Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1081-1091.doi: 10.3864/j.issn.0578-1752.2021.06.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding and Evaluation of Elite Rice Line ZY56

DongFeng QIU1(),PingJuan GE1,Gang LIU1,JinSong YANG1,JianGuo CHEN2(),ZaiJun ZHANG1()   

  1. 1Food Crop Institute, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    2School of Life Sciences, Hubei University, Wuhan 430062
  • Received:2020-08-13 Accepted:2020-11-05 Online:2021-03-16 Published:2021-03-25
  • Contact: JianGuo CHEN,ZaiJun ZHANG E-mail:qdflcp@163.com;jgchen@hubu.edu.cn;zjzhang0459@aliyun.com

Abstract:

【Objective】In order to avoid the influences of unknown genes, genetic background and other uncontrollable factors in breeding practice, experiments were conducted to create new high-quality rice germplasm using an improved method, which integrated high-throughput SNP genotyping with traditional breeding to improve breeding efficiency. 【Method】 Two varieties of rice (Jianzhen 2 and Ezhong 5) were used as parents to make a cross (Ezhong 5/Jianzhen 2), and Ezhong 5 was used as recurrent parent to obtain backcross generations, whose progenies were selected by pedigree method. Rice qualities were evaluated in generations from BC1F2 to BC1F4. An elite line, 4W1-056, was screened in the generation of BC1F7. DNA segments from Jianzhen 2, Ezhong 5 and 66 plants of 4W1-056 were PCR-amplified and sequenced using capture sequencing technologies, and 908 SNP sites were analyzed. Phylogenetic analyses were performed based on genotypes of SNP sites using p-distance method in software MEGA7. Novel lines were selected and evaluated based on agronomic traits and rice qualities in combination with the results from phylogenetic analyses. 【Result】An elite line 4W1-056 was obtained by means of crossing, backcrossing and selfing, which has desirable plant type, strong tillering ability, good lodging resistance for stocky stems, excellent appearance quality and preliminarily stable in agronomic traits. Sixty-six plants selected from 4W1-056 were clustered into three groups based on the results from phylogenetic analyses. The base substitution rate among cluster Ⅰ, Ⅱ and cluster Ⅲ was 0.1398, and that between cluster I and Ⅱ was 0.0662. The base substitution rate within any of these clusters was 0, which suggested that there were no genetic differences among individual plants within the same cluster. Cluster II was designated ZY56 as a new line based on its agronomic traits and rice qualities, and its appearance quality is better than that of 4W1-056, with a chalkiness score of 0.9, which is closer to the appearance quality performance of Ezhong 5. ZY56 and its original parents were detected using 8K RICE SNP chips, the results showed that 14.13% of ZY56’s chromosome segments were from Jianzhen 2 and 85.87% were from Ezhong 5, Chip detection further showed that most of the genes in ZY56 originated from Ezhong 5, and verified the selection results after crossing, backcrossing and selfing. The minimum effective accumulated temperature needed for basic vegetative growth in ZY56 was 760.5℃, the critical light length for reproductive growth was 14 h 13 min, and the effective accumulated temperature needed for panicle differentiation was above 711.5℃. The results of quality analyses from experiments at different sowing dates showed that ZY56 responded to light length significantly weaker than Ezhong 5, its photosensitivity was weak and growth was stable, which was conducive to the development of rice qualities, and the rice qualities of ZY56 were more stable than Ezhong 5. 【Conclusion】We proposed a new method for the selection in higher generations of a germplasm development program, in which high-throughput SNP genotyping technology was used to screen plants for genetic consistency, and eventually to find out the strains that conform to breeding targets. This method overcame the difficulty in the selection for agronomic traits by means of traditional pedigree in advanced generations, and circumvented the problems that similar types of strains were repeatedly selected and different types were missed. The method saved efforts of selection in higher generations, while increased the efficiency of selection, so it had value of popularization.

