Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (24): 4814-4825.doi: 10.3864/j.issn.0578-1752.2023.24.002

• CROP GENETICS & BREEDING・GERMPLASM RESOURCES・MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Genetic Analysis of QTL for Spike Length in Wheat

YAO QiFu1(), ZHOU JieGuang2(), WANG Jian2, CHEN HuangXin2, YANG YaoYao2, LIU Qian2, YAN Lei2, WANG Ying2, ZHOU JingZhong3, CUI FengJuan3, JIANG Yun4(), MA Jian2()   

  1. 1 College of Agroforestry Engineering and Planning, Tongren University/Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren 554300, Guizhou
    2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130
    3 Tongliao Institute of Agriculture and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia
    4 Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610000
  • Received:2023-08-11 Accepted:2023-10-10 Online:2023-12-16 Published:2023-12-21
  • Contact: JIANG Yun, MA Jian

Abstract:

【Objective】Spike length (SL) plays an important role in determining spike structure and yield potential of wheat. Quantitative trait loci (QTL) for spike length were excavated and their genetic effects were further analyzed to provide theoretical basis for molecular breeding. 【Method】This study consisted of a population of 198 F6 recombinant inbred lines (RIL) derived from the cross between the natural mutant msf and the cultivar Chuannong 16 (MC population). The MC population and its parents were planted in five different environments including Wenjiang in 2021 and 2022 (2021WJ and 2022WJ); Chongzhou in 2021 and 2022 (2021CZ and 2022CZ); and Ya’an in 2021 (2021YA) for spike length measurement. The 16K SNP chip-based constructed high-quality and high-density genetic linkage maps were used to map QTL for spike length. Additionally, the genotype of the flanking markers for the major spike length QTL was used to analyze its genetic effect on yield-related traits and thus to evaluate its potentiality for yield improvement.【Result】A total of 14 QTL for spike length were identified and they were mainly distributed on chromosomes 1A (one), 1B (one), 2B (one), 3D (three), 4A (one), 4D (two), 5A (one), 5B (one), 7A (one), 7B (one), and 7D (one). Among them, QSl.sau.1A was detected in four environments and the best linear unbiased prediction (BLUP) value, explained 6.46% to 20.12% of the phenotypic variation, and thus was regarded as a major QTL. The positive allele at QSl.sau.1A came from the parental line msf. QTL analysis across multiple environments also detected QSl.sau.1A, indicating it exhibits minimal environmental influence and represents a major and stably expressed QTL. The effect of QSl.sau.1A was successfully verified in two populations with different genetic backgrounds. Genetic effects analysis showed that the positive allele of QSl.sau.1A showed a significant effect on improving grain number per spike (12.68%), grain weight per spike (14.99%), 1000-grain weight (5.79%), flag leaf width (2.94%), spikelet number (1.48%), and flowering date (0.61%), and a significant effect of reducing plant height (-6.47%) and effective tiller number (-36.11%).【Conclusion】A major and stably expressed spike length QTL, QSl.sau.1A, was detected on chromosome 1A. Its positive allele significantly increased grain number per spike, grain weight per spike, thousand grain weight, and spikelet number per spike, indicating its great breeding value.

Key words: wheat, 16K SNP array, QTL, spike length, yield

Table 1

Phenotypic distribution of spike length for parents and RIL in MC population"

性状
Trait
环境
Environment
亲本Parents 重组自交系RIL
msf 川农16
CN16
范围
Range
均值±标准差
Mean±SD
偏度
Skewness
峰度
Kurtosis
穗长
Spike length (cm)
2021WJ 14.33** 10.24 8.95-18.68 12.16±1.29 0.97 2.87
2021CZ 9.84** 8.90 7.29-14.70 9.93±1.21 1.04 1.96
2021YA 12.40N 8.60 7.05-15.50 11.1±1.65 0.14 -0.19
2022WJ 14.36** 9.74 8.03-16.59 11.47±1.35 0.52 0.71
2022CZ 13.08** 10.68 8.17-16.95 11.76±1.50 0.19 -0.01
BLUP 12.44 10.03 9.71-14.38 11.29±0.75 0.35 0.51

