Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1525-1536.doi: 10.3864/j.issn.0578-1752.2021.07.016

Previous Articles     Next Articles

Effects of Dissolved Oxygen Concentration on Root Growth at Tillering Stage and Nitrogen Utilization Characteristics of Rice

HU JiJie1,2,ZHONG Chu3,HU ZhiHua4,ZHANG JunHua1,CAO XiaoChuang1,LIU ShouKan2,JIN QianYu1,ZHU LianFeng1()   

  1. 1China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 310006
    2Taizhou Academy of Agricultural Sciences, Taizhou 317000, Zhejiang
    3Guangxi Botanical Garden of Medicinal Plants/Guangxi Key Laboratory of Medicinal Resource Conservation and Genetic Improvement, Nanning 530023
    4Jiangxi Institute of Red Soil/National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 331717
  • Received:2020-05-26 Accepted:2020-08-31 Online:2021-04-01 Published:2021-04-22
  • Contact: LianFeng ZHU E-mail:zlfnj@163.com

Abstract:

【Objective】A formal experiment was conducted to reveal the effects of dissolved oxygen (DO) concentration on root growth at the tillering stage and nitrogen utilization of rice, so as to provide a theoretical basis to the rice oxygen nutrition and high-yield cultivation.【Method】The formal experiment was conducted at China National Rice Research Institute in 2016. Three rice varieties, including ZZY 1(lowland rice), IR45765-3B (deep-water rice) and ZH 221 (upland rice), were grown in hydroponic condition with different DO concentration (T1-1 mg·L -1, T2-3 mg·L -1, T3-5.5 mg·L -1, T4-7.5 mg·L -1 and CK-natural growth) controlled by on-line test control system (KUNTENG Q45D, America). The portable dissolved oxygen meters (YSI 550A, America) was used to examine the oxygen concentration in the nutrient solution.【Result】(1) The results showed that the decrease rate of total nitrogen content in whole concentration nutrient solution decreased with the increasing of DO concentration, while the change of ammonium salt content showed the opposite tendency under different DO concentrations. At the same determination time, the nitrate content increased with the increasing of DO concentration. Nitrite content was extremely low and was unstable in whole concentration nutrient solution. (2) Compared with CK, the root activity of three rice cultivars increased in T2, while the root vigor decreased under T1 and T4. The longest root length of three rice cultivars was elongated with increasing of DO concentration, while the total length, total surface area, volume and dry matter were reduced under T1 and T4. The root morphological indexes and dry matter accumulation of ZZY 1 and IR45765-3B under T2 were higher than that of CK. (3) The nitrogen content of three rice cultivars decreased gradually with the increasing of DO concentration at jointing stage, which showed an opposite tendency at full heading stage and full ripe stage. Compared with CK, the nitrogen accumulation of three varieties increased under T2 during the whole growth period. The nitrogen uptake of rice decreased under T3 and T4, while the proportion of nitrogen accumulation from full heading stage to full maturity stage of rice increased significantly. At full ripe stage, nitrogen accumulation of three rice varieties increased 2.3%-7.3% under T2 compared with CK, and decreased 0.7%-3.6%, 3.6%-8.5% and 15.0%-27.1%, respectively, in T1, T3 and T4. (4) The dry matter accumulation and yield of three rice varieties were T2>CK>T1>T3>T4 under different DO concentrations at full ripe stage. In all treatments, the nitrogen dry matter production efficiency was the highest under T1. Compared with CK, T2 improved the harvest index and nitrogen harvest index of three rice varieties, which were declined under other DO concentrations. The nitrogen grain production efficiency of ZZY 1 and IR45765-3B under T1 were significantly lower than that of CK, and there was no significant difference in ZH 221.【Conclusion】A moderate increase of DO concentration could improve the formation of rice root system under the condition of water cultivation, increase the dry matter and nitrogen accumulation, and improve the nitrogen utilization efficiency and yield of rice. Both hypoxia and hyperoxia stress could inhibit the root activity of different ecotypes of rice, and reduce the nitrogen uptake. Besides, the tolerance on the oxygen stress of upland rice was stronger than that of lowland rice and deep-water rice.