Key words: rice, germplasm improvement, resources evaluation

Table 1

The main phenotypic characteristics of Jianzhen 2 and Ezhong 5"

品种
Variety
播始历期
Duration from seedling to heading (d)
单株穗数
Spike number
per plant
株高
Plant height (cm)
结实率
Seed setting rate (%)
千粒重
Thousand grain weight (g)
单株产量
Yield per plant (g)
长/宽
Length/width ratio
垩白粒率
Chalky rice rate (%)
垩白度
Chalkiness (%)
胶稠度
Gel consistency (mm)
鉴真2号
Jianzhen 2
102 12.6 104.2 78.7 23.7 34.5 3.1 10.0 1.0 67
鄂中5号
Ezhong 5
103 10.1 117.9 76.6 24.0 26.3 3.6 0.0 0.0 83

Fig. 1

Phylogenetic tree among pedigrees of 4W1-056, Ezhong 5 and Jianzhen 2"

Table 2

Differences of part characters in cluster Ⅰ, Ⅱ, Ⅲ in 4W1-056"

类群
Cluster
叶色
Leaf color
全生育期
Entire growth period(d)
出糙率
Husked rice yield (%)
垩白粒率
Chalky rice rate (%)
垩白度
Chalkiness degree (%)
直链淀粉含量
Amylose content (%)
胶稠度
Gel consistency (mm)
浅绿 Light green 137 78.1 8 2.1 12.6 88
浅绿 Light green 134 78.4 4 0.9 13.8 79
深绿 Light green 136 76.5 9 2.6 13.0 84

Fig. 2

The SNP sites from parents of ZY56 Red: The SNP sites come from Jianzhen 2; Blue: The SNP sites come from Ezhong 5"

Table 3

Temperature and photoperiod reactions of ZY56 in multiple growth sites"

年份地点
Year and site
播种期(月/日)
Sowing date (M/D)
始穗期(月/日)
Initial heading date (M/D)
播始历期
Duration from seedling to heading
(d)
总积温
Total accumulated temperature (℃)
有效积温
Effective accumulated temperature (℃)
基本营养生长期
Basic vegetative growth period(d)
基本营养生长有效积温
Effective accumulated temperature of basic vegetative growth (℃)
幼穗分化日
Date of spike differentiation (M/D)
幼穗分化
临界光照时长
Critical day length for spike differentiation
幼穗分化期积温
Accumulated temperature in spike differentiation period (℃)
2017荆州 2017 Jingzhou 05/08 08/16 101 2772.0 1560.0 68 945.5 07/15 13 h 56 min 1010.5
2017武汉 2017 Wuhan 05/09 08/11 95 2583.0 1443.0 62 818.0 07/10 14 h 00 min 1021.0
05/20 08/23 96 2672.5 1520.5 63 920.5 07/22 13 h 50 min 996.0
2017武穴 2017 Wuxue 05/18 08/24 98 2750.5 1550.5 67 964.0 07/24 13 h 45 min 982.5
05/30 09/03 96 2696.0 1532.0 64 992.5 08/02 13 h 33 min 935.5
06/12 09/11 92 2569.5 1465.5 59 966.0 08/11 13 h 20 min 895.5
2018枣阳 2018 Zaoyang 04/18 08/04 109 2832.5 1524.5 76 929.0 07/03 14 h 13 min 991.5
2018武汉 2018 Wuhan 05/14 08/22 101 2882.0 1670.0 68 1044.0 07/21 13 h 51 min 1022.0
2018荆州 2018 Jingzhou 05/16 08/23 100 2818.0 1618.0 67 1003.5 07/22 13 h 51 min 1010.5
2018江夏 2018 Jiangxia 05/25 08/20 88 2542.0 1486.0 55 853.0 07/19 13 h 52 min 1029.0
2018陵水 2018 Lingshui 05/09 07/31 84 2435.0 1427.0 51 872.0 06/29 13 h 14 min 951.0
11/27 03/21 115 2492.0 1112.0 85 760.5 02/20 11 h 37 min 711.5
12/01 03/31 121 2631.5 1179.5 91 827.5 03/02 11 h 47 min 712.0

Table 4

Rice quality analysis results of ZY56 and Ezhong 5 at different sowing dates (GB/T 17891-2017)"