Fig. 1

Spike phenotype of MC population"

Fig. 2

Frequency distribution and correlations of spike length for MC population in different environments **: Significant difference at level 0.01. The same as below"

Table 2

Analysis of variance for spike length in MC population"

差异来源
Source
基因型
Genotype
环境
Environment
基因型×环境互作
G×E interaction
区组/环境
Block/E
误差
Error
自由度Degrees of freedom 197 4 734 5.00 905
均方Mean square 9.28 282.26 2.33 0.07 0.31
F临界值F value 29.73 903.66 7.46 0.23
PP value <0.001 <0.001 <0.001 0.95

Table 3

Correlations between spike length and yield related traits in MC population"

性状
Trait
穗长
Spike length
株高Plant height 0.06
有效分蘖数Effective tiller number -0.45**
小穗数Spikelet number per spike 0.43**
每穗籽粒数Kernel number per spike 0.64**
每穗粒重Kernel weight per spike 0.50**
千粒重Thousand kernel weight -0.02
旗叶长Flag leaf length 0.04
旗叶宽Flag leaf width 0.11
开花期Flowering date 0.13

Table 4

QTL related to spike length in MC population"

QTL 染色体 Chromosome 标记区间
Marker interval
位置
Position (cM)
环境
Environment
LOD 表型变异率
PVE (%)
加性效应
Addition effect
QSl.sau.1A 1A 1A_1208254-1A_39112087 0 2021CZ 3.06 6.46 0.31
1A 1A_1208254-1A_3911208 0 2022CZ 6.77 11.70 0.49
1A 1A_3911208-1A_10060497 1 2021WJ 8.42 13.06 0.51
1A 1A_1208254-1A_3911208 0 2022WJ 11.44 20.12 0.59
1A 1A_1208254-1A_3911208 0 BLUP 10.53 17.51 0.31
QSl.sau.1B 1B 1B_627919768-1B_643249550 50 2021WJ 2.60 3.90 -0.28
QSl.sau.2B 2B 2B_703728317-2B_712659058 209 2021WJ 4.18 6.23 0.35
QSl.sau.3D.1 3D 3D_604256246-3D_610079701 27 2021CZ 2.58 5.57 0.29
QSl.sau.3D.2 3D 3D_70735603-3D_84658486 56 2022CZ 3.49 6.09 0.35
QSl.sau.3D.3 3D 3D_345120579-3D_350582175 67 2022WJ 5.12 8.40 0.38
3D 3D_345120579-3D_350582175 67 BLUP 3.00 4.57 0.16
QSl.sau.4A 4A 4A_639942192-4A_679248111 31 2022CZ 4.38 7.52 0.39
4A 4A_639942192-4A_679248111 31 BLUP 4.45 7.07 0.20
QSl.sau.4D.1 4D 4D_10917137-4D_54598748 6 BLUP 2.59 6.08 -0.19
QSl.sau.4D.2 4D 4D_481390193-4D_484488681 54 2021YA 2.52 7.35 0.45
QSl.sau.5A 5A 5A_667964439-5A_671488533 29 2022WJ 2.75 4.36 0.27
QSl.sau.5B 5B 5B_541684640-5B_530691925 71 2021WJ 3.69 5.50 0.33
QSl.sau.7A 7A 7A_62032879-7A_67671869 48 2022WJ 3.73 6.06 -0.32
7A 7A_62032879-7A_67671869 48 2022CZ 3.51 5.90 -0.35
QSl.sau.7B 7B 7B_43849-7B_3090779 2 2022CZ 4.23 7.57 0.39
7B 7B_43849-7B_3090779 2 BLUP 3.02 4.90 0.17
QSl.sau.7D 7D 7D_70115592-7D_86750000 17 2021WJ 3.20 5.02 0.31

Table 5

Multi-environment QTL related to spike length in MC population"

