Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1159-1171.doi: 10.3864/j.issn.0578-1752.2022.06.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain

WANG ShuHui1,2(),TAO Wen3,LIANG Shuo1,2,ZHANG XuBo3(),SUN Nan1(),XU MingGang1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2Gembloux Agro-Bio Tech, University of Liege, Passage des deportes 2, Gembloux 5030, Belgium
    3Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/Key Laboratory of Ecosystem Network Observation and Modeling, Beijing 100101
  • Received:2021-02-26 Accepted:2021-08-12 Online:2022-03-16 Published:2022-03-25
  • Contact: XuBo ZHANG,Nan SUN E-mail:shuhuiwang0512@163.com;zhangxb@igsnrr.ac.cn;sunnan@caas.cn

Abstract:

【Objective】To provide theoretical guidance for mitigating global warming, the comprehensive effects of manure amendment on soil organic carbon sequestration and greenhouse gas emissions were studied.【Method】Based on the long-term experiment, the validated process-based model-SPACSYS, combined with regional database and ArcGIS, was used to clarify the spatial characteristics of average annual soil organic carbon sequestration rate (SOCSR), average annual soil N2O emission and average annual net global warming potential (NGWP) under three long-term fertilization scenarios (equal nitrogen fertilization), namely, chemical fertilizers only (NPK), 50% of chemical fertilizers combined with 50% of manure (NPKM(5:5)) and 30% of chemical fertilizers combined with 70% of manure (NPKM(3:7)), from dry land in the North China Plain from 2010 to 2050.【Result】The SOCSR from dry land in the North China Plain was higher in the east and lower in the west, and the higher regions mainly included Jiangsu Province and Shandong Province. Correlation analysis showed that there was a significant negative correlation between SOCSR and initial soil organic carbon content. Stepwise linear regression analysis further indicated that initial soil organic carbon content, mean annual temperature and soil pH were three important factors affecting SOCSR, which accounted for 24% of the variation of SOCSR. The average annual soil N2O emission was higher in the central part of the North China Plain, lower in the north and south, and the higher regions included parts of Shandong Province and Jiangsu Province. Correlation analysis showed that there was a significant positive correlation between average annual soil N2O emission and initial soil organic carbon content. In general, compared with NPK, NPKM(5:5) and NPKM(3:7) both increased SOCSR and decreased average annual soil N2O emission from dry land in the North China Plain, of which SOCSR (233 and 236 kg C·hm-2·a-1) increased by 79% and 82%, respectively, the average annual soil N2O emission(15.8 and 14.4 kg N·hm-2·a-1) decreased by 21% and 28%, respectively. As a result, NGWP (6.6 and 5.9 t CO2-eq·hm-2·a-1) decreased by 26% and 34%, respectively.【Conclusion】Compared with the application of chemical fertilizers, the application of chemical fertilizers combined with manure was beneficial to SOC sequestration, soil N2O emission reduction and mitigation of glowing warming from dry land in the North China Plain over the long-term.

Key words: North China Plain, manure, soil organic carbon sequestration rate, N2O emission, model

Fig. 1

The distribution of dry land in North China Plain and study sites"

Fig. 2

Nitrogen application amount in dry land of North China Plain in 2010"

Fig. 3

The spatial characteristics of average annual SOC sequestration rate (SOCSR) under three fertilization scenarios from dry land in North China Plain from 2010 to 2050 NPK, NPKM(5:5) and NPKM(3:7) represent fertilization scenarios that received chemical fertilizers only (NPK), 50% of chemical fertilizers combined with 50% of manure (NPKM(5:5)) and 30% of chemical fertilizers combined with 70% of manure (NPKM(3:7)), respectively, the three fertilization scenarios were equal nitrogen fertilization. The same as below"

Table 1

The average annual SOC sequestration rate (SOCSR) under three fertilization scenarios from dry land in North China Plain from 2010 to 2050"

施肥情景
Fertilization scenarios
土壤年均固碳速率Average annual SOC sequestration rate (kg C·hm-2·a-1)
北京
Beijing
天津
Tianjin
河北
Hebei
河南
Henan
山东
Shandong
江苏
Jiangsu
安徽
Anhui
华北平原
North China Plain
NPK 132±4 134±2 117±15 106±12 147±23 179±21 122±19 130±27
NPKM(5:5) 214±7 248±10 203±19 189±19 272±36 317±21 207±30 233±48
NPKM(3:7) 217±7 251±9 205±19 192±19 275±36 320±21 209±30 236±48

