9
SSC14: 17859513 14 17859513 1.26E-9 1.26E-9
SSC18: 48429425 18 48429425 1.06E-10 1.06E-10
SSC18: 50979305 18 50979305 1.18E-9 1.18E-9
DL SSC7: 120954182 7 120954182 7.79E-9 7.79E-9
C22:6n-3 SSC4: 102796889 4 102796889 1.32E-12 0.99
SSC4: 103218200 4 103218200 3.32E-9 0.13
SSC4: 103552805 4 103552805 1.32E-12 0.99

Table 3

MeQTL identified in this study"

CpG位点 CpG site (bp) 甲基化数量性状位点 meQTL 顺式meQTL cis-meQTL 反式meQTL trans-meQTL SNP
SSC1:4667485 0 0 0 0
SSC7:10489621 2 0 2 9
SSC10:36329538 0 0 0 0
SSC12:44254675 2 1 1 11
SSC14:17859513 2 0 2 46
SSC18:48429425 0 0 0 0
SSC18:50979305 3 0 3 345
SSC7:120954182 1 0 1 4

Fig. 1

Manhattan plot of the association analysis between CpG sites and genomic SNPs"

Fig. 2

Methylation and Mendelian randomization analysis of SNP site in cis-meQTL A. Boxplot shows the cis-meQTL of CpG site SSC12:44 254 675 bp, with the horizontal axis representing SNP genotypes and the vertical axis representing CpG methylation levels. B. Scatter plot illustrates the Mendelian randomization analysis of the cis-meQTL. The x-axis represents the effect of the SNP (SSC12:43 262 418 bp) on CpG locus (SSC12:44 254 675 bp) methylation. The y-axis represents the effect of the SNP locus (SSC12:43 262 418 bp) on the phenotype trait (b45min)"

[1]
孙建广, 张石蕊. 猪肉品质研究进展. 中国猪业, 2008, 3(7): 58-59.
SUN J G, ZHANG S R. Research progress of pork quality. China Swine Industry, 2008, 3(7): 58-59. (in Chinese)
[2]
宋志芳, 解幼志, 刑荷岩, 芦春莲, 曹洪战. 影响猪肉质性状相关基因的研究进展. 中国猪业, 2017, 12(7): 48-50.
SONG Z F, XIE Y Z, XING H Y, LU C L, CAO H Z. Research progress on genes related to pork quality traits. China Swine Industry, 2017, 12(7): 48-50. (in Chinese)
[3]
SHEN Q W, UNDERWOOD K R, MEANS W J, MCCORMICK R J, DU M. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. Journal of Animal Science, 2007, 85(4): 1054-1061.

doi: 10.2527/jas.2006-114 pmid: 17202397
[4]
SALAS R C D, MINGALA C N. Genetic factors affecting pork quality: halothane and rendement napole genes. Animal Biotechnology, 2017, 28(2): 148-155.

doi: 10.1080/10495398.2016.1243550 pmid: 27854153
[5]
李梦云, 郑萍, 李婉涛, 陈代文. PRKAG3基因在不同品种猪不同生长阶段骨骼肌中的表达差异及其表达量与肉质的关系. 动物营养学报, 2017, 29(5): 1661-1669.
LI M Y, ZHENG P, LI W T, CHEN D W. The expression difference of PRKAG3 gene in skeletal muscle at different growth stages for different breeds of pigs and the relationship between PRKAG3 gene expression level and meat quality. Chinese Journal of Animal Nutrition, 2017, 29(5): 1661-1669. (in Chinese)
[6]
MÜNZBERG H. Differential leptin access into the brain-A hierarchical organization of hypothalamic leptin target sites? Physiology & Behavior, 2008, 94(5): 664-669.

doi: 10.1016/j.physbeh.2008.04.020
[7]
于太永. 脂肪细胞因子leptin和TNF: α对猪骨骼肌成肌细胞增殖分化的影响及其机制[D]. 杨凌: 西北农林科技大学, 2007.
YU T Y. Effects of adipocytokines leptin and TNF-α on the proliferation and differentiation of porcine skeletal myoblasts and its mechanism[D]. Yangling: Northwest A & F University, 2007. (in Chinese)
[8]
李志娟. 猪心脏型脂肪酸结合蛋白研究进展. 养猪, 2021(2): 55-56.
LI Z J. Research progress of heart fatty acid-binding protein. Swine Production, 2021(2): 55-56. (in Chinese)
[9]
GRZES M, SADKOWSKI S, RZEWUSKA K, SZYDLOWSKI M, SWITONSKI M. Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level. Molecular Biology Reports, 2016, 43(5): 381-389.

