Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3004-3016.doi: 10.3864/j.issn.0578-1752.2021.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

Resistance Monitoring to Thiamethoxam and Expression Analysis of Cytochrome P450 Genes in Leptinotarsa decemlineata from Xinjiang

SHI Xin1(),LI Sha1,WANG ZhiMin1,FU KaiYun2,FU WenJun3,JIANG WeiHua1()   

  1. 1College of Plant Protection, Nanjing Agricultural University, Nanjing 210095
    2Research Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-Western Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830091
    3Agricultural Technology Extension Master Station of Yili Prefecture, Yining 835000, Xinjiang
  • Received:2020-10-30 Accepted:2020-11-21 Online:2021-07-16 Published:2021-07-26
  • Contact: WeiHua JIANG E-mail:907094441@qq.com;jwh@njau.edu.cn

Abstract:

【Objective】Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a significant agricultural pest in potato worldwide. The objective of the study is to identify the main cytochrome P450 genes involved in metabolic regulation of neonicotinoid insecticide thiamethoxam in L. decemlineata.【Method】In this study, the resistance level to thiamethoxam was assayed using topical applications in 11 field populations of L. decemlineata from Qapqal (QPQL), Yining (YN), Tacheng (TC), Urumqi (URMQ), Jimusar (JMS) of Xinjiang in 2018 and 2019. The activities of three detoxifying enzymes including cytochrome P450 monooxygenase (P450), glutathioneS-transferase (GST) and esterase (EST), exposed to LD50of thiamethoxam for 72 h were analyzed by in vitro enzyme activity assay. The differentially expressed genes (DEGs) of L. decemlineata adults susceptible and resistant to thiamethoxam were detected by Illumina HiSeqTM 2500 sequencing platform. The expression verification of three P450 genes and the expression change of six P450 genes in different populations and the beetles exposed to LD50 of thiamethoxam for 72 h were performed by real-time quantitative PCR (qRT-PCR).【Result】Resistance monitoring results showed that the adults of YN1, URMQ1, TC and QPQL1 populations in 2018 and YN2 and JMS in 2019 developed low to moderate level resistance to thiamethoxam with resistance ratio (RR) ranging from 5.99 to 20.33 times. The P450 activities of adults from two sensitive populations URMQ2 and URMQ3 and two resistant populations YN2 and JMS after treatment with thiamethoxam LD50for 72 h were significantly increased to 1.76, 2.75, 1.91 and 1.66 times as high as the control, respectively. In addition, the GST (CDNB and DCNB as substrates) of URMQ3 population and the EST activities of URMQ2 and YN2 populations were obviously increased to 1.19, 2.10 and 1.35, 1.91 times of the control, respectively. Based on Illumina RNA sequencing, the raw reads (56 872 051 and 62 249 136), clean reads (55 903 706 and 61 082 076), clean bases (8.39 and 9.16 G) and error of basic group (0.03%) were obtained for the thiamethoxam-susceptible and -resistant samples of adult populations, respectively. Thirteen differentially expressed P450 genes were identified in the thiamethoxam-resistant sample, of which two genes were significantly up-regulated. The expression levels of three P450 genes, namely CYP4C1,CYP9e2and CYP305a1by RNA sequencing were validated by qRT-PCR analysis. Furthermore, CYP9Ya, CYP9Yc, CYP4C1, CYP305a1 and CYP9Z25 were up-regulated in the thiamethoxam-resistant adults, and the expression of CYP9Ya, CYP9Yc increased significantly in the 4th instar larvae and adults under thiamethoxam treatment. It was found by correlation analysis that there was a significant positive correlation between resistance level to thiamethoxam and CYP9Ya expression of adults. 【Conclusion】CYP9Ya may be involved in the production of thiamethoxam resistance in L. decemlineata, and the role of other genes cannot be ruled out.