Fig. 4

The spatial characteristics of average annual soil N2O emission under three fertilization scenarios from dry land in North China Plain from 2010 to 2050"

Table 2

The average annual soil N2O emission under three fertilization scenarios from dry land in North China Plain from 2010 to 2050"

施肥情景
Fertilization scenarios
土壤N2O年均排放量Average annual soil N2O emission (kg N·hm-2·a-1)
北京
Beijing
天津
Tianjin
河北
Hebei
河南
Henan
山东
Shandong
江苏
Jiangsu
安徽
Anhui
华北平原
North China Plain
NPK 17.2±1.4 20.3±1.7 14.7±2.3 16.5±13 26.0±6.9 23.4±3.8 14.9±2.4 20.1±7.0
NPKM(5:5) 11.5±1.2 14.5±1.3 10.5±1.7 13.2±2.6 21.4±7.1 17.4±3.1 11.3±1.6 15.8±6.8
NPKM(3:7) 9.9±1.0 12.5±1.2 9.3±1.6 12.2±2.5 19.8±7.2 15.3±2.8 10.1±1.3 14.4±6.6

Fig. 5

The spatial characteristics of average annual net global warming potential (NGWP) under three fertilization scenarios from dry land in North China Plain from 2010 to 2050"

Table 3

The average annual net global warming potential (NGWP) under three fertilization scenarios from dry land in North China Plain from 2010 to 2050"

施肥情景
Fertilization scenarios
年均净全球增温潜势 Average annual net global warming potential (t CO2-eq·hm-2·a-1)
北京
Beijing
天津
Tianjin
河北
Hebei
河南
Henan
山东
Shandong
江苏
Jiangsu
安徽
Anhui
华北平原
North China Plain
NPK 7.6±0.6 9.0±0.8 6.5±1.0 7.3±1.4 11.6±3.2 10.3±1.7 6.5±1.0 8.9±3.2
NPKM(5:5) 4.6±0.5 5.9±0.6 4.2±0.8 5.5±1.2 9.0±3.3 7.0±1.4 4.5±0.6 6.6±3.1
NPKM(3:7) 3.8±0.4 4.9±0.5 3.6±0.7 5.0±1.2 8.3±3.3 6.0±1.2 3.9±0.5 5.9±3.0

Fig. 6

The relationship between average annual SOC sequestration rate, average annual soil N2O emission and initial SOC content under three fertilization scenarios from dry land in North China Plain"

Table 4

Summaries of stepwise linear regressions between average annual SOC sequestration rate (SOCSR) and related explanatory factors"

