Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4265-4273.doi: 10.3864/j.issn.0578-1752.2021.20.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato

JIN Rong(),LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou()   

  1. Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province/Xuzhou Sweetpotato Research Center of Jiangsu Province/Key Laboratory of Sweetpotato Biology and Genetic Breeding, Ministry of Agriculture, Xuzhou 221131, Jiangsu
  • Received:2021-04-06 Accepted:2021-06-21 Online:2021-10-16 Published:2021-10-25
  • Contact: ZhongHou TANG E-mail:jinrong_2012@126.com;zhonghoutang@sina.com

Abstract:

【Objective】Studying the function of mitogen activated protein kinase (MAPK) IbMPK6 in respect of low temperature stress tolerance in sweetpotato, that will help us to understand the mechanism of adaption to low temperature stress and play a fundamental role in molecular breeding of sweetpotato. 【Method】Agrobacterium tumefaciens strain EHA105 harbored the plasmid 35S::IbMPK6-GFP were transformed intosweetpotato cv. Xushu29 embryogenic callus. Molecular examination and qRT-PCR were used to screen and select transgenic lines. For low temperature stress assay, selected transgenic lines were performed to observe the phenotype and determine the physiological indexes such as Fv/Fm, the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) after low temperature treatment and recovery treatment. Diaminobenzidine (DAB) staining and nitro blue tetrazolium (NBT) staining analysis were performed to observe reactive oxygen species (ROS) accumulation. The expression level of the key transcription factor IbCBF3 and downstream gene IbCOR27 involved in low temperature signal transduction pathway were identified before and after low temperature treatment. 【Result】Twelve transgenic lines were generated and three transgenic lines (L3, L8 and L11) with a high expression level of IbMPK6 were selected for low temperature tolerance assay. Under low temperature stress, the level of Fv/Fm in transgenic lines L3, L8 and L11 was 0.79, 0.79 and 0.80, while that in WT was 0.05. After temperature recovery treatment, Fv/Fm in transgenic lines has recovered to former levels, whereas the level of Fv/Fm in WT was only 0.70, which was significantly lower than that in transgenic lines. MDA content of three transgenic (lines L3, L8 and L11) increased by 0.02, 0.04 and 0.02 μmol·g-1, and it of WT increased by 0.05 μmol·g-1 after low temperature stress treatment, respectively. After recovery treatment, MDA content in transgenic lines was 0.01 μmol·g-1 on average, whereas it of WT was 0.03 μmol·g-1. The results of DAB and NBT staining showed that the leaves of WT were stained deeper than those of transgenic lines, indicated that hydrogen peroxide and superoxide anion were accumulation less in transgenic lines than in WT. Furthermore, H2O2 level in WT was significantly higher than that in transgenic lines under low temperature stress condition and after recovery treatment. Low temperature regulated the expression level of IbCBF3 and IbCOR27 genes, but the expression level in transgenic lines was higher than that in WT. 【Conclusion】Overexpression of IbMPK6 in sweetpotato resulted in enhanced tolerance to low temperature stress, via alleviating the damage of membrane and photosynthetic system, and decreasing ROS accumulation. IbMPK6 involved in low temperature signaling transduction pathway by up-regulating the expression level of cold related genes IbCBF3 and IbCOR27.

Key words: sweetpotato, IbMPK6, transgenic lines, low temperature stress

Table 1

The primer sequences"

引物名称 Gene name 正向引物序列 Forward primer sequence (5′-3′) 反向引物序列 Revers primer sequence (5′-3′)
IbMPK6-PCR ATGGACGCTGGTTCGGCTCAG TCACATTTGCAGCTCAAACTC
GFP6-PCR AGGTTATTGGAAAATTAAGGGCC AACCAGATCCGATTTTGGAGGATG
IbMPK6-RT GCGGCAGATTCATCCAATAC TATCGCTACGTGCTCATTCG
IbCBF3 TTCGCCACTGTCTTCTTC TATCCTGGACTTCTTGTTG
IbCOR27 CCAATCTCAGCTTCCTTTGC CATGAACCTCAGCATTGTCG
IbARF CTTTGCCAAGAAGGAGATGC TCTTGTCCTGACCACCAACA

