Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1433-1444.doi: 10.3864/j.issn.0578-1752.2022.07.014
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
ZHANG YeJun(),ZHANG DeQuan,HOU ChengLi,BAI YuQiang,REN Chi,WANG Xu,LI Xin()
[1] |
HOLMAN B W B, DAMIAN C, KILGANNON A K, HOPKINS D L. Using shear force, sarcomere length, particle size, collagen content, and protein solubility metrics to predict consumer acceptance of aged beef tenderness. Journal of Texture Studies, 2020, 51(4):559-566. doi: 10.1111/jtxs.12523.
doi: 10.1111/jtxs.12523 |
[2] |
CASSENS A M, ARNOLD A N, MILLER R K, GEHRING K B, SAVELL J W. Impact of elevated aging temperatures on retail display, tenderness, and consumer acceptability of beef. Meat Science, 2018, 146:1-8. doi: 10.1016/j.meatsci.2018.07.024.
doi: 10.1016/j.meatsci.2018.07.024 |
[3] |
TAYLOR R G, GEESINK G H, THOMPSON V F, KOOHMARAIE M, GOLL D E. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science, 1995, 73(5):1351-1367. doi: 10.2527/1995.7351351x.
doi: 10.2527/1995.7351351x |
[4] |
WANG D Y, ZHANG M H, DENG S Y, XU W M, LIU Y, GENG Z M, SUN C, BIAN H, LIU F. Postmortem changes in actomyosin dissociation, myofibril fragmentation and endogenous enzyme activities of grass carp (Ctenopharyngodon idellus) muscle. Food Chemistry, 2016, 197:340-344.
doi: 10.1016/j.foodchem.2015.10.132 |
[5] |
OKITANI A, ICHINOSE N, KOZA M, YAMANAKA K, MIGITA K, MATSUISHI M. AMP and IMP dissociate actomyosin into actin and myosin. Bioscience, Biotechnology, and Biochemistry, 2008, 72(8):2005-2011. doi: 10.1271/bbb.80128.
doi: 10.1271/bbb.80128 |
[6] |
OKITANI A, ICHINOSE N, ITOH J, TSUJI Y, ONEDA Y, HATAE K, MIGITA K, MATSUISHI M. Liberation of actin from actomyosin in meats heated to 65℃. Meat Science, 2009, 81(3):446-450. doi: 10.1016/j.meatsci.2008.09.008.
doi: 10.1016/j.meatsci.2008.09.008 |
[7] |
BHAT Z F, MORTON J D, MASON S L, BEKHIT A E D A. Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 2018, 7(3):196-204. doi: 10.1016/j.fshw.2018.08.002.
doi: 10.1016/j.fshw.2018.08.002 |
[8] |
PERRIE W T, SMILLIE L B, PERRY S V. A phosphorylated light chain component of myosin from skeletal muscle. Cold Spring Harbor Symposia on Quantitative Biology, 1973, 37:17-18. doi: 10.1101/sqb.1973.037.01.006.
doi: 10.1101/sqb.1973.037.01.006 |
[9] |
ALAMO L, WRIGGERS W, PINTO A, BÁRTOLI F, SALAZAR L, ZHAO F Q, CRAIG R, PADRÓN R. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. Journal of Molecular Biology, 2008, 384(4):780-797. doi: 10.1016/j.jmb.2008.10.013.
doi: 10.1016/j.jmb.2008.10.013 |
[10] |
BRITO R, ALAMO L, LUNDBERG U, GUERRERO J R, PINTO A, SULBARÁN G, GAWINOWICZ M A, CRAIG R, PADRÓN R. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. Journal of Molecular Biology, 2011, 414(1):44-61. doi: 10.1016/j.jmb.2011.09.017.
doi: 10.1016/j.jmb.2011.09.017 |
[11] |
KASZA K E, FARRELL D L, ZALLEN J A. Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation. PNAS, 2014, 111(32):11732-11737. doi: 10.1073/pnas.1400520111.