响应变量
Response index
解释变量
Variable included
回归方程Regression 参数Parameter
F 显著性 Sig. 校正R2 Adj. R2 系数Coefficient t 显著性 Sig.
土壤年均固碳速率Average annual SOC sequestration rate (SOCSR) 截距Intercept 20.42 <0.0001 0.24 851.78 6.77 <0.0001
初始土壤有机碳含量Initial SOC content -8.12 -7.52 <0.0001
年均温MAT -21.90 -3.98 <0.0001
pH -34.57 -3.06 0.003
[1] BOUCHER O, RANDALL D, ARTAXO P, BRETHERTON C, MIDGLEY P M. Contribution of working group | to the fifth assessment report of the Intergovernmental Panel on Climate Change. Clouds and aerosols, 2013.
[2] 秦大河, Thomas Stocker. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 2014,10(1):1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001.
doi: 10.3969/j.issn.1673-1719.2014.01.001
QIN D H, STOCKER T. Highlights of the IPCC working group I fifth assessment report. Progressus Inquisitiones DE Mutatione Climatis, 2014,10(1):1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001. (inChinese)
doi: 10.3969/j.issn.1673-1719.2014.01.001
[3] 王玉英, 李晓欣, 董文旭, 张玉铭, 秦树平, 胡春胜. 华北平原农田温室气体排放与减排综述. 中国生态农业学报, 2018,26(2):167-174. doi: 10.13930/j.cnki.cjea.171117.
doi: 10.13930/j.cnki.cjea.171117
WANG Y Y, LI X X, DONG W X, ZHANG Y M, QIN S P, HU C S. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain. Chinese Journal of Eco-Agriculture, 2018,26(2):167-174. doi: 10.13930/j.cnki.cjea.171117.(in Chinese)
doi: 10.13930/j.cnki.cjea.171117
[4] 王玉英, 胡春胜. 施氮水平对太行山前平原冬小麦-夏玉米轮作体系土壤温室气体通量的影响. 中国生态农业学报, 2011,19(5):1122-1128. doi: 10.3724/sp.j.1011.2011.01122.
doi: 10.3724/sp.j.1011.2011.01122
WANG Y Y, HU C S. Soil greenhouse gas emission in winter wheat/summer maize rotation ecosystem as affected by nitrogen fertilization in the Piedmont Plain of Mount Taihang, China. Chinese Journal of Eco-Agriculture, 2011,19(5):1122-1128. doi: 10.3724/sp.j.1011.2011.01122. (in Chinese)
doi: 10.3724/sp.j.1011.2011.01122
[5] 王玉英, 胡春胜, 程一松, 张玉铭, 明华, 杨培培. 太行山前平原夏玉米-冬小麦轮作生态系统碳截存及其气体调节价值. 农业环境科学学报, 2009,28(7):1508-1515. doi: 10.3321/j.issn:1672-2043.2009.07.031.
doi: 10.3321/j.issn:1672-2043.2009.07.031
WANG Y Y, HU C S, CHENG Y S, ZHANG Y M, MING H, YANG P P. Carbon sequestrations and gas regulations in summer-maize and winter-wheat rotation ecosystem affected by nitrogen fertilization in the piedmont plain of Taihang mountains, China. Journal of Agro-Environment Science, 2009,28(7):1508-1515. doi: 10.3321/j.issn:1672-2043.2009.07.031. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2009.07.031
[6] LIU C Y, WANG K, ZHENG X H. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in Northern China. Biogeosciences, 2012,9(2):839-850. doi: 10.5194/bg-9-839-2012.
doi: 10.5194/bg-9-839-2012
[7] LAL R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304(5677):1623-1627. doi: 10.1126/science.1097396.
doi: 10.1126/science.1097396
[8] MAILLARD É, ANGERS D A. Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biology, 2014,20(2):666-679. doi: 10.1111/gcb.12438.
doi: 10.1111/gcb.12438
[9] JIANG G Y, ZHANG W J, XU M G, KUZYAKOV Y, ZHANG X B, WANG J Z, DI J Y, MURPHY D V. Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China. Global Biogeochemical Cycles, 2018,32(11):1659-1672. doi: 10.1029/2018gb005960.
doi: 10.1029/2018gb005960
[10] XU C, HAN X A, BOL R, SMITH P, WU W L, MENG F Q. Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: a meta-analysis. Ecology and Evolution, 2017,7(17):6702-6715. doi: 10.1002/ece3.3211.
doi: 10.1002/ece3.3211