品种
Variety
播种期(月/日)
Sowing date (M/D)
始穗期(月/日)
Initial heading date (M/D)
国标等级
National standard grade
出糙率
Husked rice yield (%)
精米率
Milled rice rate (%)
整精米率
Head rice yield (%)
粒长
Grain length (mm)
长/宽比
Length/width ratio
垩白粒率
Chalky rice rate (%)
垩白度
Chalkiness
Degree (%)
直链淀粉
含量
Amylose content (%)
胶稠度
Gel consistency (mm)
碱消值级
Alkali spreading value
鄂中5号 Ezhong 5 05/18 08/23 优1 You 1 82.5 74.3 62.2 7.3 3.6 6 1.2 14.6 69 6.5
ZY56 08/25 / 78.5 71.4 63.9 7.2 3.6 11 2.9 13.6 80 6.3
鄂中5号 Ezhong 5 05/30 08/25 / 79.9 72.8 64.7 7.2 3.4 6 1.2 13.8 73 7.0
ZY56 09/01 优1 You 1 75.2 68.1 63.1 7.2 3.6 4 1.0 14.5 70 6.7
鄂中5号 Ezhong 5 06/12 08/31 优2 You 2 68.5 65.0 56.6 7.2 3.5 13 3.0 16.2 55 6.5
ZY56 09/12 优1 You 1 76.8 70.3 59.6 7.3 3.7 4 1.4 15.5 60 7.0

Table 5

Rice RVA profile characters of ZY56 and Ezhong 5 at different sowing dates"

播种期(月/日) Sowing date(M/D) 品种
Variety
崩解值
Breakdown (RVU)
峰值
Peak (RVU)
谷值
Trough (RVU)
终值
Final (RVU)
回冷值
Setback (RVU)
05/18 鄂中5号 Ezhong 5 42.25 144.21 102.96 217.88 114.92
ZY56 43.92 138.38 94.46 208.75 41.58
05/30 鄂中5号 Ezhong 5 58.67 167.63 108.96 229.79 84.25
ZY56 60.92 173.71 112.79 228.13 117.70
06/12 鄂中5号 Ezhong 5 81.63 200.38 118.75 236.30 127.04
ZY56 76.71 189.88 113.17 232.92 119.75

Table 6

Changes of amylose content and glue consistency of ZY56 and Ezhong 5 during different milling time of rice"

