Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 225-238.doi: 10.3864/j.issn.0578-1752.2020.02.001

• Crop Genetics & Breeding·Germplasm Resources·Molecular Genetics • Previous Articles     Next Articles

QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice

ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui()   

  1. South China Agricultural University/National Engineering Research Center of Plant Space Breeding, Guangzhou 510642
  • Received:2019-05-29 Accepted:2019-07-19 Online:2020-01-16 Published:2020-02-17
  • Contact: Hui WANG E-mail:wanghui@scau.edu.cn

Abstract:

【Objective】Combine QTL mapping for grain size and related traits and screening for candidate genes to lay a good foundation for dissecting genes regulating rice grain size and related traits.【Method】A dwarf mutant CHA-1 screened from the progeny of the indica rice variety Tehuazhan carried by high altitude balloon was hybridized with another mutant H335 selected from the progeny of the indica rice variety Hanghui 7 induced by “Shenzhou 8” spaceflight. A population of 275 recombinant inbred lines (RILs) was structured from CHA-1 ×H335. A high-density genetic map was constructed using genotyping by sequencing (GBS) technology. The RIL population and parents were grown in the experimental base of South China Agricultural University consecutively in the early and late season in 2017. After ripening, rice grain images were scanned, and the grain size and related traits was obtained by SmartGrain software. QTL mapping for rice grain size and related traits was done with QTL IciMapping v 4.0 software based on inclusive composite interval mapping (ICIM).【Result】The constructed high-density genetic map contains 2498 Bin markers ,and all the markers covers 2371.84 cM with an average genetic distance of 0.95 cM/marker. A total of 26 grain-size related QTLs were repeatedly detected on Chr.1, Chr.2, Chr.3, Chr.4, Chr.7 and Chr.9 in the two seasons with single QTL contribution rate ranged from 0.16% to 14.41%. Five QTL clusters (qGS1, qGS2, qGS3-1, qGS3-2, qGS7) were detected on Chr.1, Chr.2, Chr.3, and Chr.7. Among them, qGS1, qGS3-2, and qGS7 have been previously reported. qGS2 and qGS3-1 were novel grain-size related QTLs. qGS2 was repeatedly detected in the same marker interval in the two seasons, and its LOD values in the early and late season were 8.08 and 4.00 with the phenotypic contribution rate 11.38% and 6.67%, respectively. qGS3-1 was detected to be correlated with grain thickness in the two seasons, and its LOD values in the early and late season were 2.94 and 8.59 with the phenotypic contribution rates 4.69% and 14.41%, respectively. Combined with functional annotation and CREP database of gene expression profiles, four candidate grain-size related genes including LOC_Os02g42310, LOC_Os02g42314, LOC_Os02g42370 and LOC_Os02g42380 were screened out in the qGS2 locus. LOC_Os02g42310 encodes a serine carboxypeptidase homologue; LOC_Os02g42314 encodes a ubiquitin-conjugating enzyme; LOC_Os02g42370 encodes a protein kinase domain containing protein; LOC_Os02g42380 encodes a TCP domain containing protein. Three candidate grain-size related genes including LOC_Os03g39020, LOC_Os03g39150 and LOC_Os03g39230 were screened out in the qGS3-1 locus. LOC_Os03g39020 encodes a kinesin motor domain containing protein; LOC_Os03g39150 encodes a protein kinase domain containing protein; LOC_Os03g39230 encodes an OTU-like cysteine protease family protein. Among the genes, LOC_Os02g42314 and LOC_Os03g39020 were highly expressed in the young panicle and endosperm after pollination and recognized as the most possible candidate genes for regulating grain size.【Conclusion】 26 rice grain-size related QTLs were detected. Five QTL clusters (qGS1, qGS2, qGS3-1, qGS3-2, qGS7) were detected on Chr1, Chr.2, Chr.3, and Chr.7, and qGS2 and qGS3-1 were novel QTLs for regulating grain size, and two candidate genes were screened out in this locus.