doi: 10.1007/s11033-016-3969-z
[10]
ZAPPATERRA M, LUISE D, ZAMBONELLI P, MELE M, SERRA A, COSTA L N, DAVOLI R. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Science, 2019, 156: 75-84.

doi: 10.1016/j.meatsci.2019.05.013
[11]
VERNER J, HUMPOLÍČEK P, KNOLL A. Impact of MYOD family genes on pork traits in Large White and Landrace pigs. Journal of Animal Breeding and Genetics, 2007, 124(2): 81-85.

pmid: 17488358
[12]
KIM J M, CHOI B D, KIM B C, PARK S S, HONG K C. Associations of the variation in the porcine myogenin gene with muscle fibre characteristics, lean meat production and meat quality traits. Journal of Animal Breeding and Genetics = Zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie, 2009, 126(2): 134-141.
[13]
LEE E A, KIM J M, LIM K S, RYU Y C, JEON W M, HONG K C. Effects of variation in porcine MYOD1 gene on muscle fiber characteristics, lean meat production, and meat quality traits. Meat Science, 2012, 92(1): 36-43.

doi: 10.1016/j.meatsci.2012.03.018
[14]
周李生, 杨杰, 刘先先, 张志燕, 杨斌, 麻骏武. 苏太猪宰后72 h pH和肉色性状的全基因组关联分析. 中国农业科学, 2014, 47(3): 564-573. doi: 10.3864/j.issn.0578-1752.2014.03.016.
ZHOU L S, YANG J, LIU X X, ZHANG Z Y, YANG B, MA J W. Genome-wide association analyses for musle pH 72 h value and meat color traits in sutai pigs. Scientia Agricultura Sinica, 2014, 47(3): 564-573. doi: 10.3864/j.issn.0578-1752.2014.03.016. (in Chinese)
[15]
GAO G X, GAO N, LI S C, KUANG W J, ZHU L, JIANG W, YU W W, GUO J B, LI Z L, YANG C Z, ZHAO Y X. Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Frontiers in Genetics, 2021, 12: 614087.

doi: 10.3389/fgene.2021.614087
[16]
LIU X X, ZHANG J J, XIONG X W, CHEN C Y, XING Y Y, DUAN Y Y, XIAO S J, YANG B, MA J W. An integrative analysis of transcriptome and GWAS data to identify potential candidate genes influencing meat quality traits in pigs. Frontiers in Genetics, 2021, 12: 748070.

doi: 10.3389/fgene.2021.748070
[17]
YANG Y L, FAN X H, YAN J Y, CHEN M Y, ZHU M, TANG Y J, LIU S Y, TANG Z L. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Research, 2021, 49(3): 1313-1329.

doi: 10.1093/nar/gkaa1203 pmid: 33434283
[18]
HALUŠKOVÁ J, HOLEČKOVÁ B, STANIČOVÁ J. DNA methylation studies in cattle. Journal of Applied Genetics, 2021, 62(1): 121-136.

doi: 10.1007/s13353-020-00604-1 pmid: 33400132
[19]
RAN J S, LI J J, YIN L Q, ZHANG D H, YU C L, DU H R, JIANG X S, YANG C W, LIU Y P. Comparative analysis of skeletal muscle DNA methylation and transcriptome of the chicken embryo at different developmental stages. Frontiers in Physiology, 2021, 12: 697121.

doi: 10.3389/fphys.2021.697121
[20]
FAN Y X, LIANG Y X, DENG K P, ZHANG Z, ZHANG G M, ZHANG Y L, WANG F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics, 2020, 21(1): 327.
[21]
KANG B N, WANG J J, ZHANG H F, SHEN W, EL-MAHDY OTHMAN O, ZHAO Y, MIN L J. Genome-wide profile in DNA methylation in goat ovaries of two different litter size populations. Journal of Animal Physiology and Animal Nutrition, 2022, 106(2): 239-249.