Fig. 1

Generation of IbMPK6-overexpression transgenic sweetpotato plants A: Schematic diagram of IbMPK6-overexprssing constructs. B: Genomic DNA PCR analysis of IbMPK6-overexpressing transgenic sweetpotato lines. M: Marker; P: Plasmid; WT: Wide type; L1-L12: Transgenic plants. C: qRT-PCR analysis of IbMPK6-overexpressing transgenic sweetpotato lines. Lower-case letters indicated significantly different at P<0.01. The three lines (L3, L8 and L11) with the highest expression level of IbMPK6 were marked with red border"

Fig. 2

Low temperature-resistance detection of IbMPK6-overexpressing sweetpotato A: Phenotype analysis; B: Optimal/maximal quantum yield of PSⅡ; C: MDA content. * and ** indicated significantly different at P<0.05 and P<0.01, respectively"

Fig. 3

Oxidative stress-resistance analysis of IbMPK6-overexprssion sweetpotato under low temperature treatment A: DAB staining; B: NBT staining; C: H2O2 content"

Fig. 4

Expression pattern of low temperature related genes"

[1] CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology, 2010: 39-55.
[2] 解则义. 贮藏期甘薯响应冷胁迫的miRNA及其靶基因鉴定分析[D]. 徐州: 江苏师范大学, 2017.
XIE Z Y. Identifies chilling responsive miRNAs and their targets in sweetpotato (Ipomoea batatas Lam.) during storage[D]. Xuzhou: Jiangsu Normal University, 2017. (in Chinese)
[3] 马代夫, 李强, 曹清河, 钮福祥, 谢逸萍, 唐君, 李洪民. 中国甘薯产业及产业技术的发展与展望. 江苏农业学报, 2012, 28(5):969-973.
MA D F, LI Q, CAO Q H, NIU F X, XIE Y P, TANG J, LI H M. Development and prospect of sweetpotato industry and its technologies in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5):969-973. (in Chinese)
[4] SEGER R, KREBS E G. The MAPK signaling cascade. The FASEB journal, 1995, 9(9):726-735.
doi: 10.1096/fsb2.v9.9
[5] MIZOGUCHI T, ICHIMURA K, SHINOZAKI K. Environmental stress response in plants: The role of mitogen-activated protein kinases. Trends in Biotechnology, 1997, 15(1):15-19.
doi: 10.1016/S0167-7799(96)10074-3
[6] DE Z A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science, 2016, 21(8):677-685.
doi: 10.1016/j.tplants.2016.04.004
[7] FURUYA T, MATSUOKA D, NANMORI T. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Letters, 2014, 588(11):2025-2030.
doi: 10.1016/j.febslet.2014.04.032
[8] XIE G, KATO H, IMAI R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochemical Journal, 2012, 443(1):95-102.
doi: 10.1042/BJ20111792
[9] TEIGE M, SCHEIKL E, EULGEM T, DOCZI F, ICHIMURA K, SHINOZAKI K, DANGL J L, HIRT H. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 2004, 15(1):141-152.
doi: 10.1016/j.molcel.2004.06.023
[10] SHOU H, BORDALLO P, FAN J B, YEAKLEY J M, BIBIKOVA M, SHEEN J, WANG K. Expression of an active tobacco mitogen- activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9):3298-3303.
[11] KOVTUN Y, CHIU W L, TENA G, SHEEN J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6):2940-2945.
[12] KONG X P, PAN J W, ZHANG M Y, XING X, ZHOU Y, LIU Y, LI D P, LI D Q. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell & Environment, 2011, 34(8):1291-1303.
[13] YU L, YAN J, YANG Y, ZHU W M. Overexpression of tomato mitogen-activated protein kinase SlMPK3 in tobacco increases tolerance to low temperature stress. Plant Cell, Tissue and Organ Culture, 2015, 121(1):21-34.
doi: 10.1007/s11240-014-0675-1
[14] PAN J, ZHANG M, KONG X, XING X, LIU Y K, ZHOU Y, LIU Y, SUN L P, LI D Q. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 2012, 235(4):661-676.