doi: 10.1073/pnas.1400520111 |
[12] | 陈立娟, 李欣, 李铮, 李培迪, 李仲文, 张德权. 蛋白质磷酸化调控羊肉肌原纤维蛋白的功能. 中国农业科学, 2016, 49(7):1360-1370. |
CHEN L J, LI X, LI Z, LI P D, LI Z W, ZHANG D Q. Protein phosphorylation on the function of myofibrillar proteins in mutton muscle. Scientia Agricultura Sinica, 2016, 49(7):1360-1370. (in Chinese) | |
[13] |
张艳, 李欣, 李铮, 李蒙, 刘永峰, 张德权. 冰温贮藏对羊肉中蛋白质磷酸化水平的影响. 中国农业科学, 2016, 49(22):4429-4440. doi: 10.3864/j.issn.0578-1752.2016.22.015.
doi: 10.3864/j.issn.0578-1752.2016.22.015 |
ZHANG Y, LI X, LI Z, LI M, LIU Y F, ZHANG D Q. Effects of controlled freezing point storage on the protein phosphorylation level. Scientia Agricultura Sinica, 2016, 49(22):4429-4440. doi: 10.3864/j.issn.0578-1752.2016.22.015. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.015 |
|
[14] |
李蒙, 李铮, 李欣, 杜曼婷, 宋璇, 张德权. 磷酸化水平对肌红蛋白稳定性的影响. 中国农业科学, 2017, 50(22):4382-4388. doi: 10.3864/j.issn.0578-1752.2017.22.014.
doi: 10.3864/j.issn.0578-1752.2017.22.014 |
LI M, LI Z, LI X, DU M T, SONG X, ZHANG D Q. Effect of phosphorylation level on myoglobin stability. Scientia Agricultura Sinica, 2017, 50(22):4382-4388. doi: 10.3864/j.issn.0578-1752.2017.22.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.22.014 |
|
[15] |
高星, 李欣, 李铮, 丁武, 张德权. 肌动球蛋白磷酸化对其解离的影响. 食品科学, 2017, 38(9):21-26. doi: 10.7506/spkx1002-6630-201709004.
doi: 10.7506/spkx1002-6630-201709004 |
GAO X, LI X, LI Z, DING W, ZHANG D Q. Effect of phosphorylation on actomyosin dissociation. Food Science, 2017, 38(9):21-26. doi: 10.7506/spkx1002-6630-201709004. (in Chinese)
doi: 10.7506/spkx1002-6630-201709004 |
|
[16] |
GAO X, LI X, LI Z, DU M T, ZHANG D Q. Dephosphorylation of myosin regulatory light chain modulates actin-myosin interaction adverse to meat tenderness. International Journal of Food Science and Technology, 2017, 52(6):1400-1407.
doi: 10.1111/ijfs.13343 |
[17] |
JIANG S W, LIU Y S, SHEN Z L, ZHOU B, SHEN Q W. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. Journal of Proteomics, 2019, 205:103412. doi: 10.1016/j.jprot.2019.103412.
doi: 10.1016/j.jprot.2019.103412 |
[18] |
ZHOU B, SHEN Z L, LIU Y S, WANG C T, SHEN Q W. Proteomic analysis reveals that lysine acetylation mediates the effect of antemortem stress on postmortem meat quality development. Food Chemistry, 2019, 293:396-407. doi: 10.1016/j.foodchem.2019.04.122.
doi: 10.1016/j.foodchem.2019.04.122 |
[19] |
HOFMANN T G, MÖLLER A, SIRMA H, ZENTGRAF H, TAYA Y, DRÖGE W, WILL H, SCHMITZ M L. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nature Cell Biology, 2002, 4(1):1-10. doi: 10.1038/ncb715.