Key words: rice, dissolved oxygen, root morphology, nitrogen utilization, hydroponics

Fig. 1

Schematic diagram of hydroponic test"

Fig. 2

Dynamics of different dissolved oxygen concentrations"

Fig. 3

Dynamics of ammonium, nitrate, nitrite and total nitrogen content in whole concentration nutrient solution at different dissolved oxygen concentrations"

Table 1

The influence of dissolved oxygen concentration on rice root morphology at tillering stage"

品种
Variety
处理
Treatment
总根长
Total root length (cm/plant)
根系总表面积
Total surface area (cm2/plant)
平均根直径
Average root diameter (mm)
根体积
Root volume (cm3/plant)
最大根长
Maximum root length (cm/plant)
根系干物重
Dry root weight (g/plant)
中浙优1号 ZZY 1 CK 3648.7a 420.6a 0.37a 3.87a 29.63c 1.59a
T1 3460.2ab 398.4a 0.37a 3.68a 26.29d 1.50a
T2 3703.4a 428.3a 0.37a 3.95a 33.49b 1.64a
T3 3503.4ab 404.1a 0.37a 3.72a 35.20b 1.62a
T4 3018.7b 394.6a 0.37a 3.13b 40.19a 1.19b
IR45765-3B CK 2580.1b 328.6b 0.41a 3.34ab 23.38c 1.46b
T1 2379.9b 315.2b 0.42a 3.34ab 21.25d 1.30c
T2 2926.6a 373.3a 0.41a 3.80a 24.41c 1.59a
T3 2480.9b 308.6b 0.40a 3.07b 28.54b 1.23c
T4 1736.5c 226.2c 0.41a 2.36c 31.93a 0.90d
中旱221 ZH 221 CK 2065.6c 246.0b 0.35ab 2.14ab 23.63cd 0.98b
T1 1875.9d 210.3c 0.36a 1.88b 22.43d 0.91c
T2 2235.7b 243.8b 0.35ab 2.13ab 24.67c 0.99b
T3 2561.3a 267.5a 0.33b 2.23a 28.17b 1.12a
T4 2053.1c 231.1bc 0.36a 2.07ab 30.23a 0.99b

Fig. 4

The influence of dissolved oxygen concentration on root activity of rice at tillering stage Values within a rice cultivar above the bars followed by different letters indicate significant difference at 0.05 level. The same as below"

Fig. 5

Difference in nitrogen content in plant of rice at main growth stage under different dissolved oxygen concentrations"

Table 2

Difference in N accumulation of rice under different dissolved oxygen concentrations"

品种
Variety
处理
Treatment
氮积累量
N accumulation (mg/plant)
阶段氮积累量
Periodic N accumulation (mg/plant)
阶段氮积累量/总氮积累量
Ratio of periodic N accumulation to total (%)
J FH FR S-J J-FH FH-FR S-J J-FH FH-FR
中浙优1号
ZZY 1
CK 398.8a 680.1b 840.8b 398.8a 281.3b 160.6a 47.4 33.5 19.1
T1 379.7a 657.9bc 819.3b 379.7a 278.2b 161.4a 46.3 34.0 19.7
T2 434.6a 734.1a 901.8a 434.6a 299.4ab 167.7a 48.2 33.2 18.6
T3 317.7b 639.6c 810.2b 317.7b 321.9a 170.6a 39.2 39.7 21.1
T4 230.4c 525.6d 665.9c 230.4c 295.2ab 140.3b 34.6 44.3 21.1
IR45765-3B CK 312.6a 580.3ab 761.4a 312.6a 267.7ab 181.1a 41.1 35.2 23.8
T1 338.2a 558.9b 733.7ab 338.2a 220.7b 174.8a 46.1 30.1 23.8
T2 318.6a 597.5a 779.1a 318.6a 278.9a 181.7a 40.9 35.8 23.3
T3 246.8b 517.7c 696.7b 246.8b 270.9ab 179.1a 35.4 38.9 25.7
T4 201.0c 427.2d 554.9c 201.0c 226.2ab 127.7a 36.2 40.8 23.0
中旱221
ZH 221
CK 243.8a 405.6b 553.9ab 243.8a 161.8b 148.3a 44.0 29.2 26.8
T1 254.5a 407.0b 550.3ab 254.5a 152.5b 143.3a 46.3 27.7 26.0
T2 249.2a 428.8a 579.1a 249.2a 179.6a 150.4a 43.0 31.0 26.0
T3 240.0a 403.5b 531.7b 240.0a 163.5b 138.8a 45.1 30.8 26.1
T4 185.1b 347.8c 471.4c 185.1b 162.6b 133.0a 39.3 34.5 28.2

