Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (5): 907-919.doi: 10.3864/j.issn.0578-1752.2022.05.006

• PLANT PROTECTION • Previous Articles     Next Articles

Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020

CHEN ZhiYong1(),ZHANG Zhi2,LIU Jie3,KANG AiGuo4,ZHAO SuMei5,YIN XiangJie6,LI ZhanQing7,XIE AiTing2,ZHANG YunHui1()   

  1. 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2Beijing Plant Protection Station, Beijing 100029
    3National Agro-Tech Extension and Service Centre, Beijing 100125
    4Kangbao Plant Protection and Plant Inspection Station of Hebei Province, Zhangjiakou 076650, Hebei
    5Plant Protection and Quarantine Station of Inner Mongolia Autonomous Region, Hohhot 010010
    6Shanxi Province Plant Protection and Plant Quarantine Station, Taiyuan 030001
    7Agricultural Technology Extension and Service Center of Horqin Right Front Banner, Horqin 137713, Inner Mongolia
  • Received:2021-04-22 Accepted:2021-06-17 Online:2022-03-01 Published:2022-03-08
  • Contact: YunHui ZHANG E-mail:chenzy9612@163.com;zhangyunhui@caas.cn

Abstract:

【Objective】To provide supports for improving the monitoring and warning level of the beet webworm, Loxostege sticticalis, the seasonal spatiotemporal distribution in Northern China, the sources and relationship between L. sticticalis in North and Northeast China, within and outside China were studied in 2020. 【Method】The searchlight traps were assembled to daily monitoring in Beijing, Tianjin, Hebei, Liaoning, Shanxi and Inner Mongolia. Based on the monitoring data of searchlight traps at the plant protection stations in the 6 provinces (municipality, Autonomous Region), the population fluctuations and migration pattern of L. sticticalis in Northern China were analyzed by using GrADS and R. The FNL data were processed by GrADS software, to obtain wind field information and draw the map. A three-dimensional particle trajectory analysis program based on WRF model was used to simulate the migration route of L. sticticalis, and the trajectory simulation results were plotted by ggplot2 3.3.0 package of R3.8. 【Result】The overwintering generation of L. sticticalis adults mainly occurred in Shanxi, Hebei and Inner Mongolia, and a large number of adults of the 1st generation were found in Huade of Inner Mongolia and Kangbao of Hebei in 2020. During the typical migration period, North China and Northeast China were affected by frontal and cyclonic processes. The southward or southwest low-level jet at the front of the northeast cyclone provided favorable conditions for the long-distance migration of L. sticticalis into the northeast region, but the northwest airflow at the back of it blocked the migration path. The results showed that most of the overwintering adults stayed in North China and some of them migrated to Northeast China and the border of China, Mongolia and Russia with the help of southwest airflow. In late May, the main source in Hinggan League of Inner Mongolia came from the overwintering area of L. sticticalis in North China. In early June, part of them came from the overwintering area of North China, part of them came from the junction of China, Mongolia and Russia. In late June, the main source came from North China. The adults of the 1st generation of L. sticticalis mainly came from the 1st generation larva occurrence areas in central and western Inner Mongolia and the border between China and Mongolia. Affected by the frontal weather, they gathered and landed in Huade of Inner Mongolia and Kangbao of Hebei, and further migrated to the northeast. 【Conclusion】2020 is a typical year of outbreak since the population of L. sticticalis has risen again in 2018. Strong air currents are important reasons for its successful migration, the convergence of wind shear and cyclone center causes the migrating adults to gather and land in large area, resulting in a sudden increase of local insect population. Both the overwintering generation and the 1st generation of L. sticticalis in North China and Northeast China were closely related to the foreign sources. It is of great significance to carry out the regional monitoring and prediction and forecasting in advance for L. sticticalis.

Key words: Loxostege sticticalis, migration, spatiotemporal dynamics, source

Fig. 1

Distribution of joint monitoring sites"

Fig. 2

Population dynamics of L. sticticalis in the searchlight traps in 2020"

Table 1

Migration peaks of the overwintering generation of L. sticticalis in North China in 2020"