[11] SANZ-COBENA A, LASSALETTA L, AGUILERA E, PRADO A D, GARNIER J, BILLEN G, IGLESIAS A, SÁNCHEZ B, GUARDIA G, ABALOS D, PLAZA-BONILLA D, PUIGDUETA-BARTOLOMÉ I, MORAL R, GALÁN E, ARRIAGA H, MERINO P, INFANTE-AMATE J, MEIJIDE A, SMITH P. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: a review. Agriculture, Ecosystems & Environment, 2017,238:5-24. doi: 10.1016/j.agee.2016.09.038.
doi: 10.1016/j.agee.2016.09.038
[12] 翟振, 王立刚, 李虎, 邱建军, 杨军, 董小雨. 有机无机肥料配施对春玉米农田N2O排放及净温室效应的影响. 农业环境科学学报, 2013,32(12):2502-2510. doi: 10.11654/jaes.2013.12.012.
doi: 10.11654/jaes.2013.12.012
ZHAI Z, WANG L G, LI H, QIU J J, YANG J, DONG X Y. Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer. Journal of Agro-Environment Science, 2013,32(12):2502-2510. doi: 10.11654/jaes.2013.12.012. (in Chinese)
doi: 10.11654/jaes.2013.12.012
[13] GUO Y L, LUO L G, CHEN G X, KOU Y P, XU H. Mitigating nitrous oxide emissions from a maize-cropping black soil in northeast China by a combination of reducing chemical N fertilizer application and applying manure in autumn. Soil Science and Plant Nutrition, 2013,59(3):392-402. doi: 10.1080/00380768.2013.775006.
doi: 10.1080/00380768.2013.775006
[14] LIU H T, LI J, LI X, ZHENG Y H, FENG S F, JIANG G M. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Science Bulletin, 2015,60(6):598-606. doi: 10.1007/s11434-014-0679-6.
doi: 10.1007/s11434-014-0679-6
[15] 沈仕洲, 王风, 薛长亮, 张克强. 施用有机肥对农田温室气体排放影响研究进展. 中国土壤与肥料, 2015(6):1-8. doi: 10.11838/sfsc.20150601.
doi: 10.11838/sfsc.20150601
SHEN S Z, WANG F, XUE C L, ZHANG K Q. Research advances on effect of organic fertilizer on farmland greenhouse gas emissions. Soil and Fertilizer Sciences in China, 2015(6):1-8. doi: 10.11838/sfsc.20150601. (in Chinese)
doi: 10.11838/sfsc.20150601
[16] 赵满兴, 周建斌, 陈竹君, 杨绒. 有机肥中可溶性有机碳、氮含量及其特性. 生态学报, 2007,27(1):397-403.
ZHAO M X, ZHOU J B, CHEN Z J, YANG R. Concentration and characteristics of soluble organic nitrogen (SON) and carbon (SOC) in different types of organic manures. Acta Ecologica Sinica, 2007,27(1):397-403. (in Chinese)
[17] 王树会, 张旭博, 孙楠, 李忠芳, 徐明岗. 2050年农田土壤温室气体排放及碳氮储量变化SPACSYS模型预测. 植物营养与肥料学报, 2018,24(6):1550-1565. doi: 10.11674/zwyf.18216.
doi: 10.11674/zwyf.18216
WANG S H, ZHANG X B, SUN N, LI Z F, XU M G. Prediction of greenhouse gas emissions and carbon and nitrogen stocks in farmland soils in 2050 by SPACSYS model. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1550-1565. doi: 10.11674/zwyf.18216. (in Chinese)
doi: 10.11674/zwyf.18216
[18] WU L H, MCGECHAN M B, MCROBERTS N, BADDELEY J A, WATSON C A. SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description. Ecological Modelling, 2007,200(3/4):343-359. doi: 10.1016/j.ecolmodel.2006.08.010.
doi: 10.1016/j.ecolmodel.2006.08.010
[19] BINGHAM I J, WU L H. Simulation of wheat growth using the 3D root architecture model SPACSYS: Validation and sensitivity analysis. European Journal of Agronomy, 2011,34(3):181-189. doi: 10.1016/j.eja.2011.01.003.
doi: 10.1016/j.eja.2011.01.003
[20] WU L H, SHEPHERD A. Special features of the SPACSYS modeling package and procedures for parameterization and validation. Methods of Introducing System Models into Agricultural Research. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2015: 117-154.
[21] ZHANG X B, XU M G, SUN N, XIONG W, HUANG S M, WU L H. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma, 2016,265:176-186. doi: 10.1016/j.geoderma.2015.11.027.
doi: 10.1016/j.geoderma.2015.11.027
[22] LIANG S, LI Y F, ZHANG X B, SUN Z G, SUN N, DUAN Y H, XU M G, WU L H. Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in Northern China. Agricultural and Forest Meteorology, 2018,262:310-321. doi: 10.1016/j.agrformet.2018.07.019.