QTL 标记区间
Marker interval
阈值
LOD
LOD
(A)
LOD
(AbyE)
表型变异率
PVE (%)
PVE
(A)
PVE
(AbyE)
加性效应
Add
QSl.sau.1A 1A_1208254-1A_3911208 39.37 28.42 10.95 10.51 9.31 1.20 0.38
-- 2A_53613442-2A_82027007 5.58 4.31 1.27 1.42 1.28 0.14 0.14
-- 2A_564267619-2A_561241398 5.48 4.70 0.78 1.49 1.42 0.06 0.15
-- 2A_605590450-2A_631788025 6.67 5.54 1.13 1.77 1.61 0.15 0.16
QSl.sau.4A 4A_639942192-4A_679248111 15.41 11.29 4.12 3.81 3.46 0.35 0.23
-- 5A_470176289-5A_471914902 5.17 3.09 2.08 1.44 0.93 0.50 0.12
-- 5A_512433953-5A_523864082 5.12 2.98 2.15 1.26 0.91 0.35 0.12
-- 5A_691403852-5A_693635094 7.64 4.29 3.35 1.57 1.31 0.26 0.14
QSl.sau.7A 7A_62032879-7A_67671869 7.91 4.75 3.15 2.10 1.44 0.66 -0.15
QSl.sau.2B 2B_703728317-2B_712659058 6.06 3.78 2.29 1.52 1.16 0.37 0.14
-- 5B_496582254-5B_505769526 6.31 2.99 3.32 1.40 0.86 0.54 0.12
QSl.sau.5B 5B_530691925-5B_547522719 5.17 3.23 1.94 1.40 0.99 0.42 0.13
QSl.sau.7B 7B_43849-7B_3090779 11.48 6.95 4.53 2.98 2.11 0.87 0.18
-- 7B_90885206-7B_99090151 5.07 2.65 2.42 0.98 0.81 0.17 -0.11
QSl.sau.3D.2 3D_68039763-3D_70735603 9.99 5.94 4.04 2.49 1.84 0.65 0.17
QSl.sau.3D.3 3D_350582175-3D_352155972 6.73 2.59 4.14 1.94 0.79 1.15 0.11
QSl.sau.3D.1 3D_604256246-3D_610079701 8.57 6.68 1.89 2.24 2.02 0.21 0.18
-- 5D_506205528-5D_483300147 5.92 2.67 3.25 1.47 0.77 0.70 -0.11
QSl.sau.7D 7D_70115592-7D_86750000 6.08 4.68 1.40 1.53 1.37 0.16 0.15
-- 7D_91560930-7D_113753770 5.82 4.74 1.08 1.61 1.44 0.17 0.15

Fig. 3

Genetic effect of major QTL for spike length in MC population Chr.: Chromosome; + and −: Lines carrying and not carrying the positive allele of corresponding QTL; n: Lines. The same as below"

Fig. 4

Validation of the major QTL QSl.sau.1A for spike length + and −: Individual plants carrying and not carrying the positive allele of corresponding QSl.sau.1A. The same as below"

Fig. 5

Effect of the major QTL QSl.sau.1A for spike length on yield related traits *: Significant difference at level 0.05; a-i: Effects of QSl.sau.1A on other agronomic traits"

[1]
FAN X L, CHI F, JI J, ZHANG W, ZHAO X Q, LIU J J, MENG D Y, TONG Y P, WANG T, LI J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187.

doi: 10.3389/fpls.2019.00187 pmid: 30863417
[2]
LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H, QIU X B, PU X, LI J, LIU Z H, ZHANG H L, LIANG J J, YANG W Y, YU M Q, WEI Y M, LONG H. Identifcation and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134: 3625-3641.

doi: 10.1007/s00122-021-03918-8
[3]
BUTTERWORTH M H, SEMENOV M A, BARNES A, MORAN D, WEST J S, FITT B D L. North-South divide: Contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 2010, 7(42): 123-130.

doi: 10.1098/rsif.2009.0111 pmid: 19447817
[4]
SU Z Q, JIN S J, LU Y, ZHANG G R, CHAO S, BAI G H. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Molecular Breeding, 2016, 36(2): 15.

doi: 10.1007/s11032-016-0436-4
[5]
FARIS J D, ZHANG Z C, GARVIN D F, XU S S. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Molecular Genetics and Genomics, 2014, 289(4): 641-651.

doi: 10.1007/s00438-014-0836-2 pmid: 24652470
[6]
KOPPOLU R, SCHNURBUSCH T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. Journal of Integrative Plant Biology, 2019, 61(3): 278-295.