Key words: Leptinotarsa decemlineata, thiamethoxam, resistance, cytochrome P450, gene expression

Table 1

Sampling information of L. decemlineatapopulations "

采集时间 Sampling time 种群 Population 采集地点 Sampling location
2018-06 察布查尔QPQL1 察布查尔县扎库齐牛录乡Zhakuqiniulu Town, Qapqal County
2018-06 伊宁YN1 伊宁县英塔木乡Yingtamu Town, Yining County
2018-06 塔城TC 塔城市阿西尔乡Axier Town, Tacheng City
2018-07 乌鲁木齐URMQ1 乌鲁木齐市安宁渠镇Anningqu Town, Urumqi City
2019-06 察布查尔QPQL2 察布查尔县扎库齐牛录乡Zhakuqiniulu Town, Qapqal County
2019-06 伊宁YN2 伊宁县英塔木乡Yingtamu Town, Yining County
2019-06 伊宁YN3 伊宁县胡地于孜乡Hudiyuzi Town, Yining County
2019-07 乌鲁木齐URMQ2 乌鲁木齐市萨尔达坂乡Saerdaban Town, Urumqi City
2019-07 乌鲁木齐URMQ3 乌鲁木齐市头屯河区Toutunhe District, Urumqi City
2019-07 乌鲁木齐URMQ4 乌鲁木齐市板房沟乡Banfanggou Town, Urumqi City
2019-07 吉木萨尔JMS 吉木萨尔县泉子街镇Quanzijie Town, Jimusar County

Table 2

The primers ofL. decemlineata for qRT-PCR "

基因 Gene 上游引物序列 Forward primer sequence (5′-3′) 下游引物序列 Reverse primer sequence (5′-3′)
CYP9Ya TGGACCAAAGAGTACCCGAAGGAA TCGACAATTCAGTCCGAGGTACGA
CYP9Yc ATTTGGAAGTGGACCACGCAATTG GCCAAATTCCTTCTCGTCCAGCAAG
CYP9Z25 ACTTGCACACCTTTGAGAGCATCC TTGTCAACTTTCTCATGCCCACCC
CYP4C1 AGCCTGACATTCCACTTC CTGCTCCTCACTAACATCT
CYP9e2 CATCATAGCACAAGCATTCT TTTCCTCCACATATTTCATCAG
CYP305a1 TTCCGAAGAATACGATGGT GCGAAGATGAAGAGTTACAA
RPL4 AAAGAAACGAGCATTGCCCTTCCG TTGTCGCTGACACTGTAGGGTTGA
Ef1α AAGGTTCCTTCAAGTATGCGTGGG GCACAATCAGCTTGCGATGTACCA

Table 3

Susceptibility to thiamethoxam of L. decemlineata 4th instar larvae and adults from Xinjiang "

虫态
Stage
年份
Year
种群
Population
斜率Slope
(b±SE)
致死中量(95%置信限)
LD50(95% FL) (ng/larva)
抗性倍数
Resistant ratio (RR)
4龄幼虫
4th instar larva
2018 QPQL-S 3.456±0.419 6.64 (5.12-8.61) 1.00
YN1 2.588±0.090 12.40 (10.01-15.43) 1.88
TC 3.236±0.211 14.08 (11.53-17.20) 2.14
URMQ1 3.438±0.255 16.04 (13.08-19.67) 2.42
QPQL1 1.255±0.086 27.94 (17.02-45.81) 4.23
2019 URMQ2 10.911±2.538 5.52 (5.21-5.84) 1.00
URMQ3 2.829±0.270 5.85 (4.69-7.29) 1.05
JMS 11.508±3.571 5.93 (5.60-6.28) 1.07
QPQL2 2.514±0.240 9.64 (7.49-12.42) 1.75
URMQ4 2.483±0.205 12.97 (9.62-17.49) 2.36
YN3 2.095±0.293 14.99 (11.38-19.76) 2.73
YN2 2.607±0.105 20.41 (14.76-28.22) 3.71
成虫
Adult
2018 QPQL-S 1.648±0.098 9.42 (6.73-13.39) 1.00
YN1 2.665±0.075 56.33 (45.14-70.22) 5.99
URMQ1 5.934±0.321 82.76 (74.50-91.94) 8.81
TC 6.857±0.460 102.11 (94.00-110.92) 10.86
QPQL1 1.719±0.085 191.11 (139.32-262.28) 20.33
2019 URMQ2 11.203±1.607 24.69 (22.81-26.72) 1.00
URMQ3 3.707±0.551 37.65 (30.57-46.38) 1.53
URMQ4 3.023±0.406 58.31 (46.96-72.41) 2.36
QPQL2 1.636±0.091 85.25 (61.06-119.00) 3.45
YN3 2.802±0.102 111.19 (89.43-138.25) 4.50
YN2 1.809±0.212 291.97 (161.07-529.24) 11.82
JMS 1.384±0.138 347.01 (204.51-588.80) 14.05