Table 3

Difference in N use efficiency and dry matter accumulation of rice under different dissolved oxygen concentrations"

品种
Variety
处理
Treatment
干物质量
Dry matter
(g/plant)
产量
Yield
(g/plant)
氮收获指数
N harvest index
收获指数
Harvest index
氮素干物质生产效率
N use efficiency for biomass production (kg·kg-1)
氮素籽粒生产效率
N use efficiency for grain production (kg·kg-1)
中浙优1
号ZZY 1
CK 56.90b 24.16b 0.51a 0.42a 67.50bc 28.74a
T1 56.75b 21.78c 0.45b 0.38b 69.44a 26.57b
T2 61.23a 26.79a 0.53a 0.44a 67.88b 29.68a
T3 54.20b 19.58d 0.44b 0.36b 67.04bc 24.14c
T4 44.26c 11.56e 0.32c 0.26c 66.50c 17.27d
IR45765-3B CK 51.37a 23.36a 0.55a 0.45a 67.50ab 30.68a
T1 49.84ab 18.94b 0.45b 0.38b 68.40a 25.81b
T2 52.15a 23.57a 0.55a 0.45a 66.94ab 30.23a
T3 46.60b 17.96b 0.47b 0.39b 66.93ab 25.79b
T4 36.62c 10.04c 0.34c 0.27c 65.78b 18.03c
中旱221 ZH 221 CK 37.82ab 17.09b 0.56b 0.45b 67.77b 30.31bc
T1 37.75ab 16.81b 0.56b 0.44b 69.04a 31.04ab
T2 39.22a 18.97a 0.61a 0.48a 67.62bc 32.70a
T3 36.21b 15.80b 0.55b 0.44b 66.81bc 29.10c
T4 32.11c 13.88c 0.54b 0.43b 66.53c 28.79c
[1] ABIKO T, OBARA M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Science, 2014, 215- 216:76-83.
[2] 甄博, 郭相平, 陆红飞. 旱涝交替胁迫对水稻分蘖期根解剖结构的影响. 农业工程学报, 2015,31(9):107-113.
ZHEN B, GUO X P, LU H F. Effects of alternative stress of drought and waterlogging at tillering stage on rice root anatomical structure. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(9):107-113. (in Chinese)
[3] YAMAUCHI T, TANAKA A, MORI H, TAKAMURE I, KATO K, NAKAZONO M. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Plant Cell and Environment, 2016,39(10):2145-2157.
[4] GAO C M, DING L, LI Y R, CHEN Y P, ZHU J W, GU M, LI Y, XU G H, SHEN Q R, GUO S W. Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. Functional Plant Biology, 2017,44(4):430-442.
[5] ARMSTRONG W. Aeration in higher plants. Advances in Botanical Research, 1980,7:225-332.
[6] 柴娟娟, 廖敏, 徐培智, 解开治, 徐昌绪, 刘光荣, 杨生茂. 我国主要低产水稻冷浸田养分障碍因子特征分析. 水土保持学报, 2012,26(2):284-288.
CHAI J J, LIAO M, XU P Z, XIE K Z, XU C X, LIU G R, YANG S M. Feature analysis on nutrient's restrictive factors of major low productive waterlogged paddy soil in China. Journal of Soil and Water Conservation, 2012,26(2):284-288. (in Chinese)
[7] FAGERIA N K, CARVALHO G D, SANTOS A B, FERREIRA E P B, KNUPP A M, . Chemistry of lowland rice soils and nutrient availability. Communications in Soil Science and Plant Analysis, 2011,42(16):1913-1933.
[8] 朱练峰. 根际氧供应对水稻根系生长的影响及其与产量形成的关系[D]. 北京: 中国农业科学院, 2013.
ZHU L F. Effect of oxygen content in rhizophere on root growth of rice (Oryza sativa L.) and its relation with yield formation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[9] ZHANG H, XUE Y G, WANG Z Q, YANG J C, ZHANG J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Research, 2009,113(1):31-40.
[10] 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012,45(23):4770-4781.
JI L, LI T X, ZHANG X Z, YU H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Scientia Agricultura Sinica, 2012,45(23):4770-4781. (in Chinese)
[11] 徐春梅, 谢涛, 王丹英, 陈松, 计成林, 章秀福, 石庆华. 根际氧浓度对水稻分蘖期养分吸收和根系形态的影响. 中国水稻科学, 2015,29(6):619-627.
XU C M, XIE T, WANG D Y, CHEN S, JI C L, ZHANG X F, SHI Q H. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage. Chinese Journal of Rice Science, 2015,29(6):619-627. (in Chinese)