doi: 10.1111/jipb.12771
[7]
JANTASURIYARAT C, VALES M I, WATSON C J W, RIERA- LIZARAZU O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 108(2): 261-273.

doi: 10.1007/s00122-003-1432-8
[8]
KUMAR N, KULWAL P L, BALYAN H S, GUPTA P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19(2): 163-177.

doi: 10.1007/s11032-006-9056-8
[9]
WU X Y, CHENG R R, XUE S L, KONG Z X, WAN H S, LI G Q, HUANG Y L, JIA H Y, JIA J Z, ZHANG L X, MA Z Q. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Molecular Breeding, 2014, 33(1): 129-138.

doi: 10.1007/s11032-013-9939-4
[10]
唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析. 中国农业科学, 2022, 55(8): 1492-1502. doi: 10.3864/j.issn.0578-1752.2022.08.002.
TANG H P, CHEN H X, LI C, GOU L L, TAN C, MU Y, TANG L W, LAN X J, WEI Y M, MA J. Unconditional and Conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. doi: 10.3864/j.issn.0578-1752.2022.08.002. (in Chinese)
[11]
XU X, LI X J, ZHANG D H, ZHAO J S, JIANG X L, SUN H L, RU Z G. Identification and validation of QTLs for kernel number per spike and spike length in two founder genotypes of wheat. BMC Plant Biology, 2022, 22(1): 146.

doi: 10.1186/s12870-022-03544-6 pmid: 35346053
[12]
陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42(7): 799-807.
CHEN H X, LI C, WU K Y, WANG Y, MU Y, TANG H P, TANG L W, LAN X J, MA J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. Journal of Triticeae Crops, 2022, 42(7): 799-807. (in Chinese)
[13]
JI G S, XU Z B, FAN X L, ZHOU Q, YU Q, LIU X F, LIAO S M, FENG B, WANG T. Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum aestivum L.). Molecular Breeding, 2021, 41(9): 56.

doi: 10.1007/s11032-021-01249-6
[14]
XIONG H C, LI Y T, GUO H J, XIE Y D, ZHAO L S, GU J Y, ZHAO S R, DING Y P, LIU L X. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Frontiers in Plant Science, 2021, 12: 628478.

doi: 10.3389/fpls.2021.628478
[15]
姚俭昕, 张传量, 宋晓朋, 许小宛, 邢永锋, 吕栋云, 宋鹏博, 杨孟于, 孙道杰. 基于90K芯片的小麦穗长和旗叶长QTL分析. 麦类作物学报, 2020, 40(11): 1283-1289.
YAO J X, ZHANG C L, SONG X P, XU X W, XING Y F, D Y, SONG P B, YANG M Y, SUN D J. QTL analysis of wheat spike length and flag leaf length based on 90K SNP assay. Journal of Triticeae Crops, 2020, 40(11): 1283-1289. (in Chinese)
[16]
CHAI L L, CHEN Z Y, BIAN R L, ZHAI H J, CHENG X J, PENG H R, YAO Y Y, HU Z R, XIN M M, GUO W L, SUN Q X, ZHAO A J, NI Z F. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131(12): 2621-2637.

doi: 10.1007/s00122-018-3177-4
[17]
XU H W, ZHANG R Q, WANG M M, LI L H, YAN L, WANG Z, ZHU J, CHEN X Y, ZHAO A J, SU Z Q, XING J W, SUN Q X, NI Z F. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and Applied Genetics, 2022, 135(2): 389-403.

doi: 10.1007/s00122-021-03971-3
[18]
MA Z Q, ZHAO D M, ZHANG C Q, ZHANG Z Z, XUE S L, LIN F, KONG Z X, TIAN D G, LUO Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 2007, 277(1): 31-42.