doi: 10.1016/j.agrformet.2018.07.019
[23] WU L H, WHITMORE A P, BELLOCCHI G. Modelling the impact of environmental changes on grassland systems with SPACSYS. Advances in Animal Biosciences, 2015,6(1):37-39. doi: 10.1017/s2040470014000508.
doi: 10.1017/s2040470014000508
[24] ZHANG X B, XU M G, LIU J, SUN N, WANG B R, WU L H. Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: a model approach. Journal of Environmental Management, 2016,167:105-114. doi: 10.1016/j.jenvman.2015.11.014.
doi: 10.1016/j.jenvman.2015.11.014
[25] ZHANG X B, SUN Z G, LIU J, OUYANG Z, WU L H. Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain. Soil and Tillage Research, 2018,178:32-40. doi: 10.1016/j.still.2017.12.013.
doi: 10.1016/j.still.2017.12.013
[26] LIU C, WANG L, COCQ K L, CHANG C L, LI Z G, CHEN F, LIU Y, WU L H. Climate change and environmental impacts on and adaptation strategies for production in wheat-rice rotations in Southern China. Agricultural and Forest Meteorology, 2020,292/293:108136. doi: 10.1016/j.agrformet.2020.108136.
doi: 10.1016/j.agrformet.2020.108136
[27] LIANG S, ZHANG X B, SUN N, LI Y F, XU M G, WU L H. Modeling crop yield and nitrogen use efficiency in wheat and maize production systems under future climate change. Nutrient Cycling in Agroecosystems, 2019,115(1):117-136. doi: 10.1007/s10705-019-10013-4.
doi: 10.1007/s10705-019-10013-4
[28] LI Y F, LIU Y, HARRIS P, SINT H, MURRAY P J, LEE M R F, WU L H. Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process- based model. Science of the Total Environment, 2017,603/604:27-37. doi: 10.1016/j.scitotenv.2017.06.012.
doi: 10.1016/j.scitotenv.2017.06.012
[29] 张玉铭, 胡春胜, 张佳宝, 董文旭, 王玉英, 宋利娜. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011,19(4):966-975. doi: 10.3724/sp.j.1011.2011.00966.
doi: 10.3724/sp.j.1011.2011.00966
ZHANG Y M, HU C S, ZHANG J B, DONG W X, WANG Y Y, SONG L N. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chinese Journal of Eco-Agriculture, 2011,19(4):966-975. doi: 10.3724/sp.j.1011.2011.00966. (in Chinese)
doi: 10.3724/sp.j.1011.2011.00966
[30] LI B Z, SONG H, CAO W C, WANG Y J, CHEN J S, GUO J H. Responses of soil organic carbon stock to animal manure application: a new global synthesis integrating the impacts of agricultural managements and environmental conditions. Global Change Biology, 2021,27:5356-5367. doi: 10.1111/gcb.15731.
doi: 10.1111/gcb.15731
[31] SINGH BRAR B, SINGH J, SINGH G, KAUR G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize-wheat rotation. Agronomy, 2015,5(2):220-238. doi: 10.3390/agronomy5020220.
doi: 10.3390/agronomy5020220
[32] TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982,33(2):141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x.
doi: 10.1111/j.1365-2389.1982.tb01755.x
[33] SIX J, ELLIOTT E T, PAUSTIAN K, DORAN J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998,62(5):1367-1377. doi: 10.2136/sssaj1998.03615995006200050032x.
doi: 10.2136/sssaj1998.03615995006200050032x
[34] HAYNES R J, NAIDU R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 1998,51(2):123-137. doi: 10.1023/A:1009738307837.
doi: 10.1023/A:1009738307837
[35] EDMEADES D C. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems, 2003,66(2):165-180. doi: 10.1023/A:1023999816690.
doi: 10.1023/A:1023999816690
[36] 陈云峰, 韩雪梅, 胡诚, 李双来, 乔艳, 刘东海. 长期施肥对黄棕壤固碳速率及有机碳组分影响. 生态环境学报, 2013,22(2):269-275. doi: 10.16258/j.cnki.1674-5906.2013.02.018.
doi: 10.16258/j.cnki.1674-5906.2013.02.018