doi: 10.1111/jpn.v106.2
[22]
唐韶青, 张沅, 徐青, 孙东晓, 俞英. 不同动物部分组织基因组甲基化程度的差异分析. 农业生物技术学报, 2006, 14(4): 507-510.
TANG S Q, ZHANG Y, XU Q, SUN D X, YU Y. Analysis of methylation level of genome in various tissues of different animal species. Journal of Agricultural Biotechnology, 2006, 14(4): 507-510. (in Chinese)
[23]
LI M Z, WU H L, LUO Z G, XIA Y D, GUAN J Q, WANG T, GU Y R, CHEN L, ZHANG K, MA J D, et al. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nature Communications, 2012, 3: 850.

doi: 10.1038/ncomms1854 pmid: 22617290
[24]
张小丽. 猪背部浅层和背部深层脂肪组织全基因组甲基化研究[D]. 雅安: 四川农业大学, 2013.
ZHANG X L. Genome-wide DNA methylation changes between the superficial and deep backfat tissues of the pig[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
[25]
VILLICAÑA S, BELL J T. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biology, 2021, 22(1): 127.
[26]
李娜. 基于GWAS的猪肉品质性状候选基因研究[D]. 北京: 中国农业大学, 2016.
LI N. Genome-wide association studies for pig meat traits and exploration of major genes[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[27]
秦一禾. 猪肌内脂肪含量的全基因组关联研究[D]. 昆明: 云南大学, 2017.
QIN Y H. Genome-wide association studies for intramuscular fat content in swine[D]. Kunming: Yunnan University, 2017. (in Chinese)
[28]
张俊杰. 利用多品种大样本群体精细定位影响猪背最长肌脂肪酸组成的QTL[D]. 南昌: 江西农业大学, 2018.
ZHANG J J. Mapping and fine-mapping QTL affecting longissimus muscle fatty acid composition in large scale multiple pig populations[D]. Nanchang: Jiangxi Agricultural University, 2018. (in Chinese)
[29]
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.

doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[30]
KRUEGER F, ANDREWS S R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 2011, 27(11): 1571-1572.

doi: 10.1093/bioinformatics/btr167 pmid: 21493656
[31]
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2. Nature Methods, 2012, 9: 357-359.

doi: 10.1038/nmeth.1923 pmid: 22388286
[32]
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[33]
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. 1 0 0 0 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.

doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[34]
DEPRISTO M A, BANKS E, POPLIN R, GARIMELLA K V, MAGUIRE J R, HARTL C, PHILIPPAKIS A A, DEL ANGEL G, RIVAS M A, HANNA M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 2011, 43: 491-498.

doi: 10.1038/ng.806 pmid: 21478889
[35]
CHANG C C, CHOW C C, TELLIER L C, VATTIKUTI S, PURCELL S M, LEE J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4: 7.

doi: 10.1186/s13742-015-0047-8 pmid: 25722852
[36]
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44: 821-824.

doi: 10.1038/ng.2310 pmid: 22706312
[37]
AULCHENKO Y S, RIPKE S, ISAACS A, VAN DUIJN C M. GenABEL: An R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294-1296.

doi: 10.1093/bioinformatics/btm108 pmid: 17384015
[38]
SHEN Q, WANG K, WANG S J, ZHAO Z J, JI X, CHEN D, YU Y, CUI S D, WANG J G, CHEN Z Y, GU Y R, TANG G Q. Identifying key DNA methylation sites and their cis-methylation quantitative loci for intramuscular fatty acid traits using genome and methylome data in Yorkshire pigs. Italian Journal of Animal Science, 2023, 22(1): 829-840.

doi: 10.1080/1828051X.2023.2247003
[39]
AHSAN M, EK W E, RASK-ANDERSEN M, KARLSSON T, LIND-THOMSEN A, ENROTH S, GYLLENSTEN U, JOHANSSON Å. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases. PLoS Genetics, 2017, 13(9): e1007005.
[40]
YU F T, QIU C, XU C, TIAN Q, ZHAO L J, WU L, DENG H W, SHEN H. Mendelian randomization identifies CpG methylation sites with mediation effects for genetic influences on BMD in peripheral blood monocytes. Frontiers in Genetics, 2020, 11: 60.

doi: 10.3389/fgene.2020.00060 pmid: 32180791
[41]
BURGESS S, THOMPSON S G. Use of allele scores as instrumental variables for Mendelian randomization. International Journal of Epidemiology, 2013, 42(4): 1134-1144.