doi: 10.1038/ncb715 |
[20] |
LI Z, BRIDGES B, OLSON J, WEINMAN S A. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3. Oncogene, 2017, 36(13):1887-1898. doi: 10.1038/onc.2016.359.
doi: 10.1038/onc.2016.359 |
[21] |
陈立娟, 李欣, 杨扬, 陈丽, 倪娜, 张德权. 不同嫩度羊肉肌浆蛋白质磷酸化水平随宰后成熟时间变化的研究. 现代食品科技, 2015, 31(4):95-101. doi: 10.13982/j.mfst.1673-9078.2015.4.016.
doi: 10.13982/j.mfst.1673-9078.2015.4.016 |
CHEN L J, LI X, YANG Y, CHEN L, NI N, ZHANG D Q. Analyzing the changes in sarcoplasmic protein phosphorylation with respect to postmortem ageing times in mutton with different levels of tenderness. Modern Food Science and Technology, 2015, 31(4):95-101. doi: 10.13982/j.mfst.1673-9078.2015.4.016. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2015.4.016 |
|
[22] |
高星, 李欣, 李铮, 杜曼婷, 张彩霞, 张德权, 丁武. 宰后肌肉中肌球蛋白磷酸化调控肌动球蛋白解离作用机制. 中国农业科学, 2016, 49(16):3199-3207. doi: 10.3864/j.issn.0578-1752.2016.16.013.
doi: 10.3864/j.issn.0578-1752.2016.16.013 |
GAO X, LI X, LI Z, DU M T, ZHANG C X, ZHANG D Q, DING W. The mechanism of myosin phosphorylation regulating actomyosin dissociation of skeletal muscle during postmortem. Scientia Agricultura Sinica, 2016, 49(16):3199-3207. doi: 10.3864/j.issn.0578-1752.2016.16.013. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.16.013 |
|
[23] |
CHEN X R, WANG X T, HAO M Q, ZHOU Y H, CUI W Q, XING X X, XU C G, BAI J W, LI Y H. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus. Frontiers in Chemistry, 2017, 5:98. doi: 10.3389/fchem.2017.00098.
doi: 10.3389/fchem.2017.00098 |
[24] |
LIU M S, WEI Y C, LI X, QUEK S Y, ZHAO J, ZHONG H Z, ZHANG D Q, LIU Y F. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality. Meat Science, 2018, 141:103-111. doi: 10.1016/j.meatsci.2018.01.001.
doi: 10.1016/j.meatsci.2018.01.001 |
[25] |
SCHIAFFINO S, REGGIANI C. Fiber types in mammalian skeletal muscles. Physiological Reviews, 2011, 91(4):1447-1531. doi: 10.1152/ physrev.00031.2010.
doi: 10.1152/ physrev.00031.2010 |
[26] |
KARLSSON A H, KLONT R E, FERNANDEZ X. Skeletal muscle fibres as factors for pork quality. Livestock Production Science, 1999, 60(2/3):255-269. doi: 10.1016/S0301-6226(99)00098-6.
doi: 10.1016/S0301-6226(99)00098-6 |
[27] | 尹靖东. 动物肌肉生物学与肉品科学. 北京: 中国农业大学出版社, 2011. |
YIN J D. Animal Muscle Biology and Meat Quality. Beijing: China Agricultural University Press, 2011. (in Chinese) | |
[28] | 李胜杰, 徐幸莲, 周光宏. 宰后肌动球蛋白解离对肉品嫩度的影响研究进展. 食品科学, 2010, 31(21):442-445. |
LI S J, XU X L, ZHOU G H. Research advances in the influence of actomyosin dissociation on postharvest meat tenderness. Food Science, 2010, 31(21):442-445. (in Chinese) | |
[29] |
EGELHOFF T T, LEE R J, SPUDICH J A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell, 1993, 75(2):363-371.