Key words: rice, RIL population, high-density genetic map, grain size, grain shape, QTL mapping, candidate gene

Table 1

Performance of grain size traits in CHA-1/H335 RIL population and parents under two seasons"

性状
Trait
季节
Season
亲本Parents
重组自交系RIL
CHA-1 H335 均值+标准差
Mean±SD
变幅
Range
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
粒长
GL(mm)
2017E 8.59 9.15* 9.33±0.44 7.41—10.47 4.71 1.13 -0.27
2017L 8.83 9.71* 9.89±0.61 7.54—12.08 6.13 3.13 0.33
粒宽
GW(mm)
2017E 1.92 2.27** 2.46±0.12 2.11—3.04 4.88 1.57 0.31
2017L 2.14 2.47** 2.50±0.16 2.12—3.27 6.34 2.55 0.84
粒厚
GT(mm)
2017E 1.74 1.92** 1.88±0.05 1.74—2.02 3.17 0.12 -0.15
2017L 1.68 1.89** 1.89±0.06 1.71—2.07 3.42 -0.05 -0.16
长宽比
GLWR
2017E 4.4 4.03** 3.82±0.25 2.68—4.55 6.54 3.49 -0.82
2017L 4.13 3.94** 3.99±0.27 2.33—4.85 6.89 6.93 -1.53
籽粒圆度
CS
2017E 0.43 0.46* 0.48±0.03 0.41—0.62 6.25 5.94 1.32
2017L 0.44 0.46* 0.46±0.03 0.38—0.65 5.99 12.46 2.42
籽粒周长
PL(mm)
2017E 19.58 20.86** 21.50±0.96 17.72—23.83 4.47 0.52 -0.09
2017L 20.35 22.58** 22.84±1.33 18.18—27.83 5.81 2.75 0.53
籽粒截面积
AS(mm2)
2017E 13.59 16.04** 17.79±1.28 14.30—21.09 7.19 -0.01 0.08
2017L 14.64 18.75** 19.11±1.96 14.70—28.93 10.25 5.17 1.45
千粒重
TGW(g)
2017E 15.29 22.25** 21.87±1.96 15.50—32.00 8.95 2.78 0.41
2017L 16.02 24.13** 23.02±2.24 14.86—28.50 9.73 0.46 -0.12

Fig. 1

CHA-1/H335 parents and RILs grain size differences a: Grain size differences between CHA-1 and H335; b: Grain size differences between RILs"

Fig. 2

Distribution of grain size traits for CHA-1/H335 RIL population and parents E: Early season; L: Late season"

Table 2

Correlationship analysis on grain size traits in CHA-1/H335 recombinant inbred lines"

性状
Traits
粒长
GL
粒宽
GW
粒厚
GT
谷粒截面积
AS
谷粒周长
PL
长宽比
GLWR
谷粒圆度
CS
千粒重
TGW
粒长GL 0.293** 0.291** 0.825* * 0.991** 0.577** -0.586** 0.448**
粒宽GW 0.062 0.555** 0.724** 0.385** -0.598** 0.555** 0.488**
粒厚GT 0.256** 0.368** 0.475** 0.339** -0.237** 0.193** 0.749**
谷粒截面积AS 0.739** 0.686 ** 0.428** 0.875** 0.045 -0.043 0.559**
谷粒周长PL 0.987** 0.188** 0.295** 0.819 ** 0.490** -0.510** 0.490**
长宽比GLWR 0.651** -0.709** -0.107 -0.01 0.548 ** -0.967** -0.059
谷粒圆度CS -0.674** 0.656 ** 0.087 -0.02 -0.583** -0.974** 0.012
千粒重TGW 0.498** 0.377 ** 0.666** 0.616 ** 0.536 ** 0.043 -0.063

Table 3

Description on basic characteristics of linkage map"

连锁群编号
Linkage group ID
总标记数
Total marker
总图距
Total distance (cM)
平均图距
Average distance (cM)
最大Gap
Max gap (cM)
Gap <5 cM
(%)
Chr.1 251 219.89 0.88 2.85 100.00
Chr.2 316 196.26 0.62 6.69 99.37
Chr.3 313 217.40 0.70 5.54 99.68
Chr.4 309 207.84 0.67 11.89 99.68
Chr.5 138 238.62 1.74 6.83 99.27
Chr.6 212 202.72 0.96 10.02 99.05
Chr.7 156 171.16 1.10 5.17 99.35
Chr.8 141 111.26 0.79 5.77 99.29
Chr.9 192 181.65 0.95 4.07 100.00
Chr.10 185 326.27 1.77 25.61 98.37
Chr.11 140 89.95 0.65 1.82 100.00
Chr.12 145 208.82 1.45 3.24 100.00
总计Total 2498 2371.84 0.95 25.61 99.51

Table 4

QTLs for grain size-related traits of recombinant inbred lines under two seasons"