播种期(月/日) Sowing date(M/D) 品种
Variety
精米30 s Milling for 30 s 精米60 s Milling for 60 s 精米90 s Milling for 90 s
直链淀粉含量
Amylose content (%)
胶稠度
Gel consistency (mm)
直链淀粉含量
Amylose content
(%)
胶稠度
Gel consistency (mm)
直链淀粉含量
Amylose content
(%)
胶稠度
Gel consistency (mm)
05/18 鄂中5号 Ezhong 5 14.2 90 14.0 77 13.9 78
ZY56 13.9 70 14.0 73 13.4 75
05/30 鄂中5号 Ezhong 5 15.0 69 13.9 70 14.3 70
ZY56 15.8 68 16.0 65 16.4 56
06/12 鄂中5号 Ezhong 5 17.3 52 15.5 60 19.2 40
ZY56 14.4 70 15.0 68 14.3 72
[1] 黎舒佳, 高谨, 李家洋, 王永红. 独脚金内酯调控水稻分蘖的研究进展. 植物学报, 2015,50(5):539-548.
LI S J, GAO J, LI J Y, WANG Y H. Advances in studies on the regulation of rice tiller by strigolactone. The Plant Journal, 2015,50(5):539-548. (in Chinese)
[2] 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 2015,48(17):3333-3353.
LI Y, LI Y H, YANG Q W, ZHANG J P, ZHANG J M, QIU L J, WANG T Y. Genomics-based crop germplasm research: Advances and perspectives. Scientia Agricultura Sinica, 2015,48(17):3333-3353. (in Chinese)
[3] 胡兴明, 钱前. 现阶段中国水稻种质创新的研究策略和应用思考. 植物遗传资源学报, 2004,5(2):193-196.
HU X M, QIAN Q. Current research strategies and ways of utilization of new rice germplasm in China. Journal of Plant Genetic Resources, 2004,5(2):193-196. (in Chinese)
[4] 余泓, 王冰, 陈明江, 刘贵富, 李家洋. 水稻分子设计育种发展与展望. 生命科学, 2018,30(10):1032-1037.
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018,30(10):1032-1037. (in Chinese)
[5] ZUO J, LI J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. National Science Review, 2014,1:253-276.
[6] 符德保, 李燕, 肖景华, 张启发, 吴昌银. 中国水稻基因组学研究历史及现状. 生命科学, 2016,28:1113-1121.
FU D B, LI Y, XIAO J H, ZHANG Q F, WU C Y. The history and current status of rice genomics research in China. Chinese Bulletin of Life Sciences, 2016,28:1113-1121. (in Chinese)
[7] LI Y, XIAO J H, CHEN L L, HUANG X H, CHENG Z K, HAN B, ZHANG Q F, WU C Y. Rice functional genomics research: past decade and future. Molecular Plant, 2018,11:359-380.
doi: 10.1016/j.molp.2018.01.007 pmid: 29409893
[8] WANG A H, HOU Q Q, SI L Z, HUANG X H, LUO J H, LU D F, ZHU J J, SHANGGUAN Y Y, MIAO J S, XIE Y F, WANG Y C, ZHAO Q, FENG Q, ZHOU C C, LI Y, FAN D L, LU Y Q, TIAN Q L, WANG Z X, HAN B. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 2019,180:2077-2090.
doi: 10.1104/pp.18.01574 pmid: 31138620
[9] XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147
[10] WANG J, ZHOU L, SHI H, MAWSHENG C, YU H, YI H, HE M, YIN J J, ZHU X B, LI Y, LI W T, LIU J L, WANG J C, CHEN X Q, QING H, WANG Y P, LIU G F, WANG W M, LI P, WU X J, ZHU L H, ZHOU J M, PAMELA C R, LI S Q, LI J Y, CHEN X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018,361:1026-1028.
pmid: 30190406
[11] TIAN Z X, QIAN Q, LIU Q Q, YAN M X, LIU X F, YAN C J, LIU G F, GAO Z Y, TANG S Z, ZENG D L, WANG Y H, YU J M, GU M H, LI J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009,106:21760-21765.
[12] ZHAO D S, LI Q F, ZHANG C Q, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018,9:1240.
pmid: 29588443
[13] HUANG X Y, CHAO D Y, GAO J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 2009,23:1805-1817.
pmid: 19651988
[14] LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015,47:827-833.
doi: 10.1038/ng.3305 pmid: 25985140
[15] LIU Y Y, CAO Y L, ZHANG Q L, LI X H, WANG S P. A cytosolic triosephosphate isomerase is a key component in XA3/XA26- mediated resistance. Plant Physiology, 2018,178:923-935.
doi: 10.1104/pp.18.00348 pmid: 30158116
[16] HU L, WU Y, WU D, RAO W W, GUO J P, MA Y H, WANG Z Z, SHANGGUAN X X, WANG H Y, XU C X, HUANG J, SHI S J, CHEN R Z, DU B, ZHU L L, HE G C. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. The Plant Cell, 2017,29:3157-3185.
pmid: 29093216
[17] HU B, WANG W, OU S J, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LIANG Y, ZHANG L H, LI L G, CHU C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015,47:834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[18] WANG Q, NIAN J Q, XIE X Z, YU H, ZHANG J, BAI J T, DONG G J, HU J, BAI B, CHEN L C, XIE Q J, FENG J, YANG X L, PENG J L, CHEN F, QIAN Q, LI J Y, ZUO J R. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018,9:735.