地点
Site
位置
Location
高峰日
Peak day (m-d)
高峰日灯诱蛾量
Number of L. sticticalis
in light-trap at peak day
高峰期
Peak stage
(m-d—m-d)
卵巢发育级别
Ovarian development grade
额尔古纳市Ergun City 120.18°E, 50.24°N 06-08 2000 - -
乌兰浩特市Ulanhot City 122.09°E, 46.07°N 06-21 17334 - Ⅲ (80%)
乌拉特后旗Urad Rear Banner 107.07°E, 41.08°N 06-19 265742 - Ⅱ (90%)
围场县Weichang County 117.75°E, 41.93°N 06-17, 06-18 10000 06-17—06-20 -
太仆寺旗Taibus Banner 115.28°E, 41.88°N 06-24 40123 06-16—06-28 -
巴彦淖尔市Bayannur City 107.36°E, 40.75°N 06-18 23769 06-18—06-19 Ⅱ-Ⅲ (100%)
土默特右旗Tumd Right Banner 110.52°E, 40.57°N 06-19 20000 06-19—06-20 Ⅲ (72%)
乌拉特前旗Uard Front Banner 108.65°E, 40.74°N 06-20 6113 06-19—06-20 Ⅰ-Ⅲ (85%)
达拉特旗Dalad Banner 110.03°E, 40.41°N 06-18, 06-19 9000 06-18—06-20 Ⅱ (90%)
杭锦后旗Hanggin Rear Banner 107.15°E, 40.89°N 06-19 6270 06-19—06-20 Ⅰ-Ⅱ (90%)

Fig. 3

Wind field on 925 hPa during the peak migration period of overwintering generation of L. sticticalis adult"

Fig. 4

Wind field on 925 hPa during the peak migration period of 1st generation of L. sticticalis adult"

Fig. 5

Migration trajectories for overwintering generation of L. sticticalis"

Fig. 6

Migration trajectories for 1st generation of L. sticticalis"