性状
Trait
季别
Season
QTL 染色体
Chr.
位置
Position (cM)
标记区间
Marker interval
LOD
贡献率
PVE (%)
加性效应
Add.
粒长 GL 2017E qGL1 1 81 Block391— Block433 2.70 4.13 0.89
qGL2-1 2 112 Block3789— Block3802 6.57 10.37 1.38
2017L qGL2-2 2 135 Block3934—Block3940 96.99 11.07 10.47
qGL2-3 2 139 Block3954— Block3957 86.71 8.87 -9.38
qGL9 9 151 Block15927— Block15938 3.45 0.16 -1.26
粒宽 GW 2017E qGW3-2 3 204 Block6009—Block6012 3.92 6.50 0.32
2017L qGW3-1 3 36 Block5332— Block5419 2.94 5.29 0.35
谷粒截面积 AS 2017E qAS2-2 2 112 Block3789— Block3802 6.57 11.36 40.48
qAS3 3 34 Block5273— Block5280 2.86 4.87 26.75
2017L qAS2-1 2 111 Block3794— Block3802 4.00 7.08 47.52
谷粒周长 PL 2017E qPL1 1 81 Block391—Block433 3.33 4.50 2.08
qPL2-2 2 112 Block3789— Block3802 8.08 11.38 3.27
2017L qPL2-1 2 111 Block3794— Block3802 4.07 6.67 3.30
qPL9 9 137 Block15834— Block15856 3.22 5.25 -2.93
长宽比 GLWR 2017E qGLWR3 3 203 Block6004— Block6012 2.53 4.22 -0.05
2017L qGLWR7 7 164 Block12538— Block12681 2.85 4.81 0.06
谷粒圆度 CS 2017L qCS7 7 164 Block12538—Block12681 2.69 4.58 -0.01
粒厚 GT 2017E qGT3-1 3 37 Block5421- Block5424 3.06 4.69 0.01
qGT3-2 3 216 Block6268— Block6282 4.68 7.27 0.01
qGT4-2 4 135 Block7726— Block7769 3.16 4.88 0.01
qGT7 7 166 Block12689— Block12716 4.16 6.42 -0.01
2017L qGT3-1 3 37 Block5421— Block5424 8.59 14.41 0.02
qGT4-1 4 13 Block6302—Block6677 3.23 5.21 0.01
千粒重 TGW 2017E qTGW2-2 2 133 Block3892— Block3931 4.35 6.75 0.50
2017L qTGW2-1 2 128 Block3805— Block3823 5.72 9.92 0.62
qTGW4 4 33 Block6738— Block6765 2.73 4.62 0.42

Fig. 3

Distribution of detected QTLs related to grain size traits on high-density genetic map GL: Grain length; GW: Grain width; GT: Grain thickness; GLWR: Length-to-width ratio of grain; CS: Circularity; AS: Area size of grain; PL: Perimeter length of grain; TGW: 1000-grain-weight; E: Early season; L: Late season"

Table 5

QTL clusters associated with grain size traits detected in this study"

QTL簇
QTL cluster
染色体
Chr.
标记区间
Marker interval
物理区间
Physical interval (bp)
相关性状
Involved trait
LOD 贡献率
PVE (%)
报道QTL
QTL reported
qGS1 1 Block391—Block433 9107381—10916140 GL、PL 2.70—3.33 4.13—4.50 YGL8[28]
qGS2 2 Block3789—Block3802 25385152—25530071 GL、AS、PL 4.00—8.08 6.67—11.38
qGS3-1 3 Block5421—Bloc5424 21695710—21786126 GW、GT 2.94—8.59 4.69—14.41
qGS3-2 3 Block6004—Block6012 31084034—31304364 GW、GLWR 2.53—3.92 4.22—6.50 qST3[29]
qGS7 7 Block12538—Block12716 24107455—28343282 GT、GLWR、CS 2.69—4.16 4.58—6.42 GL7; GW7[4]

Fig. 4

Annotation and expression profiling of genes in qGS2 and qGS3-1 locus The expression level of each sample is printed as deep blue representing the lowest value to deep red representing the highest value in the heat map. The gene names are followed closely by their annotation information"