CHEN Y F, HAN X M, HU C, LI S L, QIAO Y, LIU D H. Impact of long-term different fertilization on yellow brownish paddy soil carbon sequestration rate and organic carbon fractions. Ecology and Environmental Sciences, 2013,22(2):269-275. doi: 10.16258/j.cnki.1674-5906.2013.02.018. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2013.02.018
[37] 王晶, 朱平, 张男, 解宏图, 张旭东. 施肥对黑土活性有机碳和碳库管理指数的影响. 土壤通报, 2003,34(5):394-397. doi: 10.3321/j.issn:0564-3945.2003.05.004.
doi: 10.3321/j.issn:0564-3945.2003.05.004
WANG J, ZHU P, ZHANG N, XIE H T, ZHANG X D. Effect of fertilization on soil active C and C pool management index of black soil. Chinese Journal of Soil Science, 2003,34(5):394-397. doi: 10.3321/j.issn:0564-3945.2003.05.004. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2003.05.004
[38] 赵金玮. 有机肥与化肥配施对黑土肥力的影响[D]. 哈尔滨: 东北农业大学, 2009.
ZHAO J W. Effects of organic manure and inorganic fertilizer combination on increasing fertility of black soil[D]. Harbin: Northeast Agricultural University, 2009. (in Chinese)
[39] 金琳, 李玉娥, 高清竹, 刘运通, 万运帆, 秦晓波, 石锋. 中国农田管理土壤碳汇估算. 中国农业科学, 2008,41(3):734-743. doi: 10.3864/j.issn.0578-1752.2008.03.014.
doi: 10.3864/j.issn.0578-1752.2008.03.014
JIN L, LI Y E, GAO Q Z, LIU Y T, WAN Y F, QIN X B, SHI F. Estimate of carbon sequestration under cropland management in China. Scientia Agricultura Sinica, 2008,41(3):734-743. doi: 10.3864/j.issn.0578-1752.2008.03.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2008.03.014
[40] YU Y X, ZHANG Y X, XIAO M, ZHAO C Y, YAO H Y. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes. Catena, 2021,206:105483. doi: 10.1016/j.catena.2021.105483.
doi: 10.1016/j.catena.2021.105483
[41] STEWART C E, PAUSTIAN K, CONANT R T, PLANTE A F, SIX J. Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 2008,40(7):1741-1750. doi: 10.1016/j.soilbio.2008.02.014.
doi: 10.1016/j.soilbio.2008.02.014
[42] MANN L K. Changes in soil carbon storage after cultivation. Soil Science, 1986,142(5):279-288. doi: 10.3334/cdiac/tcm.007.
doi: 10.3334/cdiac/tcm.007
[43] 黄昌勇, 徐建明. 土壤学. 3版. 北京: 中国农业出版社, 2010.
HUANG C Y, XU J M. Soil Science. 3rd ed. Beijing: Chinese Agriculture Press, 2010. (in Chinese)
[44] 舒晓晓, 李迎春, 王艳群, 魏珊珊, 石新丽, 王朝东, 彭正萍, 王燕. 氮肥配施调控剂对麦田土壤N2O排放及氮素利用的影响. 河北农业大学学报, 2016,39(5):30-36, 56. doi: 10.13320/j.cnki.jauh.2016.0104.
doi: 10.13320/j.cnki.jauh.2016.0104
SHU X X, LI Y C, WANG Y Q, WEI S S, SHI X L, WANG C D, PENG Z P, WANG Y. Effects of nitrogen fertilizer application on soil N2O emission and nitrogen use in wheat field. Journal of Agricultural University of Hebei, 2016,39(5):30-36, 56. doi: 10.13320/j.cnki.jauh.2016.0104. (in Chinese)
doi: 10.13320/j.cnki.jauh.2016.0104
[45] 杨清龙, 刘鹏, 董树亭, 张吉旺, 赵斌, 李荣发, 任昊, 任寒, 韩祥飞. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响. 中国农业科学, 2018,51(13):2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004.
doi: 10.3864/j.issn.0578-1752.2018.13.004
YANG Q L, LIU P, DONG S T, ZHANG J W, ZHAO B, LI R F, REN H, REN H, HAN X F. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize. Scientia Agricultura Sinica, 2018,51(13):2476-2488. doi: 10.3864/j.issn.0578-1752.2018.13.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.13.004
[46] 续勇波, 蔡祖聪. 亚热带土壤氮素反硝化过程中N2O的排放和还原. 环境科学学报, 2008,28(4):731-737. doi: 10.3321/j.issn:0253-2468.2008.04.019.
doi: 10.3321/j.issn:0253-2468.2008.04.019
XU Y B, CAI Z C. Nitrous oxide emission and reduction during denitrification in subtropical soils. Acta Scientiae Circumstantiae, 2008,28(4):731-737. doi: 10.3321/j.issn:0253-2468.2008.04.019. (in Chinese)