[1] MATOV Q, CHIMIDTSEREN B. The meadow moth Loxostege sticticalis L. in the Mongolian People’s Republic. Zashchita Rastenii, 1984(6):53. (in Russian)
[2] AFONIN A N, AKHANAEV Y B, FROLOV A N. The range of the beet webworm Loxostege sticticalis L. (Lepidoptera, Pyraloidea: Crambidae) in the former USSR territory and its subdivision by the number of generations per season. Entomological Review, 2014, 94(2):200-204.
doi: 10.1134/S0013873814020067
[3] 全国草地螟科研协作组. 草地螟(Loxostege sticticatis Linnaeus)发生及测报和防治的研究. 中国植保导刊, 1987(S1):1-9.
National Scientific Research Cooperation Group of Loxostege sticticalis. Research on occurrence, forecast and control of Loxostege sticticalis. China Plant Protection, 1987(S1):1-9. (in Chinese)
[4] 张树坤, 刘梅凤, 李齐仁, 李吉庆. 山西省草地螟发生规律、预测预报及其综合治理的研究. 中国植保导刊, 1987(S1):82-97.
ZHANG S K, LIU M F, LI Q R, LI J Q. Research on the occurrence law, prediction and comprehensive management of Loxostege sticticalis in Shanxi Province. China Plant Protection, 1987(S1):82-97. (in Chinese)
[5] 罗礼智, 李光博, 曹雅忠. 草地螟第3个猖獗为害周期已经来临. 植物保护, 1996, 22(5):50-51.
LUO L Z, LI G B, CAO Y Z. The 3rd occurrence cycle of the beet webworm Loxostege sticticalis may be coming in China. Plant Protection, 1996, 22(5):50-51. (in Chinese)
[6] 罗礼智, 黄绍哲, 江幸福, 张蕾. 我国2008年草地螟大发生特征及成因分析. 植物保护, 2009, 35(1):27-33.
LUO L Z, HUANG S Z, JIANG X F, ZHANG L. Characteristics and causes for the outbreaks of beet webworm, Loxostege sticticalis in northern China during 2008. Plant Protection, 2009, 35(1):27-33. (in Chinese)
[7] 罗礼智, 程云霞, 唐继洪, 张蕾, 江幸福. 温湿度是影响草地螟发生为害规律的关键因子. 植物保护, 2016, 42(4):1-8.
LUO L Z, CHENG Y X, TANG J H, ZHANG L, JIANG X F. Temperature and relative humidity are the key factors for population dynamics and outbreak of the beet webworm, Loxostege sticticalis. Plant Protection, 2016, 42(4):1-8. (in Chinese)
[8] 曾娟, 姜玉英, 刘杰. 我国草地螟发生间歇期的区域格局变化. 生态学报, 2018, 38(5):1832-1840.
ZENG J, JIANG Y Y, LIU J. The regional pattern of Loxostege sticticalis L. varied during a new occurrence intermission in China. Acta Ecologica Sinica, 2018, 38(5):1832-1840. (in Chinese)
[9] 刘杰, 姜玉英, 曾娟, 陈阳, 王春荣, 张云慧, 陶元林. 2018年我国东北局部草地螟重发. 中国植保导刊, 2019, 39(5):36-41.
LIU J, JIANG Y Y, ZENG J, CHEN Y, WANG C R, ZHANG Y H, TAO Y L. Meadow moth Loxostege sticticalis occurred severely in partial area of northeast of China in 2018. China Plant Protection, 2019, 39(5):36-41. (in Chinese)
[10] 江幸福, 张蕾, 程云霞, 姜玉英, 刘杰. 草地螟第4个发生周期或将来临. 植物保护, 2019, 45(4):79-81.
JIANG X F, ZHANG L, CHENG Y X, JIANG Y Y, LIU J. The fourth occurrence cycle of the beet webworm Loxostege sticticalis may be coming in China. Plant Protection, 2019, 45(4):79-81. (in Chinese)
[11] 杨素钦, 马桂椿. 草地螟迁飞路径的探讨. 中国植保导刊, 1987(S1):122-128.
YANG S Q, MA G C. Study on migration path of Loxostege sticticalis. China Plant Protection, 1987(S1):122-128. (in Chinese)
[12] 陈晓, 陈继光, 薛玉, 郝丽萍, 张友, 赵奎军. 东北地区草地螟1999年大发生的虫源分析. 昆虫学报, 2004, 47(5):599-606.
CHEN X, CHEN J G, XUE Y, HAO L P, ZHANG Y, ZHAO K J. Immigration of the 1999 outbreak populations of the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae) into the northeastern part of China. Acta Entomologica Sinica, 2004, 47(5):599-606. (in Chinese)
[13] 陈晓, 翟保平, 宫瑞杰, 尹明浩, 张友, 赵奎军. 东北地区草地螟(Loxostege sticticalis)越冬代成虫虫源地轨迹分析. 生态学报, 2008, 28(4):1521-1535.
CHEN X, ZHAI B P, GONG R J, YIN M H, ZHANG Y, ZHAO K J. The source area of spring populations of meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae) in northeastern China. Acta Ecologica Sinica, 2008, 28(4):1521-1535. (in Chinese)
[14] 黄绍哲, 罗礼智, 姜玉英, 唐继洪, 张蕾. 我国2008年草地螟大发生种群空间分布特征. 植物保护, 2011, 37(4):76-81.
HUANG S Z, LUO L Z, JIANG Y Y, TANG J H, ZHANG L. Characteristics of spatial distribution pattern of Loxostege sticticalis outbreak population in China in 2008. Plant Protection, 2011, 37(4):76-81. (in Chinese)
[15] 张云慧, 陈林, 程登发, 姜玉英, 吕英. 草地螟2007年越冬代成虫迁飞行为研究与虫源分析. 昆虫学报, 2008, 51(7):720-727.
ZHANG Y H, CHEN L, CHENG D F, JIANG Y Y, LÜ Y. The migratory behaviour and population source of the overwintering generation of the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae) in 2007. Acta Entomologica Sinica, 2008, 51(7):720-727. (in Chinese)