[12] 赵霞, 徐春梅, 王丹英, 陈松, 陶龙兴, 章秀福. 根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响. 中国农业科学, 2015,48(18):3733-3742.
ZHAO X, XU C M, WANG D Y, CHEN S, TAO L X, ZHANG X F. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage. Scientia Agricultura Sinica, 2015,48(18):3733-3742. (in Chinese)
[13] 王佳佳, 彭廷, 张静, 刘娟, 陈浩, 杜彦修, 李俊周, 孙红正, 赵全志. 不同根际溶解氧质量浓度对生育中后期水稻根系和抗氧化酶活性的影响. 河南农业大学学报, 2016,50(6):720-725.
WANG J J, PENG T, ZHANG J, LIU J, CHEN H, DU Y X, LI J Z, SUN H Z, ZHAO Q Z. Effects of different rhizosphere dissolved oxygen mass concentration on rice root growth and antioxidant enzyme activities at middle and late growth stage. Journal of Henan Agricultural University, 2016,50(6):720-725. (in Chinese)
[14] 朱练峰, 刘学, 禹盛苗, 欧阳由男, 金千瑜. 增氧灌溉对水稻生理特性和后期衰老的影响. 中国水稻科学, 2010,24(3):257-263.
ZHU L F, LIU X, YU S M, OUYANG Y N, JIN Q Y. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice. Chinese Journal of Rice Science, 2010,24(3):257-263. (in Chinese)
[15] 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征. 作物学报, 2010,36(2):303-312.
ZHAO F, WANG D Y, XU C M, ZHANG W J, LI F B, MAO H J, ZHANG X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere. Acta Agronomica Sinica, 2010,36(2):303-312. (in Chinese)
[16] 胡继杰, 朱练峰, 胡志华, 钟楚, 林育炯, 张均华, 曹小闯, ALLEN B J, 禹盛苗, 金千瑜. 土壤增氧方式对其氮素转化和水稻氮素利用及产量的影响. 农业工程学报, 2017,33(1):167-174.
HUJ J, ZHU L F, HU Z H, ZHONG C, LIN Y J, ZHANG J H, CAO X C, ALLEN B J, YU S M, JIN Q Y. Effects of soil aeration methods on soil nitrogen transformation, rice nitrogen utilization and yield. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(1):167-174. (in Chinese)
[17] OKAMOTO A, KISHINE S, HIROSAWA T, NAKAZONO A. Effect of oxygen-enriched aeration on regeneration of rice (Oryza sativa L.) cell culture. Plant Cell Reports, 1996,15(10):731-736.
[18] 赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响. 作物学报, 2012,38(2):344-351.
ZHAO F, ZHANG W J, ZHANG X F, WANG D Y, XU C M. Effect of continuous aeration on growth and activity of enzymes related to nitrogen metabolism of different rice genotypes at tillering stage. Acta Agronomica Sinica, 2012,38(2):344-351. (in Chinese)
[19] 赵霞, 徐春梅, 王丹英, 陈松, 计成林, 陈丽萍, 章秀福. 持续低氧环境下铵硝混合营养对水稻苗期生长及氮素代谢的影响. 中国稻米, 2013,19(5):13-17.
ZHAO X, XU C M, WANG D Y, CHEN S, JI C L, CHEN L P, ZHANG X F. Effect of ammonium nitrate mixed nutrition in continuous low oxygen environment on rice seedling growth and nitrogen metabolism. China Rice, 2013,19(5):13-17. (in Chinese)
[20] 赵锋, 徐春梅, 张卫建, 章秀福, 程建平, 王丹英. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响. 中国水稻科学, 2011,25(2):195-200.
ZHAO F, XU C M, ZHANG W J, ZHANG X F, CHENG J P, WANG D Y. Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice. Chinese Journal of Rice Science, 2011,25(2):195-200. (in Chinese)
[21] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Soil Agricultural Chemical Analysis Method. Beijing: China Agricultural Scitech Press, 2000. (in Chinese)
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. The Experiment Principle and Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[23] FUJII C, NAKAGAWA T, ONODERA Y, MATSUTANI N, SASADA K, TAKAHASHI R, TOKUYAMA T. Succession and community composition of ammonia-oxidizing archaea and bacteria in bulk soil of a Japanese paddy field. Soil Science and Plant Nutrition, 2010,56(2):212-219.