doi: 10.1093/ije/dyt093 pmid: 24062299
[42]
ZHI D G, ASLIBEKYAN S, IRVIN M R, CLAAS S A, BORECKI I B, ORDOVAS J M, ABSHER D M, ARNETT D K. SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics, 2013, 8(8): 802-806.

doi: 10.4161/epi.25501 pmid: 23811543
[43]
BIRNEY E, SMITH G D, GREALLY J M. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genetics, 2016, 12(6): e1006105.
[44]
LAPPALAINEN T, GREALLY J M. Associating cellular epigenetic models with human phenotypes. Nature Reviews Genetics, 2017, 18: 441-451.

doi: 10.1038/nrg.2017.32 pmid: 28555657
[45]
DAVEY SMITH G, HEMANI G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 2014, 23(R1): R89-R98.
[46]
RELTON C L, DAVEY SMITH G. Mendelian randomization: applications and limitations in epigenetic studies. Epigenomics, 2015, 7(8): 1239-1243.

doi: 10.2217/epi.15.88 pmid: 26639554
[47]
BATTRAM T, RICHMOND R C, BAGLIETTO L, HAYCOCK P C, PERDUCA V, BOJESEN S E, GAUNT T R, HEMANI G, GUIDA F, CARRERAS-TORRES R, et al. Appraising the causal relevance of DNA methylation for risk of lung cancer. International Journal of Epidemiology, 2019, 48(5): 1493-1504.

doi: 10.1093/ije/dyz190 pmid: 31549173
[48]
WAHL S, DRONG A, LEHNE B, LOH M, SCOTT W R, KUNZE S, TSAI P C, RIED J S, ZHANG W H, YANG Y W, et al. Epigenome- wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 2017, 541: 81-86.

doi: 10.1038/nature20784
[49]
TSAPROUNI L G, YANG T P, BELL J, DICK K J, KANONI S, NISBET J, VIÑUELA A, GRUNDBERG E, NELSON C P, MEDURI E, et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics, 2014, 9(10): 1382-1396.

doi: 10.4161/15592294.2014.969637 pmid: 25424692
[50]
ZWAMBORN R A J, SLIEKER R C, MULDER P C, ZOETEMELK I, VERSCHUREN L, SUCHIMAN H E D, TOET K H, DROOG S, SLAGBOOM P E, KOOISTRA T, et al. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Scientific Reports, 2017, 7: 43261.

doi: 10.1038/srep43261 pmid: 28256596
[51]
CHOI I, STEIBEL J P, BATES R O, RANEY N E, RUMPH J M, ERNST C W. Identification of carcass and meat quality QTL in an F(2) duroc × pietrain pig resource population using different least-squares analysis models. Frontiers in Genetics, 2011, 2: 18.
[52]
KIM J J, ZHAO H H, THOMSEN H, ROTHSCHILD M F, DEKKERS J C M. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genetical Research, 2005, 85(3): 235-248.

doi: 10.1017/S0016672305007597
[53]
SESSA W C. The nitric oxide synthase family of proteins. Journal of Vascular Research, 1994, 31(3): 131-143.

pmid: 7511942
[54]
HATTORI Y, HATTORI S, KASAI K. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology, 2003, 481(2/3): 153-158.

doi: 10.1016/j.ejphar.2003.09.034
[55]
SILVA G B, GARVIN J L. Akt1 mediates purinergic-dependent NOS3 activation in thick ascending limbs. American Journal of Physiology Renal Physiology, 2009, 297(3): F646-F652.
[56]
KOEBKE K J, PAULY D J, LERNER L, LIU X E, PACHECO A A. Does the oxidation of nitric oxide by oxyMyoglobin share an intermediate with the metMyoglobin-catalyzed isomerization of peroxynitrite? Inorganic Chemistry, 2013, 52(13): 7623-7632.

doi: 10.1021/ic400697a pmid: 23768169
[57]
LOKE K E, LAYCOCK S K, MITAL S, WOLIN M S, BERNSTEIN R, OZ M, ADDONIZIO L, KALEY G, HINTZE T H. Nitric oxide modulates mitochondrial respiration in failing human heart. Circulation, 1999, 100(12): 1291-1297.

pmid: 10491373
[58]
RAYNER B S, HUA S S, SABARETNAM T, WITTING P K. Nitric oxide stimulates myoglobin gene and protein expression in vascular smooth muscle. The Biochemical Journal, 2009, 423(2): 169-177.