Fig. 1

Changes of detoxification enzyme activities of L. decemlineata adults exposed to LD50 of thiamethoxam for 72 h Data in the figure are mean±SE. Different letters on the bars indicate significant difference atP<0. 05 level. The same as below "

Table 4

Sequencing results of susceptible and resistant adults of L. decemlineata from Xinjiang "

样品
Sample
原始序列个数
Number of raw sequence
过滤后的序列个数
Number of filtered sequence
过滤后的序列长度
Clean bases
碱基错误率
Error of basic group (%)
Q20 (%) Q30 (%) GC含量GC content (%)
UMRQ3 56872051 55903706 8.39 G 0.03 97.77 93.28 38.95
JMS 62249136 61082076 9.16 G 0.03 97.75 93.25 38.68

Table 5

DEGs between the resistant population and relatively sensitive population"

差异表达基因分类
DEG classification
所有基因
Whole transcriptome
上调基因
Up-regulated gene
下调基因
Down-regulated gene
显著上调基因Significantly up-regulated gene 显著下调基因Significantly down-regulated gene
细胞色素P450 Cytochrome P450 13 3 10 2 3
谷胱甘肽S-转移酶Glutathione S-transferase 1 0 1 0 0
酯酶Esterase 7 3 4 0 0
尿苷二磷酸-葡萄糖基转移酶UDP-glucuronosyltransferase 9 4 5 1 3
表皮蛋白Cuticular protein 6 3 3 0 0
ABC转运蛋白ABC transporter 12 4 8 3 0
烟碱型乙酰胆碱受体Nicotinic acetylcholine receptor 11 1 3 0 0

Table 6

Up-regulated genes in the resistant population"

基因名称Gene symbol 基因号 Gene ID log2FC PPvalue
CYP4C1类基因 P450 4C1-like 111509985 3.75 9.82E-17
CYP9e2类基因 P450 9e2-like 111511395 2.15 0.001
可能为CYP305a1类基因 Probable P450 305a1 111504977 1.85 0.449
酯酶E4类基因Esterase E4-like 111513709 2.41 0.051
酯酶B1类基因%2C转录本变种X1
Esterase B1-like%2C transcript variant X1
111502042 1.18 0.190
羧酸酯酶6类基因 Carboxylesterase-6-like 111514530 1.07 0.553
2-羟乙酰鞘氨1-β类半乳糖糖基转移酶基因
2-hydroxyacylsphingosine 1-beta-galactosyltransferase-like
111516632 1.69 0.444
2-羟乙酰鞘氨1-β类半乳糖糖基转移酶基因
2-hydroxyacylsphingosine 1-beta-galactosyltransferase-like
111512327 1.90 0.457
未鉴定的LOC111503457 Uncharacterized LOC111503457 111503457 1.52 0.543
尿苷二磷酸-葡萄糖基转移酶2B30类基因
UDP-glucuronosyltransferase 2B30-like
111513316 2.52 0.023
蛹表皮蛋白36类基因 Pupal cuticle protein 36-like 111501889 3.28 0.073
幼虫表皮蛋白A2B类基因 Larval cuticle protein A2B-like 111503150 1.16 0.173
内表皮结构糖蛋白SgAbd-8类基因
Endocuticle structural glycoprotein SgAbd-8-like
111517484 3.91 0.173
ABC转运蛋白跨膜区 ABC transporter transmembrane region novel.1120 7.53 6.85E-06
多药耐药相关蛋白1类基因
Multidrug resistance-associated protein 1-like
111516459 7.98 7.63E-06
ABC转运蛋白 ABC transporter novel.1273 7.35 0.003
ATP-结合盒G亚家族类基因1%2C 转录本变种X1
ATP-binding cassette sub-family G member 1-like%2C transcript variant X1
111510979 1.79 0.553
烟碱型乙酰胆碱受体α3亚基 α3 111512651 1.00 0.683

Fig. 2

The relative level of three up-regulated P450 genes by qRT-PCR validation"

Fig. 3

Relative expression of P450 genes in the field populations of L. decemlineata 4th instar larvae from Xinjiang in 2018 (A) and 2019 (B) "

Fig. 4

Relative expression of P450 genes in field populations of L. decemlineata adults from Xinjiang in 2018 (A) and 2019 (B) "

Fig. 5

Relative expression of P450 genes in 4th instar larvae and adults of relatively sensitive population of L. decemlineata exposed to thiamethoxam "