doi: 10.1007/s00425-011-1510-0
[15] ROBINSON M J, COBB M H. Mitogen-activated protein kinase pathway. Current Opinion Cell Biology, 1997, 9(2):180-186.
doi: 10.1016/S0955-0674(97)80061-0
[16] DROILLARD M, BOUDSOCQ M, BARBIER-BRYGOO H, LAURIERE, C. Different protein kinase families are activated by osmotic stresses in Arabidopsis cell suspensions: Involvement of the MAP kinase AtMPK3 and AtMPK6. FEBS Letters, 2002, 527:43-50.
doi: 10.1016/S0014-5793(02)03162-9
[17] LIU Y, ZHANG D, WANG L, LI D Q. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Molecular Biology Reporter, 2013, 31(6):1446-1460.
doi: 10.1007/s11105-013-0623-y
[18] XIE G, KATO H, SASAKI K, IMAI R. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Letters, 2009, 583(17):2734-2738.
doi: 10.1016/j.febslet.2009.07.057
[19] KIM H S, PARK S C, JI C Y, PARK S, JEONG J C, LEE H S, KWAK S S. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. Plant Physiology & Biochemistry, 2016, 108:37-48.
[20] HODGES D M, DELONG J M, PRANGE F. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207(4):604-611.
doi: 10.1007/s004250050524
[21] ZHOU B, WANG J, GUO Z, TAN H Q, ZHU X C. A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regulation, 2006, 49(2/3):113-118.
doi: 10.1007/s10725-006-9000-2
[22] BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5):1229-1240.
doi: 10.1093/jxb/ert375
[23] 江苏省农业科学院. 中国甘薯栽培学. 第12版. 上海: 上海科学技术出版社, 1984.
Jiangsu Academy of Agricultural Sciences. Sweetpotato Cultivation in China. 12th ed. Shanghai: Shanghai Science and Technology Press, 1984. (in Chinese)
[24] KIM Y H, KIM M D, PARK S C, YANG K S, JEONG J C, LEE H S, KWAK S S. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress. Plant Physiology Biochemistry, 2011, 49(12):1436-1441.
doi: 10.1016/j.plaphy.2011.09.002
[25] JI C Y, JIN R, XU Z, KIM H S, LEE C J, KANG L, KIM S E, LEE H U, LEE J S, KANG C H, CHI Y H, LEE S Y, XIE Y P, LI H M, MA D F, KWAK S S. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biology, 2017, 17:139.
doi: 10.1186/s12870-017-1087-2
[26] GONG Z Z, XIONG L M, SHI H Z, YANG S H, HERRERA- ESTRELLA L R, XU G H, CHAO D Y, LI J R, WANG P Y, QIN F, LI J J, DING Y L, SHI Y T, WANG Y, TANG Y Q, GUO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency. Science China-Life sciences, 2020, 63(5):635-674.
doi: 10.1007/s11427-020-1683-x
[27] HU W H, WU Y, ZENG J Z, HE L, ZENG Q M. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica, 2010, 48(4):537-544.
doi: 10.1007/s11099-010-0071-y
[28] THEOCHARIS A, CLÉMENT C, BARKA E A. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 35(6):1091-1105.
[29] BANTI V, MAFESSONI F, LORETI E, ALPI A, PERATA P. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiology, 2010, 152(3):1471-1483.
doi: 10.1104/pp.109.149815
[30] VOLKOV R A, PANCHUK I I, MULLINEAUX P M, SCHÖFFL F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Molecular Biology, 2006, 61(4/5):733-746.
doi: 10.1007/s11103-006-0045-4
[31] SHI Y T, DING Y L, YANG S H. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiology, 2015, 56(1):7-15.
doi: 10.1093/pcp/pcu115
[32] CHINNUSAMY V, OHTA M, KANRAR S, LEE B H, HONG X, AGARWAL M, ZHU J K. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Development, 2003, 17(8):1043-1054.
doi: 10.1101/gad.1077503