[1] XING Y Z, ZHANG Q F . Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010,61(1):421-442.
[2] HUANG R Y, JIANG L R, ZHENG J S, WANG T S, WANG H C, HUANG Y M, HONG Z L . Genetic bases of rice grain shape: So many genes, so little known. Trends in Plant Science, 2013,18(4):218-226.
[3] FAN C C, XING Y Z, MAO H L, LU T T, HAN B, XU C G, LI X H, ZHANG Q F . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006,112(6):1164-1171.
[4] WANG Y X, XIONG G S, HU J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E B, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015,47:944.
[5] QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X . The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012,22:1666.
[6] SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39:623.
[7] LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017,3:17043.
[8] XU C J, LIU Y, LI Y B, XU X D, XU C G, LI X H, XIAO J H, ZHANG Q F . Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,66(9):2611-2623.
[9] SHI C, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M . Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019: 180(1):381-391.
[10] SHE K, KUSANO H, KOIZUMI K, YAMAKAWA H, HAKATA M, IMAMURA T, FUKUDA M, NAITO N, TSURUMAKI Y, YAESHIMA M, TSUGE T, MATSUMOTO K, KUDOH M, ITOH E, KIKUCHI S, KISHIMOTO N, YAZAKI J, ANDO T, YANO M, AOYAMA T, SASAKI T, SATOH H, SHIMADA H . A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 2010,22(10):3280-3294.
[11] XU F, FANG J, OU S J, GAO S P, ZHANG F X, DU L, XIAO Y H, WANG H R, SUN X H, CHU J F, WANG G D, CHU C C . Variations in CYP78A13 coding region influence grain size and yield in rice. Plant, Cell & Environment, 2015,38(4):800-811.
[12] CHEN J, GAO H, ZHENG X M, JIN M N, WENG J F, MA J, REN Y L, ZHOU K N, WANG Q, WANG J, WANG J L, ZHANG X, CHENG Z J, WU C Y, WANG H Y, WAN J M . An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. The Plant Journal, 2015,83(3):427-438.
[13] HUANG K, WANG D K, DUAN P G, ZHANG B L, XU R, LI N, LI Y H . WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017,91(5):849-860.
[14] SONG X J, KUROHA T, AYANO M, FURUTA T, NAGAI K, KOMEDA N, SEGAMI S, MIURA K, OGAWA D, KAMURA T, SUZUKI T, HIGASHIYAMA T, YAMASAKI M, MORI H, INUKAI Y, WU J, KITANO H, SAKAKIBARA H, JACOBSEN S E, ASHIKARI M . Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the USA, 2015,112(1):76-81.
[15] ISHIMARU K, HIROTSU N, MADOKA Y, MURAKAMI N, HARA N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B, ONISHI A, MIYAGAWA H, KATOH E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013,45:707.
[16] YING J Z, MA M, BAI C, HUANG X H, LIU J L, FAN Y Y, SONG X J . TGW3, a major QTL that negatively modulates grain length and weight in rice. Molecular Plant, 2018,11(5):750-753.
[17] LIAN J, SUN X J, LI Y C . GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2013,55(10):938-949.
[18] 彭强, 李佳丽, 张大双, 姜雪, 邓茹月, 吴健强, 朱速松 . 不同环境基于高密度遗传图谱的稻米外观品质QTL定位. 作物学报, 2018,44(08):1248-1255.
PENG Q, LI J L, ZHANG D S, JIANG X, DENG R Y, WU J Q, ZHU S S . QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments. Acta Agronomica Sinica, 2018,44(8):1248-1255. (in Chinese)
[19] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧 . 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018,44(6):938-946.
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H . QTL Mapping for heading date in rice using high-density Bin map. Acta Agronomica Sinica, 2018,44(6):938-946. (in Chinese)
[20] 秦伟伟, 李永祥, 李春辉, 陈林, 吴迅, 白娜, 石云素, 宋燕春, 张登峰, 王天宇, 黎裕 . 基于高密度遗传图谱的玉米籽粒性状QTL定位. 作物学报, 2015,41(10):1510-1518.
QIN W W, LI Y X, LI C H, CHEN L, WU X, BAI N, SHI Y S, SONG Y C, ZHANG D F, WANG T Y, LI Y . QTL Mapping for kernel related traits based on a high-density genetic map. Acta Agronomica Sinica, 2015,41(10):1510-1518. (in Chinese)
[21] TANABATA T, SHIBAYA T, HORI K, EBANA K, YANO M . SmartGrain: High-Throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 2012,160(4):1871-1880.
[22] CHEN L K, GAO W W, GUO T, HUANG C H, HUANG M, WANG J F, XIAO W M, YANG G L, LIU Y Z, WANG H, CHEN Z Q . A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Molecular Breeding, 2016,36(9):123.