doi: 10.1042/BJ20090716
[1] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[2] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[3] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[4] CHEN YuMei, ZHANG CongCong, HU LiRong, FANG Hao, DOU JinHuan, GUO Gang, WANG Yan, LIU QiaoXiang, WANG YaChun, XU Qing. Effect of Heat Stress on DNA Methylation of GNAS Promoter Region in Dairy Cows [J]. Scientia Agricultura Sinica, 2023, 56(12): 2395-2406.
[5] Tao ZHANG, FuHui SI, YuXi ZHANG, ShuPeng GAI. Effect of Exogenous Gibberellin on DNA Methylation Level and Expression of Related Enzyme Genes in Tree Peony Floral Buds [J]. Scientia Agricultura Sinica, 2018, 51(18): 3561-3569.
[6] ZHOU Li-Sheng, YANG Jie, LIU Xian-Xian, ZHANG Zhi-Yan, YANG Bin, MA Jun-Wu. Genome-Wide Association Analyses for Musle pH 72 h Value and Meat Color Traits in Sutai Pigs [J]. Scientia Agricultura Sinica, 2014, 47(3): 564-573.
[7] ZHU Hong-ju, LIU Wen-ge, ZHAO Sheng-jie, LU Xu-qiang, HE Nan, DOU Jun-ling, GAO Lei. Comparison Between Tetraploid Watermelon(Citrullus lanatus) and Its Diploid Progenitor of DNA Methylation Under NaCl Stress [J]. Scientia Agricultura Sinica, 2014, 47(20): 4045-4055.
[8] LU Xu-Ke, WANG De-Long, YIN Zu-Jun, WANG Jun-Juan, FAN Wei-Li, WANG Shuai, ZHAO Xiao-Jie, ZHANG Tian-Bao, YE Wu-Wei. Genomic DNA Methylation Polymorphism Analysis of Cotton Under NaCl and Na2CO3 Stress [J]. Scientia Agricultura Sinica, 2014, 47(16): 3132-3142.
[9] HUANG Yun-Yu, ZHANG Hai-Jun, XING Yan-Xia, QI Yan, SUN Qian-Qian, ZHOU Chun-Lei, ZHAO Bing, GUO Yang-Dong. Effects of NaCl Stress on Seed Germination and DNA Methylation Status Detected by MSAP Analysis in Cucumber [J]. Scientia Agricultura Sinica, 2013, 46(8): 1646-1656.
[10] JIANG Mei-Hua, JU Ting-Ting, LIU Yang, XU Ling, SUN Wen-Juan, ZHAO Pan-Feng, YIN Jing-Dong. Dynamics of PPARγ, C/EBPα and Myogenin Gene Promoter Methylation During Myoblasts Intracellular Lipid Accumulation [J]. Scientia Agricultura Sinica, 2013, 46(14): 3010-3021.
[11] SHI Yuan-Yuan, TIAN Liu-Qing, ZHANG Fei, LIU Jun-Feng, YAN Wei-Yu, ZENG Zhi-Jiang. Effect of Royal Jelly on the DNA Methylation of dynactin p62 in Female Honeybee Larvae [J]. Scientia Agricultura Sinica, 2012, 45(23): 4909-4915.
[12] SUN Wei, LI Da, MA Yue-Hui, GUAN Wei-Jun, CHU Ming-Xing, DING Jia-Tong, LI Bi-Chun, ZHANG You-Fa, CHEN Ling, WU Wen-Zhong, ZHOU Hong. Developmental Changes of Gene Expression of GHR and IGF-Ⅰ Genes and Their Association Analysis with Meat Quality Traits in Hu Sheep [J]. Scientia Agricultura Sinica, 2012, 45(22): 4678-4687.
[13] DUAN Yong-Hong, WANG Ming, SUN Yi, YANG Wu-De. Construction of Methylation Linkage Groups A and B in Sorghum with MSAP and SSR Markers and Analysis of Methylation Sites and Patterns [J]. Scientia Agricultura Sinica, 2012, 45(18): 3699-3708.
[14] PAN Ya-jiao,FU Bin-ying,WANG Di,ZHU Ling-hua,LI Zhi-kang
. Spatial and Temporal Profiling of DNA Methylation Induced by Drought Stress in Rice#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3009-3018 .
[15] . Determination of DNA methylation content both in the blood and muscle tissue of pigs and significant difference analysis [J]. Scientia Agricultura Sinica, 2007, 40(8): 1774-1789 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!