doi: 10.1007/s00438-006-0166-0
[19]
水志杰, 安沛沛, 刘天相, 吴洪启, 刘乐, 史雪, 王中华. 利用人工合成小麦RIL群体进行小麦穗长和穗宽性状的QTL分析. 麦类作物学报, 2020, 40(6): 656-664.
SHUI Z J, AN P P, LIU T X, WU H Q, LIU L, SHI X, WANG Z H. QTL analysis of spike length and width using RIL population of synthetic wheat. Journal of Triticeae Crops, 2020, 40(6): 656-664. (in Chinese)
[20]
YAO H N, XIE Q, XUE S L, LUO J, LU J K, KONG Z X, WANG Y P, ZHAI W L, LU N, WEI R, YANG Y, HAN Y Z, ZHANG Y, JIA H Y, MA Z Q. HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theoretical and Applied Genetics, 2019, 132(6): 1789-1797.

doi: 10.1007/s00122-019-03315-2
[21]
姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56(12): 2237-2248. doi: 10.3864/j.issn.0578-1752.2023.12.001.
YAO Q F, CHEN H X, ZHOU J G, MA R Y, DENG L, TAN C X Y, SONG J H, J J, MA J. QTL identification and genetic analysis of plant height in wheat based on 16K SNP array. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248. doi: 10. 3864/j.issn.0578-1752.2023. 12.001. (in Chinese)
[22]
ZHOU J G, LI W, YANG Y Y, XIE X L, LIU J J, LIU Y L, TANG H P, DENG M, XU Q, JIANG Q F, CHEN G Y, QI P F, JIANG Y F, CHEN G D, HE Y J, REN Y P, TANG L W, GOU L L, ZHENG Y L, WEI Y M, MA J. A promising QTL QSns.sau-MC-3D.1 likely superior to WAPO1 for the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theoretical and Applied Genetics, 2023, 136(9): 181.

doi: 10.1007/s00122-023-04429-4
[23]
INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.

doi: 10.1126/science.aar7191
[24]
MA S W, WANG M, WU J H, GUO W L, CHEN Y M, LI G W, WANG Y P, SHI W M, XIA G M, FU D L, KANG Z S, NI F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12): 1965-1968.

doi: 10.1016/j.molp.2021.10.006 pmid: 34715393
[25]
WANG M X, LU J, LIU R, LI Y F, AO D H, WU Y, ZHANG L. Identification and validation of a major quantitative trait locus for spike length and compactness in the wheat (Triticum aestivum L.) line chuanyu12D7. Frontiers in Plant Science, 2023, 14: 1186183.

doi: 10.3389/fpls.2023.1186183
[26]
LI W L, NELSON J C, CHU C Y, SHI L H, HUANG S H, LIU D J. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica, 2002, 125(3): 357-366.

doi: 10.1023/A:1016069809977
[27]
王梦可, 赵德辉, 曾占奎, 陈鹏, 张雷宜, 兰彩霞, 刘瑞芳, 王春平. 小麦穗长性状基因的发掘与标记开发. 西北农林科技大学学报(自然科学版), 2023, 51(2): 11-21.
WANG M K, ZHAO D H, ZENG Z K, CHEN P, ZHANG L Y, LAN C X, LIU R F, WANG C P. Gene detection and marker development of spike length traits in wheat. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(2): 11-21. (in Chinese)
[28]
ZHANG X Y, JIA H Y, LI T A, WU J Z, NAGARAJAN R, LEI L, POWERS C, KAN C C, HUA W, LIU Z Y, CHEN C, CARVER B F, YAN L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183.

doi: 10.1126/science.abm0717
[29]
李涛, 陆炳, 李俊, 邓光兵, 张海莉, 梁俊俊, 余懋群, 杨武云, 龙海. 2个小麦株高QTL位点验证及其对产量相关性状的效应分析. 西南农业学报, 2019, 32(3): 476-483.
LI T, LU B, LI J, DENG G B, ZHANG H L, LIANG J J, YU M Q, YANG W Y, LONG H. Validation of two plant height QTLs and their effects on yield-related traits in common wheat. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 476-483. (in Chinese)
[30]
CUI F, LI J, DING A M, ZHAO C H, WANG L, WANG X Q, LI S S, BAO Y G, LI X F, FENG D S, KONG L R, WANG H G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011, 122(8): 1517-1536.

doi: 10.1007/s00122-011-1551-6 pmid: 21359559
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[8] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[9] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[12] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[13] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[14] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[15] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!