Table 7

Correlation analysis between expression of P450 genes and resistance level to thiamethoxam of L. decemlineata from Xinjiang "

采集时间
Sampling time
基因
Gene
RR value PP value
4龄幼虫4th instar larva 成虫Adult 4龄幼虫4th instar larva 成虫Adult
2018 CYP9Ya 0.549 0.548 0.338 0.339
CYP9Yc 0.790 0.487 0.112 0.406
CYP9Z25 0.049 0.309 0.938 0.613
2019 CYP9Ya -0.096 0.810* 0.838 0.027
CYP9Yc -0.101 0.646 0.829 0.117
CYP9Z25 0.270 0.189 0.558 0.685
CYP4C1 0.667 0.679 0.102 0.094
CYP9e2 -0.198 0.426 0.670 0.340
CYP305a1 0.144 0.179 0.758 0.702
[1] ALYOKHIN A. Colorado potato beetle management on potatoes: Current challenges and future prospects//Fruit, Vegetable and Cereal Science and Biotechnology, 2009, 3(1):10-19.
[2] ALYOKHIN A, BAKER M, MOTA-SANCHEZ D, DIVELY G, GRAFIUS E. Colorado potato beetle resistance to insecticides. American Journal of Potato Research, 2008, 85:395-413.
doi: 10.1007/s12230-008-9052-0
[3] 郭文超, 吐尔逊, 许建军, 刘建, 何江, 李晶, 马德成, 王俊. 马铃薯甲虫识别及其在新疆的分布、传播和危害. 新疆农业科学, 2010, 47(5):906-909.
GUO W C, TU E R, XU J J, LIU J, HE J, LI J, MA D C, WANG J. Research on the identification of Colorado potato beetle and its distribution, dispersal and damage in Xinjiang. Xinjiang Agricultural Sciences, 2010, 47(5):906-909. (in Chinese)
[4] 须志平. 新烟碱类杀虫剂在作物保护方面的应用. 世界农药, 2009, 31(1):18-21.
XU Z P. Application of neonicotinoids insecticides in crop protection. World Pesticides, 2009, 31(1):18-21. (in Chinese)
[5] 王彦华, 王鸣华. 害虫对噻虫嗪抗药性及其治理. 世界农药, 2008, 30(4):42-45.
WANG Y H, WANG M H. Pest resistance to thiamethoxam and its management. World Pesticides, 2008, 30(4):42-45. (in Chinese)
[6] ZHAO J Z, BISHOP B A, GRAFIUS E J. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2000, 93(5):1508-1514.
doi: 10.1603/0022-0493-93.5.1508
[7] MOTA-SANCHEZ D, HOLLINGWORTH R M, GRAFIUS E J, MOYER D D. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Management Science, 2006, 62(1):30-37.
doi: 10.1002/(ISSN)1526-4998
[8] 王志田, 姜卫华, 李国清. 新疆北疆马铃薯甲虫成虫抗药性水平监测. 农药, 2010, 49(3):206-208.
WANG Z T, JIANG W H, LI G Q. Insecticide resistance in adult of the Colorado potato beetle among north Xinjiang Uygur autonomous region. Agrochemicals, 2010, 49(3):206-208. (in Chinese)
[9] 刘萍, 姜卫华, 卢伟平, 李国清. 新疆北疆马铃薯甲虫成虫对新烟碱类杀虫剂的敏感性变化. 农药学学报, 2011, 13(3):271-275.
LIU P, JIANG W H, LU W P, LI G Q. Susceptibility of Colorado potato beetle Leptinotarsa decemlineata adults from northern Xinjiang Uygur autonomous region to 4 neonicotinoids . Chinese Journal of Pesticide Science, 2011, 13(3):271-275. (in Chinese)
[10] KAPLANOGLU E, CHAPMAN P, SCOTT I M, DONLY C. Overexpression of a cytochrome P450 and UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Scientific Reports, 2017, 7:1762.
doi: 10.1038/s41598-017-01961-4
[11] CLEMENTS J, SCHOVILLE S, PETERSON N, LAN Q, GROVES R L. Characterizing molecular mechanisms of imidacloprid resistance in select populations of Leptinotarsa decemlineata in the central sands region of Wisconsin. PLoS ONE, 2016, 11(1):e0147844.
doi: 10.1371/journal.pone.0147844
[12] CLEMENTS J, SCHOVILLE S, PETERSON N, HUSETH A S, LAN Q, GROVES R L. RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology, 2017, 135:35-40.
doi: 10.1016/j.pestbp.2016.07.001
[13] CLEMENTS J, OLSON J M, SANCHEZ-SEDILLO B, BRADFORD B, GROVES R L. Changes in emergence phenology, fatty acid composition, and xenobiotic-metabolizing enzyme expression is associated with increased insecticide resistance in the Colorado potato beetle. Archives of Insect Biochemistry and Physiology, 2020, 103(3):e21630.