[24] KE X B, ANREL R, LU Y H, CONRAD R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology, 2013,15(8):2275-2292.
[25] 张亚丽, 沈其荣, 段英华. 不同氮素营养对水稻的生理效应. 南京农业大学学报, 2004,27(2):130-135.
ZHANG Y L, SHEN Q R, DUAN Y H. Physiological effects of different nitrogen forms on rice. Journal of Nanjing Agricultural University, 2004,27(2):130-135. (in Chinese)
[26] ATTARD E, POLY F, COMMEAUX C, LAURENT F, TERADA A, SMETS B F, RECOUS S, ROUX X L. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environmental Microbiology, 2010,12(2):315-326.
[27] CAI M Z, ZHANG S N, XING C H, WANG F M, WANG N, ZHU L. Developmental characteristics and aluminum resistance of root border cells in rice seedlings. Plant Science, 2011,180(5):702-708.
[28] LARDEN M, SANTNER J, OBURGER E, WENZEL W W, GLUD R N. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant and Soil, 2015,390(1/2):279-292.
[29] 徐春梅, 王丹英, 陈松, 陈丽萍, 章秀福. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012,26(3):320-324.
XU C M, WANG D Y, CHEN S, CHEN L P, ZHANG X F. Effect of aeration on root growth and nitrogen metabolism in rice. Chinese Journal of Rice Science, 2012,26(3):320-324. (in Chinese)
[30] ALMEIDA A M, VRIEZEN W H, STRAETEN D V D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice. Russian Journal of Plant Physiology, 2003,50(6):743-751.
[31] SORRELL B K. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell and Environment, 1999,22(12):1587-1593.
[32] 赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 稻田增氧模式对水稻籽粒灌浆的影响. 中国水稻科学, 2011,25(6):605-612.
ZHAO F, ZHANG W J, ZHANG X F, WANG D Y, XU C M. Effects of oxygen-increasing patterns in paddy fields on rice grain-filling. Chinese Journal of Rice Science, 2011,25(6):605-612. (in Chinese)
[33] 胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜. 根际氧浓度对水稻产量及其氮素利用的影响. 中国水稻科学, 2015,29(4):382-389.
HU Z H, ZHU L F, LIN Y J, HU J J, ZHANG J H, JIN Q Y. Effects of rhizosphere oxygen concentration on rice grain yield and nitrogen utilization. Chinese Journal of Rice Science, 2015,29(4):382-389. (in Chinese)
[34] 胡继杰, 朱练峰, 钟楚, 张均华, 曹小闯, 禹盛苗, ALLEN B J, 金千瑜. 溶解氧对稻田土壤氮素转化及水稻氮代谢影响研究进展. 生态学杂志, 2017,36(7):2019-2028.
HU J J, ZHU L F, ZHONG C, ZHANG J H, CAO X C, YU S M, ALLEN B J, JIN Q Y. Effects of dissolved oxygen on nitrogen transformation in paddy soil and nitrogen metabolism of rice: A review. Journal of Ecology, 2017,36(7):2019-2028. (in Chinese)
[35] 曹小闯, 李晓艳, 朱练峰, 张均华, 禹盛苗, 吴良欢, 金千瑜. 水分管理调控水稻氮素利用研究进展. 生态学报, 2016,36(13):3882-3890.
CAO X C, LI X Y, ZHU L F, ZHANG J H, YU S M, WU L H, JIN Q Y. Effects of water management on rice nitrogen utilization: A review. Acta Ecologica Sinica, 2016,36(13):3882-3890. (in Chinese)
[36] 杨洋. 稻作环境适应性表型的变异分析[D]. 昆明: 云南大学, 2019.
YANG Y. Phynotypic variation analysis of environmental adaptation on rice[D]. Kunming: Yunnan University, 2019. (in Chinese)
[37] 肖卫华, 姚帮松, 张文萍, 张立成, 黄蔚, 刘祝平. 根区通气增氧对杂交水稻根系及根际土壤微生物的影响研究. 中国农村水利水电, 2016(8):41-43.
XIAO W H, YAO B S, ZHANG W P, ZHANG L C, HUANG W, LIU Z P. Effect of hybrid rice root and rhizosphere microbes by aeration in root zone. China Rural Water and Hydropower, 2016(8):41-43. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[12] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[13] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!