doi: 10.1016/0092-8674(93)80077-R |
[30] |
NORWOOD TORO L E, WANG Y R, CONDEELIS J S, JONES J G, BACKER J M, BRESNICK A R. Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Experimental Cell Research, 2018, 370(2):273-282. doi: 10.1016/j.yexcr.2018.06.028.
doi: 10.1016/j.yexcr.2018.06.028 |
[31] |
CHEN L J, LI X, NI N, LIU Y, CHEN L, WANG Z Y, SHEN Q W, ZHANG D Q. Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness. Journal of the Science of Food and Agriculture, 2016, 96(5):1474-1483. doi: 10.1002/jsfa.7244.
doi: 10.1002/jsfa.7244 |
[32] | LIU X, SHU S, HONG M S S, LEVINE R L, KORN E D. Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37):13694-13699. |
[33] | GANNON J, STAUNTON L, O'CONNELL K, DORAN P, OHLENDIECK K. Phosphoproteomic analysis of aged skeletal muscle. International Journal of Molecular Medicine, 2008, 22(1):33-42. |
[34] |
PAPAKONSTANTI E A, STOURNARAS C. Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Molecular Biology of the Cell, 2002, 13(8):2946-2962. doi: 10.1091/mbc.02-01-0599.
doi: 10.1091/mbc.02-01-0599 |
[35] |
CARLIER M F, PANTALONI D. Control of actin dynamics in cell motility. Journal of Molecular Biology, 1997, 269(4):459-467. doi: 10.1006/jmbi.1997.1062.
doi: 10.1006/jmbi.1997.1062 |
[36] |
HOWARD P K, SEFTON B M, FIRTEL R A. Tyrosine phosphorylation of actin in dictystelium associated with cell-shape changes. Science, 1993, 259(5092):241-244.
doi: 10.1126/science.7678470 |
[37] |
KARPLUS M. Molecular dynamics simulations of biomolecules. Accounts of Chemical Research, 2002, 35(6):321-323. doi: 10.1021/ar020082r.
doi: 10.1021/ar020082r |
[38] |
ZHANG Y J, LI X, ZHANG D Q, REN C, BAI Y Q, IJAZ M, WANG X, ZHAO Y X. Acetylation of sarcoplasmic and myofibrillar proteins were associated with ovine meat quality attributes at early postmortem. Food Science of Animal Resources, 2021, 41(4):650-663. doi: 10.5851/kosfa.2021.e22.
doi: 10.5851/kosfa.2021.e22 |
[39] |
HABIBIAN J, FERGUSON B S. The crosstalk between acetylation and phosphorylation: emerging new roles for HDAC inhibitors in the heart. International Journal of Molecular Sciences, 2018, 20(1):102. doi: 10.3390/ijms20010102.
doi: 10.3390/ijms20010102 |
[40] |
SAMANT S A, PILLAI V B, SUNDARESAN N R, SHROFF S G, GUPTA M P. Histone deacetylase 3 (HDAC3)-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. The Journal of Biological Chemistry, 2015, 290(25):15559-15569. doi: 10.1074/jbc.M115.653048.
doi: 10.1074/jbc.M115.653048 |
[41] |
VISWANATHAN M C, BLICE-BAUM A C, SCHMIDT W, FOSTER D B, CAMMARATO A. Pseudo-acetylation of K326 and K328 of actin disrupts Drosophila melanogaster indirect flight muscle structure and performance. Frontiers in Physiology, 2015, 6:116. doi: 10.3389/fphys.2015.00116.