[14] 卢伟平, 刘萍, 姜卫华, 李国清. 4种新烟碱类杀虫剂对马铃薯甲虫的触杀毒力比较. 农药, 2011, 50(2):137-140.
LU W P, LIU P, JIANG W H, LI G Q. Comparison of contact toxicities of 4 neonicotinoids against Leptinotarsa decemlineata . Agrochemicals, 2011, 50(2):137-140. (in Chinese)
[15] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72:248-254.
doi: 10.1016/0003-2697(76)90527-3
[16] 祝海栋, 李瑞琳, 何小雨, 赵丹, 韩鑫胤, 牛北方. 六倍体小麦基因组注释流程构建与优化. 计算机系统应用, 2019, 28(8):222-228.
ZHU H D, LI R L, HE X Y, ZHAO D, HAN X Y, NIU B F. Construction and optimization of hexaploid wheat genome annotation process. Computer Systems and Applications, 2019, 28(8):222-228. (in Chinese)
[17] LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3):R25.
doi: 10.1186/gb-2009-10-3-r25
[18] ZHU F, MOURAL T W, NELSON D R, PALLI S R. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple cytochrome P450s. Scientific Reports, 2016, 6:20421.
doi: 10.1038/srep20421
[19] 王彦华, 陈进, 沈晋良, 高聪芬, 黄悦, 张久双, 李文红, 周威君. 防治褐飞虱的高毒农药替代药剂的室内筛选及交互抗性研究. 中国水稻科学, 2008, 22(5):519-526.
WANG Y H, CHEN J, SHEN J L, GAO C F, HUANG Y, ZHANG J S, LI W H, ZHOU W J. Laboratory screening and cross-resistance analysis of alternative insecticides for highly-toxic pesticides for controlling brown planthopper, Nilaparvata lugens . Chinese Journal of Rice Science, 2008, 22(5):519-526. (in Chinese)
[20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
[21] MOTA-SANCHEZ D, WHALON M, GRAFIUS E, HOLLINGWOETH R. Resistance of Colorado potato beetle to imidacloprid. Resistant Pest Management, 2000, 11(1):31-34.
[22] 张钰明, 向兴, 王学贵. 噻虫嗪对褐飞虱的毒力及解毒代谢酶活性的影响. 华南农业大学学报, 2020, 41(3):80-85.
ZHANG Y M, XIANG X, WANG X G. Effects of thiamethoxam on toxicity and detoxification metabolic enzyme activity of Nilaparvata lugens . Journal of South China Agricultural University, 2020, 41(3):80-85. (in Chinese)
[23] CLEMENTS J, SANCHEZ-SEDILLO B, BRADFIELD C A, GROVES R L. Transcriptomic analysis reveals similarities in genetic activation of detoxification mechanisms resulting from imidacloprid and chlorothalonil exposure. PLoS ONE, 2018, 13(10):e0205881.
doi: 10.1371/journal.pone.0205881
[24] WU M C, CHANG Y W, LU K H, YANG E C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochemistry and Molecular Biology, 2017, 88:12-20.
doi: 10.1016/j.ibmb.2017.06.016
[25] 刘昌燕, 曾凡荣. 大草蛉P450基因cDNA片段的克隆及吡虫啉诱导表达. 中国生物防治学报, 2014, 30(3):427-433.
LIU C Y, ZENG F R. Cloning of Chrysopa pallens P450 cDNA fragment and the expression induced by imidacloprid . Chinese Journal of Biological Control, 2014, 30(3):427-433. (in Chinese)
[26] ZHANG Y X, YANG Y X, SUN H H, LIU Z W. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochemistry and Molecular Biology, 2016, 79:50-56.
doi: 10.1016/j.ibmb.2016.10.009
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[5] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[6] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[7] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[8] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[9] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[10] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[11] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[12] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[13] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[14] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[15] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!