doi: 10.3321/j.issn:0253-2468.2008.04.019
[47] CAI Y J, DING W X, LUO J F. Nitrous oxide emissions from Chinese maize-wheat rotation systems: a 3-year field measurement. Atmospheric Environment, 2013,65:112-122. doi: 10.1016/j.atmosenv.2012.10.038.
doi: 10.1016/j.atmosenv.2012.10.038
[48] 孟磊, 蔡祖聪, 丁维新. 长期施肥对华北典型潮土N分配和N2O排放的影响. 生态学报, 2008,28(12):6197-6203. doi: 10.3321/j.issn:1000-0933.2008.12.050.
doi: 10.3321/j.issn:1000-0933.2008.12.050
MENG L, CAI Z C, DING W X. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecologica Sinica, 2008,28(12):6197-6203. doi: 10.3321/j.issn:1000-0933.2008.12.050. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2008.12.050
[49] 马二登, 马静, 徐华, 蔡祖聪. 施肥对稻田N2O排放的影响. 农业环境科学学报, 2009,28(12):2453-2458.
MA E D, MA J, XU H, CAI Z C. Effects of fertilization on nitrous oxide emission from paddy fields: a review. Journal of Agro-Environment Science, 2009,28(12):2453-2458. (in Chinese)
[50] 李虎. 黄淮海平原农田土壤CO2和N2O释放及区域模拟评价研究[D]. 北京: 中国农业科学院, 2006.
LI H. Study on soil CO2 and N2O emissions in agro-ecosystem and regional model-based evaluation in Huang-Huai-Hai plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[51] 李睿达, 张凯, 苏丹, 逯非, 万五星, 王效科, 郑华. 施氮强度对不同土壤有机碳水平桉树林温室气体通量的影响. 环境科学, 2014,35(10):3903-3910. doi: 10.13227/j.hjkx.2014.10.037.
doi: 10.13227/j.hjkx.2014.10.037
LI R D, ZHANG K, SU D, LU F, WAN W X, WANG X K, ZHENG H. Effects of nitrogen application on soil greenhouse gas fluxes in Eucalyptus plantations with different soil organic carbon content. Environmental Science, 2014,35(10):3903-3910. doi: 10.13227/j.hjkx.2014.10.037. (in Chinese)
doi: 10.13227/j.hjkx.2014.10.037
[52] 王效科, 庄亚辉, 李长生. 中国农田土壤N2O排放通量分布格局研究. 生态学报, 2001,21(8):1225-1232. doi: 10.3321/j.issn:1000-0933.2001.08.002.
doi: 10.3321/j.issn:1000-0933.2001.08.002
WANG X K, ZHUANG Y H, LI C S. The distribution pattern of N2O emission from agricultural soil in China. Acta Ecologica Sinica, 2001,21(8):1225-1232. doi: 10.3321/j.issn:1000-0933.2001.08.002. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2001.08.002
[53] AHN Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 2006,41(8):1709-1721. doi: 10.1016/j.procbio.2006.03.033.
doi: 10.1016/j.procbio.2006.03.033
[54] MATHIEU O, LÉVÊQUE J, HÉNAULT C, MILLOUX M J, BIZOUARD F, ANDREUX F. Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biology and Biochemistry, 2006,38(5):941-951. doi: 10.1016/j.soilbio.2005.08.010.
doi: 10.1016/j.soilbio.2005.08.010
[55] XU Y B, CAI Z C. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use. European Journal of Soil Science, 2007,58(6):1293-1303. doi: 10.1111/j.1365-2389.2007.00923.x.
doi: 10.1111/j.1365-2389.2007.00923.x
[56] 田亚男, 张水清, 林杉, Muhammad Shaaban, 何志龙. 外加碳氮对不同有机碳土壤N2O和CO2排放的影响. 农业环境科学学报, 2015,34(12):2410-2417. doi: 10.11654/jaes.2015.12.022.
doi: 10.11654/jaes.2015.12.022
TIAN Y N, ZHANG S Q, LIN S, SHAABAN M, HE Z L. Influence of soluble carbon and nitrogen additions on N2O and CO2 emissions from two soils with different organic carbon content. Journal of Agro-Environment Science, 2015,34(12):2410-2417. doi: 10.11654/jaes.2015.12.022. (in Chinese)
doi: 10.11654/jaes.2015.12.022
[57] 周龙, 龙光强, 汤利, 郑毅. 综合产量和土壤N2O排放的马铃薯施氮量分析. 农业工程学报, 2017,33(5):155-161. doi: 10.11975/j.issn.1002-6819.2017.02.021.
doi: 10.11975/j.issn.1002-6819.2017.02.021
ZHOU L, LONG G Q, TANG L, ZHENG Y. Analysis on N application rates considering yield and N2O emission in potato production. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(2):155-161. doi: 10.11975/j.issn.1002-6819.2017.02.021. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2017.02.021