[16] 张丽, 张云慧, 曾娟, 姜玉英, 程登发. 2010年牧区2代草地螟成虫迁飞的虫源分析. 生态学报, 2012, 32(8):2371-2380.
ZHANG L, ZHANG Y H, ZENG J, JIANG Y Y, CHENG D F. Analysis of the sources of second generation meadow moth populations that immigrated into Chinese pastoral areas in 2010. Acta Ecologica Sinica, 2012, 32(8):2371-2380. (in Chinese)
[17] 罗礼智, 程云霞, 唐继洪, 江幸福, 张蕾. 草地螟迁飞的原因、目标与对策. 植物保护, 2018, 44(5):34-41.
LUO L Z, CHENG Y X, TANG J H, JIANG X F, ZHANG L. The causes, targets and strategies of migration in the beet webworm, Loxostege sticticalis (Lepidoptera: Crambidae). Plant Protection, 2018, 44(5):34-41. (in Chinese)
[18] SKAMAROCK W C, KLEMP J B, DUDHIA J, GILL D O, BARKER D M, DUDA M G, HUANG X Y, WANG W, POWERS J G. A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, Colorado, USA: National Center for Atmospheric Research, 2008.
[19] 林培炯, 张智, 王旭龙, 刘冬雪, 胡高, 张云慧. 2019年北京市延庆区草地贪夜蛾种群动态与虫源分析. 植物保护学报, 2020, 47(4):758-769.
LIN P J, ZHANG Z, WANG X L, LIU D X, HU G, ZHANG Y H. Population dynamics and trajectory simulation of migratory moths of fall armyworm Spodoptera frugiperda in Yanqing of Beijing in 2019. Journal of Plant Protection, 2020, 47(4):758-769. (in Chinese)
[20] LI X J, WU M F, MA J, GAO B Y, WU Q L, CHEN A D, LIU J, JIANG Y Y, ZHAI B P, EARLY R, CHAPMAN J W, HU G. Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach. Pest Management Science, 2020, 76(2):454-463.
doi: 10.1002/ps.v76.2
[21] MA J, WANG Y C, HU Y Y, LU M H, WAN G J, CHEN F J, LIU W C, ZHAI B P, HU G. Brown planthopper Nilaparvata lugens was concentrated at the rear of the typhoon Soudelor in eastern China in August 2015. Insect Science, 2018, 25(5):916-926.
doi: 10.1111/ins.2018.25.issue-5
[22] 胡高, 吴秋琳, 武向文, 姜玉英, 曾娟, 翟保平. 东北二代粘虫大发生机制: 1978年个例分析. 应用昆虫学报, 2014, 51(4):927-942.
HU G, WU Q L, WU X W, JIANG Y Y, ZENG J, ZHAI B P. Outbreak mechanism of second generation armyworms in northeastern China: A case study in 1978. Chinese Journal of Applied Entomology, 2014, 51(4):927-942. (in Chinese)
[23] CHENG Y X, LUO L Z, SAPPINGTON T W, JIANG X F, ZHANG L, FROLOV A N. Onset of oviposition triggers abrupt reduction in migratory flight behavior and flight muscle in the female beet webworm, Loxostege sticticalis. PLoS ONE, 2016, 11(11):e0166859.
doi: 10.1371/journal.pone.0166859
[24] 陈瑞鹿, 暴祥致, 王素云, 孙雅杰, 李立群, 刘继荣. 草地螟迁飞活动的雷达观测. 植物保护学报, 1992, 19(2):171-174.
CHEN R L, BAO X Z, WANG S Y, SUN Y J, LI L Q, LIU J R. An observation of the migration of meadow moth by radar. Journal of Plant Protection, 1992, 19(2):171-174. (in Chinese)
[25] FENG H Q, WU K M, CHENG D F, GUO Y Y. Spring migration and summer dispersal of Loxostege sticticalis (Lepidoptera: Pyralidae) and other insects observed with radar in Northern China. Environmental Entomology, 2004, 33(5):1253-1265.
doi: 10.1603/0046-225X-33.5.1253
[26] 唐宗全, 张昊. 黑龙江虫灾已受控, 大豆价格短期仍将回落[R] (2008-08-20) [2021-04-22].
TANG Z Q, ZHANG H. The pest disaster in Heilongjiang has been under control, soybean prices will still fall in the short term[R] (2008-08-20) [2021-04-22]. (in Chinese)
[27] 全国农业技术推广服务中心. 草地螟越冬代成虫出现诱蛾高峰警惕1代幼虫危害[R] (2020-06-13) [2021-04-22].
National Agro-Tech Extension and Service Centre. Trapping number of overwintering adults of beet webworm peaked, be alert to the harm of first generation larvae[R] (2020-06-13) [2021-04-22]. (in Chinese)
[28] 全国农业技术推广服务中心. 草地螟越冬代成虫再次出现蛾峰 1代幼虫重发态势明显[R] (2020-06-24) [2021-04-22].
National Agro-Tech Extension and Service Centre. The overwintering adults of beet webworm appeared a peak again, and the outbreak trend of the first generation larvae was obvious[R] (2020-06-24) [2021-04-22]. (in Chinese)
[29] 尹姣, 曹雅忠, 罗礼智, 胡毅. 寄主植物对草地螟种群增长的影响. 植物保护学报, 2004, 31(2):173-178.
YIN J, CAO Y Z, LUO L Z, HU Y. Effects of host plants on population growth of the meadow moth, Loxostege sticticalis L. Journal of Plant Protection, 2004, 31(2):173-178. (in Chinese)
[30] 罗礼智, 李光博. 草地螟不同蛾龄成虫飞行能力和行为的研究// 全国昆虫生态学学术研讨会, 1992: 303-308.