pmid: 29467406
[19] 张先文, 贺治洲, 江南, 邓华凤, 李继明. 高通量基因型分型技术及其在水稻中的应用. 生物技术通报, 2017,33(12):67-73.
ZHANG X W, HE Z Z, JIANG N, DENG H F, LI J M. High-throughput genotyping techniques and their applications in rice. Biotechnology Bulletin, 2017,33(12):67-73. (in Chinese)
[20] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49(22):4267-4283.
ZHANG C Q, ZHAO D S, LI Q F, GU M H, LIU Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016,49(22):4267-4283. (in Chinese)
[21] 王惠贞, 吴瑞芬, 李丹. 稻米品质形成和调控机理概述. 中国稻米, 2016,22(1):10-13.
WANG H Z, WU R F, LI D. Review on rice quality formation and its regulation mechanism. China Rice, 2016,22(1):10-13. (in Chinese)
[22] 李宏凯, 徐得泽, 陈亿毅. 优质中籼稻新品种鄂中5号的选育. 湖北农业科学, 2005(1):31-32.
LI H K, XU D Z, CHEN Y Y. Breeding of a new middle indica rice line Ezhong 5 with high quality. Hubei Agricultural Sciences, 2005(1):31-32. (in Chinese)
[23] 郑明. 高档优质中籼稻鄂中5号在孝感的种植表现. 中国稻米, 2015,21(6):105-106.
ZHENG M. Planting performance of fine quality indica rice Ezhong 5 in Xiaogan City. China Rice, 2015,21(6):105-106. (in Chinese)
[24] 张再君, 杨金松. 中国水稻品种志(湖北卷). 北京: 中国农业出版社, 2018: 76-79.
ZHANG Z J, YANG J S. China Rice Varieties (Hubei Juan). Beijing: China Agriculture Press, 2018: 76-79. (in Chinese)
[25] NEI M, KUMAR S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000.
[26] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33:1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[27] 薛大伟, 方茂庭, 钱前. 有效积温在水稻生产中的应用. 中国稻米, 2004(4):47-48.
XUE D W, FANG M T, QIAN Q. Application of effective accumulated temperature in rice production. China Rice, 2004(4):47-48. (in Chinese)
[28] 舒庆尧, 吴殿星, 夏英武, 高明尉, Anna McClung. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31(3):25-29.
SHU Q Y, WU D X, XIA Y W, GAO M W, ANNA M C. Relationship between RVA profile character and eating quality in Oryza sativa L. Scientia Agricultura Sinica, 1998,31(3):25-29. (in Chinese)
[29] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica, 2005,38(4):657-663. (in Chinese)
[30] 邱东峰, 张再君, 辜大川, 殷明珠, 焦春海, 杨金松. 水稻R7606、229A系列优异资源的创制. 植物遗传资源学报, 2013,14(5):918-924.
QIU D F, ZHANG Z J, GU D C, YIN M Z, JIAO C H, YANG J S. Breeding of elite rice lines R7606 and 229A. Journal of Plant Genetic Resources, 2013,14(5):918-924. (in Chinese)
[31] 辜大川, 邱东峰, 殷明珠, 焦春海, 杨金松, 张再君, 刘春萍. 水稻优异资源分子身份证的构建. 湖北农业科学, 2012,51(24):5581-5586.
GU D C, QIU D F, YIN M Z, JIAO C H, YANG J S, ZHANG Z J, LIU C P. Establishment of molecular identity card of elite rice resources. Hubei Agricultural Sciences, 2012,51(24):5581-5586. (in Chinese)
[32] 李丹婷, 农保选, 夏秀忠, 刘开强, 杨庆文, 张宗文, 高国庆. 东南亚稻种资源收集与鉴定评价. 植物遗传资源学报, 2012,13(4):622-625.
LI D T, NONG B X, XIA X Z, LIU K Q, YANG Q W, ZHANG Z W, GAO G Q. Collection and evaluation of rice germplasm from Southeast Asia. Journal of Plant Genetic Resources, 2012,13(4):622-625. (in Chinese)
[33] 束爱萍, 刘增兵, 余丽琴, 黎毛毛, 陈大洲. 水稻SSR标记的遗传多样性研究进展. 植物遗传资源学报, 2013,14(5):918-924.
SHU A P, LIU Z B, YU L Q, LI M M, CHEN D Z. Research progress on genetic diversity in rice based on SSR marker analysis. Journal of Plant Genetic Resources, 2013,14(5):918-924. (in Chinese)
[34] 刘传光, 张桂权. 用SSR标记分析1949-2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势. 作物学报, 2010,36(11):1843-1852.
LIU C G, ZHANG G Q. SSR analysis of genetic diversity and the temporal trends of major commercial inbred Indica rice cultivars in south China in 1949-2005. Acta Agronomica Sinica, 2010,36(11):1843-1852. (in Chinese)
[35] ZENG Y W, ZHANG H L, LI Z C, SHEN S Q, SUN J L, WANG M X, LIAO D Q, LIU X, WANG X K, XIAO F H, WEN G S. Evolution of genetic diversity of rice landraces (Oryza stiva L.) in Yunnan, China. Breeding Science, 2007,57:91-99.
[36] 陈峰, 朱其松, 徐建第, 孙公臣, 柳发财, 朱文银, 张洪瑞, 高洁, 袁守江. 山东地方水稻品种的农艺性状与品质性状的多样性分析. 植物遗传资源学报, 2012,13(3):393-397.
CHEN F, ZHU Q S, XU J D, SUN G C, LIU F C, ZHU W Y, ZHANG H R, GAO J, YUAN S J. Diversity analysis of agronomic and quality characters of rice landraces in Shandong. Journal of Plant Genetic Resources, 2012,13(3):393-397. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!