doi: 10.3389/fphys.2015.00116 |
[42] | SCHMIDT W, VISWANATHAN M, FOSTER D B, CAMMARATO A. Acetylation of k326 and k328 on actin boosts contractile properties of muscle in vitro and in vivo. Biophysical Journal, 2017, 112(3):483a. |
[43] | SCHMIDT W, VISWANATHAN M, BLICE-BAUM A C, FOSTER D B, CAMMARATO A. Pseudo-acetylation of actin residues k326 and k328 disrupts drosophila flight performance and muscle structure. Biophysical Journal, 2015, 108(2):421a-422a. |
[44] | SCHMIDT W M, FOSTER D B, CAMMARATO A. Acetylation of actin k328 contributes to a loss in tropomyosin-mediated inhibition of myosin binding. Biophysical Journal, 2019, 116(3):457a. |
[45] |
ZHANG Y J, LI X, ZHANG D Q, BAI Y Q, WANG X. Effects of acetylation on dissociation and phosphorylation of actomyosin in postmortem ovine muscle during incubation at 4℃ in vitro. Food Chemistry, 2021, 356:129696. doi: 10.1016/j.foodchem.2021.129696.
doi: 10.1016/j.foodchem.2021.129696 |
[1] | WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286. |
[2] | ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513. |
[3] | ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096. |
[4] | ZHANG ZongYuan,JIANG YongMei,ZHANG WenXian. Effects of Histone Acetylation on Ganoderma lucidum Growth, Polysaccharide and Ganoderic Acid Biosynthesis [J]. Scientia Agricultura Sinica, 2020, 53(3): 632-641. |
[5] | LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442. |
[6] | HAO YiNing,WANG ZhiGao,HE Rong,JU XingRong,YUAN Jian. Quality Improvement of Rapeseed Meal Based on Static-State Fermented with Mixed Microorganisms [J]. Scientia Agricultura Sinica, 2020, 53(10): 2066-2077. |
[7] | ChanJing FENG,GuangZheng SUN,Yang WANG,Qing MA. Functional Analysis of Gene ShARPC5 Involved in Tomato Resistance to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 65-73. |
[8] | FENG Xin,LAI RuiLian,GAO MinXia,CHEN WenGuang,WU RuJian,CHEN YiTing. Cloning of Adβgal-1 and Adβgal-2 Genes and Their Roles During Fruit Softening of Kiwifruit [J]. Scientia Agricultura Sinica, 2019, 52(2): 312-326. |
[9] | DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255. |
[10] | GAO Xue,ZHANG Yin,XIN Guang,ZHANG Bo,MU JingJing,LI YiMeng,LIU ChangJiang,SUN XiaoRong,LI Bin. Classification Criteria and Storage Characteristics of Actinidia Arguta Fruits with Different Maturities [J]. Scientia Agricultura Sinica, 2019, 52(10): 1784-1796. |
[11] | LI Meng, LI Zheng, LI Xin, DU ManTing, SONG Xuan, ZHANG DeQuan . Effect of Phosphorylation Level on Myoglobin Stability [J]. Scientia Agricultura Sinica, 2017, 50(22): 4382-4388. |
[12] | SHEN LiuHong, XIAO JinBang, WU XiaoFeng, JIANG SiXun, JIANG Tao, DENG JunLiang, ZUO ZhiCai, YU ShuMin, CAO SuiZhong . Effects of Compound Natural Plant Preparation on Milk Withdrawal and Galactin in Dairy Cows [J]. Scientia Agricultura Sinica, 2017, 50(18): 3620-3630. |
[13] | YUAN Ke-jun, CHENG Lai-liang, NIU Qing-lin, WANG Jiang-yong. Identification and Analysis of Phosphoproteins in Red and Non-Red Apple Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(8): 1530-1539. |
[14] | CHEN Li-juan, LI Xin, LI Zheng, LI Pei-di, LI Zhong-wen, ZHANG De-quan. Protein Phosphorylation on the Function of Myofibrillar Proteins in Mutton Muscle [J]. Scientia Agricultura Sinica, 2016, 49(7): 1360-1370. |
[15] | WANG Jia-feng, LIU Hao, WANG Hui, CHEN Zhi-qiang . Screening of Putative Proteins That are Interacted with NBS-LRR Protein Pik-h by the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2016, 49(3): 482-490. |
|