LUO L Z, LI G B. Variation of the flight ability and behavior of Loxostege sticticalis adults at different ages// National Symposium on Insect Ecology, 1992: 303-308. (in Chinese)
[31] 孙虹雨. 草地螟迁飞、降落与东北冷涡的关系. 气象与环境学报, 2014, 30(6):85-91.
SUN H Y. Relationship of northeast cold vortex with migration and landing of Loxostege sticticalis (Ls). Journal of Meteorology and Environment, 2014, 30(6):85-91. (in Chinese)
[32] 韩经纬, 陈素华, 闫伟兄, 陈阳. 草地螟越冬代成虫迁飞的气象条件分析. 中国农业气象, 2013, 34(3):332-337.
HAN J W, CHEN S H, YAN W X, CHEN Y. Meteorological conditions for migration of over-winter Loxostege sticticalis Imago. Chinese Journal of Agrometeorology, 2013, 34(3):332-337. (in Chinese)
[33] 潘蕾, 武向文, 陈晓, 姜玉英, 曾娟, 翟保平. 东北迁飞场对粘虫的Pied piper效应. 应用昆虫学报, 2014, 51(4):974-987.
PAN L, WU X W, CHEN X, JIANG Y Y, ZENG J, ZHAI B P. Pied piper effect of the migration arena in northeastern China on Mythimna separata (Walker). Chinese Journal of Applied Entomology, 2014, 51(4):974-987. (in Chinese)
[34] 陈晓. 草地螟迁飞、越冬规律及暴发机制研究[D]. 南京: 南京农业大学, 2010.
CHEN X. The migration, overwinter regulation and outbreak mechanism of meadow moth (Loxostege sticticalis L.)[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[35] FROLOV A N. The beet webworm Loxostege sticticalis L. (Lepidoptera, Crambidae) in the focus of agricultural entomology objectives: I. The periodicity of pest outbreaks. Entomological Review, 2015, 95(2):147-156.
doi: 10.1134/S0013873815020013
[36] OMELOVA B P. Forecasting population dynamics of grass moth(Loxostege sticticalis). Zashchita Rastenii, 1982(9):42-46. (in Russian)
[37] MAKAROVA L A, DORONINA G M. The synoptic approach to forecasting long-range migration of insect pests. St.-Petersburg: Gidrometeoizdat, 1994: 199. (in Russian)
[38] 王春荣, 陈继光, 宋显东, 胡亚军, 司兆胜, 张跃进, 姜玉英, 张印, 黄常柱, 孟凡华. 黑龙江省草地螟第三个暴发周期特点及成因分析. 昆虫知识, 2006, 43(1):98-104.
WANG C R, CHEN J G, SONG X D, HU Y J, SI Z S, ZHANG Y J, JIANG Y Y, ZHANG Y, HUANG C Z, MENG F H. Analysis on characteristics and causes of meadow webworm, Loxostege sticticalis, in the third outbreak cycle in Heilongjiang. Entomological Knowledge, 2006, 43(1):98-104. (in Chinese)
[39] 姜玉英, 屈西峰, 夏冰, 曾娟. 农区草地螟预测预报技术规范: NY/T 1675-2008[S](2008-08-28) [2021-04-22].
JIANG Y Y, QU X F, XIA B, ZENG J. Rules for forecast technology of the meadow moth [Loxostege sticticalis (Linnaeus)] in agricultural area: NY/T 1675-2008[S] (2008-08-28) [2021-04-22]. (in Chinese)
[1] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[2] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[3] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[4] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[5] YANG ShiQi. Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security [J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394.
[6] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[7] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[8] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[11] XU FangFu,BIAN JinLong,HAN Chao,CHEN ZhiQing,LIU GuoDong,XING ZhiPeng,HU YaJie,WEI HaiYan,ZHANG HongCheng. Temperature and Light Adaptability of High-Quality Japonica Rice and Optimum Seeding Date in Huaibei Region [J]. Scientia Agricultura Sinica, 2021, 54(7): 1365-1381.
[12] DongFeng QIU,PingJuan GE,Gang LIU,JinSong YANG,JianGuo CHEN,ZaiJun ZHANG. Breeding and Evaluation of Elite Rice Line ZY56 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091.
[13] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. Effects and Mechanism of Humic Acid in Humic Acid Enhanced Phosphate Fertilizer on Fertilizer-Phosphorus Migration [J]. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042.
[14] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[15] GONG ShiFei,DING WuHan,JU XueHai,XIAO NengWu,YE QingSong,HUANG Jin,LI Hu. Source Analysis and Control Strategies of Non-Point Source Pollution in Typical Agricultural Small Watershed: A Case Study of Danjiangkou Water Conservation Area [J]. Scientia Agricultura Sinica, 2021, 54(18): 3919-3931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!