[23] MCCOUCH S R . Gene nomenclature system for rice. Rice, 2008,1(1):72-84.
[24] WANG L, XIE W B, CHEN Y, TANG W J, YANG J Y, YE R J, LIU L, LIN Y J, XU C G, XIAO J H, ZHANG Q F . A dynamic gene expression atlas covering the entire life cycle of rice. The Plant Journal, 2010,61(5):752-766.
[25] SATO Y, TAKEHISA H, KAMATSUKI K, MINAMI H, NAMIKI N, IKAWA H, OHYANAGI H, SUGIMOTO K, ANTONIO B A, NAGAMURA Y . RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 2012,41(D1):D1206-D1213.
[26] 郭咏梅, 穆平, 刘家富, 李自超, 卢义宣 . 水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位. 作物学报, 2007(1):50-56.
GUO Y M, MU P, LIU J F, LI Z C, LU Y X . Correlation Analysis and QTL mapping of grain shape and grain weight in rice under upland and lowland environments. Acta Agronomica Sinica, 2007(1):50-56. (in Chinese)
[27] 张颖慧, 谢永楚, 董少玲, 张亚东, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 王才林 . 利用水稻籼粳重组自交系群体研究粒型性状与千粒重的相关性. 江苏农业学报, 2012,28(2):231-235.
ZHANG Y H, XIE Y C, DONG S L, ZHANG Y D, CHEN T, ZHAO Q Y, ZHU Z, ZHOU L H, YAO S, ZHAO L, WANG C L . Correlations between grain shape traits and 1000-grain weight using Indica/Japonica rice recombinant inbred lines. Jiangsu Agricultural Sciences, 2012,28(2):231-235. (in Chinese)
[28] KONG W Y, YU X W, CHEN H Y, LIU L L, XIAO Y J, WANG Y L, WANG C L, LIN Y, YU Y, WANG C M, JIANG L, ZHAI H Q, ZHAO Z G, WAN J M . The catalytic subunit of magnesium- protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Molecular Biology, 2016,92(1):177-191.
[29] 刘进, 姚晓云, 王棋, 李慧, 王嘉宇, 黎毛毛 . 不同生态环境下籽粒大小相关性状QTL定位. 华北农学报, 2018,33(2):133-138.
LIU J, YAO X Y, WANG Q, LI H, WANG J Y, LI M M . QTL mapping of seed size traits under different environment in rice. Acta Agriculturae Boreali Sinica, 2018,33(2):133-138. (in Chinese)
[30] 逯腊虎, 杨斌, 张婷, 张伟, 袁凯, 史晓芳, 彭惠茹, 倪中福, 孙其信 . 冬小麦旗叶大小及籽粒相关性状的QTL分析. 华北农学报, 2018,33(5):1-8.
LU L H, YANG B, ZHANG T, ZHANG W, YUAN K, SHI X F, PENG H R, NI Z F, SUN Q X . Quantitative trait loci analysis of flag leaf size and grain relative traits in winter wheat. Acta Agriculturae Boreali Sinica, 2018,33(5):1-8. (in Chinese)
[31] WAN X Y, WAN J M, WENG J F, JIANG L, BI J C, WANG C M, ZHAI H Q . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theoretical and Applied Genetics, 2005,110(7):1334-1346.
[32] 刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民 . 水稻粒型基因克隆和调控机制研究进展. 中国水稻科学, 2018,32(1):1-11.
LIU X, MOU C L, ZHOU C L, CHENG Z J, JIANG L, WAN J M . Research progress on cloning and regulation mechanism of rice grain shape genes. Chinese Journal of Rice Science, 2018,32(1):1-11. (in Chinese)
[33] 李志永 . 水稻种子特异表达基因SCP46的克隆及功能鉴定[D]. 杭州: 中国农业科学院, 2017.
LI Z Y . Cloning and functional identification of A seed-specific gene SCP46 in rice[D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2017.(in Chinese)
[34] ZHANG B W, WANG X L, ZHAO Z Y, WANG R J, HUANG X H, ZHU Y L, YUAN L, WANG Y C, XU X D, BURLINGAME A L, GAO Y J, SUN Y, TANG W Q . OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation. Plant Physiology, 2016,170(2):1149-1161.
[35] ZHAO J M, ZHAI Z W, LI Y N, GENG S F, SONG G Y, GUAN J T, JIA M L, WANG F, SUN G L, FENG N, KONG X C, CHEN L, MAO L, LI A L . Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018,9:1282.
[36] CHI Q, GUO L J, MA M, ZHANG L J, MAO H D, WU B W, LIU X L RAMIREZ-GONZALEZ R H, UAUY C, APPELS R, ZHAO H X, . Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Functional & Integrative Genomics, 2019,19:853-866.
[37] ZHANG M, ZHANG B C, QIAN Q, YU Y C, LI R, ZHANG J W, LIU X L, ZENG D L, LI J Y, ZHOU Y H . Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. The Plant Journal, 2010,63(2):312-328.
[38] KITAGAWA K, OKI K, KURINAMI S, ABE Y, IWASAKI Y, KONO I, ANDO T, YANO M, KITANO H . A novel kinesin 13 protein regulating rice seed length. Plant and Cell Physiology, 2010,51(8):1315-1329.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[6] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[7] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[10] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[11] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[12] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[13] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!