[58] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L, ZHANG F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, 2009,106(9):3041-3046. doi: 10.1073/pnas.0813417106.
doi: 10.1073/pnas.0813417106
[59] 卢燕宇, 黄耀, 张稳, 郑循华. 基于GIS技术的1991—2000年中国农田化肥氮源一氧化二氮直接排放量估计. 应用生态学报, 2007,18(7):1539-1545. doi: 10.13287/j.1001-9332.2007.0258.
doi: 10.13287/j.1001-9332.2007.0258
LU Y Y, HUANG Y, ZHANG W, ZHENG X H. Estimation of chemical fertilizer N-induced direct N2O emission from China agricultural fields in 1991-2000 based on GIS technology. Chinese Journal of Applied Ecology, 2007,18(7):1539-1545. doi: 10.13287/j.1001-9332.2007.0258. (in Chinese)
doi: 10.13287/j.1001-9332.2007.0258
[60] 王绍强, 刘纪远, 于贵瑞. 中国陆地土壤有机碳蓄积量估算误差分析. 应用生态学报, 2003,14(5):797-802. doi: 10.13287/j.1001-9332.2003.0179.
doi: 10.13287/j.1001-9332.2003.0179
WANG S Q, LIU J Y, YU G R. Error analysis of estimating terrestrial soil organic carbon storage in China. Chinese Journal of Applied Ecology, 2003,14(5):797-802. doi: 10.13287/j.1001-9332.2003.0179. (in Chinese)
doi: 10.13287/j.1001-9332.2003.0179
[61] 卢燕宇. 基于模型和GIS技术的中国农田化学氮源N2O直接排放量估计[D]. 南京: 南京农业大学, 2007.
LU Y Y. Estimation of fertilizer-induced direct N2O emission from Chinese agricultural fields based on integration of model and GIS technology[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)
[62] BURGESS T M, WEBSTER R. Optimal interpolation and isarithmic mapping of soil properties. Journal of Soil Science, 1980,31(2):315-331. doi: 10.1111/j.1365-2389.1980.tb02085.x.
doi: 10.1111/j.1365-2389.1980.tb02085.x
[63] LIU D W, WANG Z M, ZHANG B, SONG K S, LI X Y, LI J P, LI F, DUAN H T. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems & Environment, 2006,113(1/2/3/4):73-81. doi: 10.1016/j.agee.2005.09.006.
doi: 10.1016/j.agee.2005.09.006
[64] VENTERIS E R, BASTA N T, BIGHAM J M, REA R. Modeling spatial patterns in soil arsenic to estimate natural baseline concentrations. Journal of Environmental Quality, 2014,43(3):936-946. doi: 10.2134/jeq2013.11.0459.
doi: 10.2134/jeq2013.11.0459
[65] BHUNIA G S, SHIT P K, MAITI R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of the Saudi Society of Agricultural Sciences, 2018,17(2):114-126. doi: 10.1016/j.jssas.2016.02.001.
doi: 10.1016/j.jssas.2016.02.001
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[6] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[7] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[8] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[9] WANG ShuTing,KONG YuGuang,ZHANG Zan,CHEN HongYan,LIU Peng. SPAD Value Inversion of Cotton Leaves Based on Satellite-UAV Spectral Fusion [J]. Scientia Agricultura Sinica, 2022, 55(24): 4823-4839.
[10] DENG YuanJian,CHAO Bo. Provincial Agricultural Ecological Efficiency and Its Influencing Factors in China from the Perspective of Grey Water Footprint [J]. Scientia Agricultura Sinica, 2022, 55(24): 4879-4894.
[11] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[12] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[13] ZHANG Jie,WANG Chuan,DONG XiaoXia,ZHU WenQi,YUE HuiLi,LIU ShengPing,ZHOU QingBo. Development and Application of Rapid Investigation and Analysis Platform for Agricultural and Rural Information Based on Fission Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4158-4174.
[14] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[15] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!