[33] DONG M A, FARRÉ E M, THOMASHOW M F. Circadian clock associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proceedings of the National Academy Sciences of the United States of America, 2011, 108(17):7241-7246.
[34] JIANG B C, SHI Y T, ZHANG X Y, XIN X Y, QI L J, GUO H W, LI J W, YANG S H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32):E6695-E6702.
[35] KIM W Y, FUJIWARA S, SUH S S, KIM J, KIM Y, HAN L, DAVID K, PUTTERILL J, NAM H G, SOMERS D E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449(7160):356-360.
doi: 10.1038/nature06132
[36] NORÉN L, KINDGREN P, STACHULA P, RÜHL M, ERIKSSON M E, HURRY V, STRAND Å. HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression. Plant Physiology, 2016, 171:1392-1406.
[37] JIN R, KIM B H, JI C Y, KIM H S, MA D F, KWAK S S. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 2017, 118:45-54.
doi: 10.1016/j.plaphy.2017.06.002
[38] PITZSCHKE A, HIRT H. Mitogen-activated protein kinase and reactive oxygen species signaling in plants. Plant Physiology, 2006, 141(2):351-356.
doi: 10.1104/pp.106.079160
[39] NISHIHAMA R, BANNO H, KAWAHARA E, IRIE K, MACHIDA Y. Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases (MAPKKKs). The Plant Journal, 1997, 12(1):39-48.
doi: 10.1046/j.1365-313X.1997.12010039.x
[40] LI H, DING Y L, SHI Y T, ZHANG X Y, ZHANG S Q, GONG Z Z, YANG S H. MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental Cell, 2017, 43(5):630-642.
doi: 10.1016/j.devcel.2017.09.025
[41] ZHANG Z Y, LI J H, LI F, LIU H H, YANG W, CHONG K, XU Y Y. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Developmental Cell, 2017, 43(6):731-743.
doi: 10.1016/j.devcel.2017.11.016
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[4] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[5] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[6] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[7] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[8] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
[9] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[10] LI Ling,XU Shu,CAO RuXia,CHEN LingLing,CUI Peng,LÜ ZunFu,LU GuoQuan. Evaluation of Texture Quality of Sweetpotato Storage Roots Based on PCA-Entropy TOPSIS [J]. Scientia Agricultura Sinica, 2020, 53(11): 2161-2170.
[11] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[12] LIU FengJiao, CAI BingBing, SUN ShengNan, BI HuanGai,AI XiZhen. Effect of Hydrogen-Rich Water Soaked Cucumber Seeds on Cold Tolerance and Its Physiological Mechanism in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2017, 50(5): 881-889.
[13] TANG ZhongHou, ZHANG AiJun, CHEN XiaoGuang, JIN Rong, LIU Ming, LI HongMin, DING YanFeng. Starch Physico-Chemical Properties and Their Difference in Three Sweetpotato (Ipomoea batatas(L.) Lam) Genotypes Under Low Potassium Stress [J]. Scientia Agricultura Sinica, 2017, 50(3): 513-525.
[14] WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin. The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis [J]. Scientia Agricultura Sinica, 2016, 49(4): 677-685.
[15] LUO Kai, LU Hui-xiang, WU Zheng-dan, WU Xue-li, YIN Wang, TANG Dao-bin, WANG Ji-chun, ZHANG Kai. Genetic Diversity and Population Structure Analysis of Main Sweet Potato Breeding Parents in Southwest China [J]. Scientia Agricultura Sinica, 2016, 49(3): 593-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!